

1

Environmental Stability and Durability of Environmental Barrier Coatings for SiC/SiC Ceramic Matrix Composites

Dongming Zhu, Bryan Harder, Dennis S. Fox, Ram Bhatt

Durability and Protective Coatings Branch Structures and Materials Division NASA John H. Glenn Research Center Cleveland, Ohio 44135, USA

Materials Science & Technology 2012 Conference & Exhibition October 7-11, 2012 Pittsburgh, Pennsylvania, USA

EBC coated

CMC vane

NASA Environmental Barrier Coating System Development

- Advanced environmental barrier coatings for SiC/SiC CMC combustor and turbine vane component technologies being developed for reduced cooling and NO_x emission and will be demonstrated
- Next generation high pressure turbine blade environmental barrier coatings with advanced CMCs

NASA Environmental Barrier Coating System Development

- Emphasize temperature capability, performance and durability for next generation turbine engine systems
- Increase Technology Readiness Levels for component system demonstrations

- Current EBCs limited in their temperature capability, water vapor stability and long-term durability
- Advanced EBCs also required higher strength and toughness
 - In particular, resistance to combined higher heat flux, engine higher operating pressure, combustion environment and creep-fatigue loading interactions
- EBCs need improved erosion, impact and calcium-magnesium-aluminosilicate (CMAS) resistance
- EBC-CMC systems need advanced processing for realizing complex coating compositions, architectures and thinner turbine coating configurations for next generation high performance engines

Environmental Stability of Selected Environmental Barrier Coatings Tested in NASA High Pressure Burner Rig

- EBC stability evaluated on SiC/SiC CMCs in high velocity, high pressure burner rig environment
- Stability gaps exist for future high bypass, high operating pressure ratio engines
 Temperature, °C

Outline

- Advanced EBC systems for next generation environmental barrier coating development
- Processing techniques for advanced EBCs
 - Plasma Spray Physical Vapor Deposition (PS-PVD) and Plasma Spray – Thin Film (PS-TF) processing
 - Electron Beam Directed Vapor Deposition (EB-DVD) and/or Electron Beam - Physical Vapor Deposition (EB-PVD)
- Advanced environmental barrier coating systems for CMC airfoils and combustors
 - NASA EBC systems
 - Current turbine and combustor EBC coating development emphasis
 - Major development testing results
 - Cyclic test
 - Water vapor, creep and fatigue
- Summary and future directions

Advanced Environmental Barrier Coating Systems for Si-Based Ceramic Matrix Composites

- Focus on high stability HfO₂ layer with graded interlayer, environmental barrier and advanced bond coat developments
 - Alternating Composition Layered Coatings (ACLCs) and nano-composite coatings
 - BSAS, alloyed mullite and rare earth (RE) silicate EBCs
 - Processing approaches being developed for vapor deposition, plasma spray addressing high stability nano-composite systems

Plasma Sprayed-Physical Vapor Deposition (PS-PVD) and Plasma Sprayed- Thin Film (PS-TF) Processing of Environmental Barrier Coatings

- Environmental Barrier Coatings
 NASA PS-PVD and PS-TF coating processing using Sulzer technology
- EBC is being developed for next-generation SiC/SiC CMC turbine airfoil coating processing
- High flexibility coating processing PVD and/or splat coating processing at lower pressure (at ~1 torr)
- High velocity vapor, non line-of-sight coating processing for complex-shape components
- Emphasis on fundamental process understanding and powder composition developments

Electron Beam - Directed Vapor Deposition (EB-DVD) and Electron Beam - Physical Vapor Deposition (EB-PVD)

- An advanced Electron Beam Vapor (EB-DVD) approach developed by Directed Vapor Technologies, Inc (DVTI)
- Flexible in multi-component coating processing and composition controls
- Progress made in advanced bond coat, EBC and some top coat developments of environmental barrier coating systems
- Significant processing advancement in co-deposition and multi-component coating developments with current NASA EBC compositions for high Technology Readiness Levels (TRLs) EBC component processing
- Collaborative work also in the EBC top coat development with Penn State University

The Advanced 3000°F SiC/SiC CMC Turbine Vane Coating Systems

- Advanced high toughness multi-component HfO₂/ZrO₂ based systems designed and incorporated into turbine environmental barrier coatings for improved stability and toughness
- Multi-component composition and processing systems being optimized for environmental barrier for SiC/SiC CMCs
- Advanced composite coatings with interface engineering approaches have been explored
- Modeling continues to be emphasized for advanced nano-composites

Advanced 2700°F ZrO₂ turbine EBC top coating

Advanced ZrO₂ - ytterbium silicate composite coating (APS)

Advanced Multi-Component Turbine Environmental Barrier Coatings are being Developed

- The emphasis is placed on turbine environmental barrier coating compositions, phase and thermomechanical stability
- Strong interest in highly stable oxide-silicate and composites
- Aiming at better understanding the phase stability and solid-state reaction kinetics of multi-phase systems

Oxide-silicate nano-composites (bright areas are Hfand/or RE-rich phases; dark areas are silica-rich phases) Reaction kinetics of HfO₂-Si bond coat systems

NASA Advanced Multi-Component EBCs and Bond Coats Being Processed and Developed at DVTI

