

A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions

AIAA Space 2013 Conference San Diego, CA September 12, 2013

Carolyn R. Mercer,¹ Steven R. Oleson,¹ and Bret Drake²

¹NASA Glenn Research Center, Cleveland OH ²NASA Johnson Space Center, Houston TX

A Combined Solar Electric and Storable Chemical Propulsion Vehicle for Piloted Mars Missions –

A concept study by