The initial durability is being demonstrated

EBC Processing using Plasma Spray-Physical Vapor Deposition (PS-PVD)

- Demonstrated vapor-like coating deposition for thermal barrier and environmental barrier coating applications using Sulzer processed powders
 - Advanced powders developed/being developed under NASA programs using NASA specifications
- Initial properties being evaluated
 - Potentially high stability (thermodynamically) processing as EB-DVD/PVD
 - Potential issue with relatively less-stable systems such as silicates due to phase separations

Laser Heat Flux Thermal Gradient Tests of Some EB-DVD and PS-PVD/PS-TF Systems

Coating stability on SiC/SiC is being evaluated

0

The Yb₂SiO₅/Yb₂Si₂O₇ EBC Delamination Crack Propagation Tests under Heat Flux Thermal Gradient Test Conditions

- Penney-shaped crack initially size 1.5 mm in diameter, tested in air at 1350° C
- Crack propagated from 1.5 mm to 7.5 mm 60, 1 hr cyclic testing
- Possible SiO2 loss acclerated crack propagation

Laser Heat Flux Thermal Gradient Tests of Some APS and **Hot-Pressed EBC Systems**

- RE silicate- ZrO₂ systems tested in 1482° C
- Delamination propagation observed
- Non soluble phases of ytterbium silicate and ZrO2
- Loss of silica in rare earth silicate
- Porous ZrO2 phase retained after testing

Ytterbium Mono- and Silicate EBC tested in Laser High Heat Flux Steam rig

- Observed mud flut cracking after 1400C test
- Loss of Silica observed after the testing

Laser Heat Flux Thermal Gradient Tests of Some Advanced with HfO2-RE-Silicate EB-DVD Systems

 The EBCs demosntaretd for 50, 1 hr cycles at the coating surface temperature of near 1700° C without failure

Laser Heat Flux Thermal Gradient Tests of Some Directed Vapor EB-PVD Directed Vapor – Plasma Sprayed Systems

- The coatings showed excellent high temperature stability
- Effect of rare earth and Si dopants studied

Advanced Ballistic Impact Resistant Turbine Coating Technologies Processed at Directed Vapor EB-PVD or EB-PVD

Advanced Ballistic Impact Resistant Turbine EBC Systems

- Experience learnt from impact resistant TBCs will help the advanced impact resistant EBC developments
- Advanced EBCs on par with best TBCs

The Long-Term Durable CMC Coating System Testing under High Heat Flux Conditions

Coating surface creep strain 1-2% Laser beat delivery optio system Cooling shower head jets temperature extensometer lest specimen 1.0 Gen II CMC, 1.98×10^{-7} /s; 15 ksi Tsurface = 2700°F 0.8 Tinterface= 2500°F TCMC back=2320°F Gen I CMC, 7.19×10^{-8} /s; 15 ksi Tsurface = 2400°F Total strain, % 0.6 Tinterface = 2300°F Tback = 2050.4 Gen II CMC, 7.35x10⁻⁸/s; 15 ksi Tsurface =~2500°F Gern I CMC 4.10x10⁻⁸/s; 10 ksi 0.2 Tinterface=~2350°F Tsurface = $\sim 2500^{\circ}$ F Tback=~2200°F Tinterface= 2350°F TCMC back=2200°F 0.0 200 400 600 800 1000 0 1200 Time, hours

Advanced NASA EBCs Tested in Laser Heat Flux Biaxial Test

- 1600° C EBC maximum temperature, 3 hz, I million cycles ~ 100 hot hr each test
- EBCs survived the tests

Advanced NASA EBCs Tested in Fatigue Loading

- Surface cracking observed
- Compositions can play critical role in the durability

The EBC Subelement Stability Demonstrated in High Heat Flux and High Velocity - High Pressure Burner Rig

NASA coating systems demonstrated in component testing: laser heat flux rig testing

High heat flux testing CMC Vane and tube Segments (2700°F)

NASA

The EBC Subelement Stability Demonstrated in High Heat Flux and High Velocity - High Pressure Burner Rig -Continued

- Initial DVTI processed NASA coating systems demonstrated in component testing: high pressure burner rig testing

Summary and Future Directions

- Advanced high temperature turbine and combustor CMC environmental barrier coatings being developed using advanced EBC compositions and processing
 - Demonstrated feasibility to process advanced EBC systems using APS and EB-DVD approaches
 - Demonstrated uniqueness of each processing methods and processing scale-up capability for components
 - Creep and fatigue durability demonstrated
 - Have better understanding of EBC degradation
 - Achieved higher temperature capability, better environmental stability and thermal
 mechanical stress and impact resistance of the coating systems
 - Continue the coating composition and architecture developments to achieve 2700-3000°F (1482-1650°C) capability in thin coating configurations for both CMC combustor and turbine EBCs
 - Develop robust processing for APS, EB-DVD, PS-PVD/PS-PVD and EB-PVD
 - Support component coating development and modeling
 - Further develop advanced testing approaches to ensure prime-reliant EBC systems

Acknowledgements

The work was supported by NASA Fundamental Aeronautics Program (FAP) **Supersonics** Project and NASA Integrated Systems Research Program (ISRP) **Environmentally Responsible Aviation (ERA)** Project.

NASA Subsonics/ERA

NASA Supersonics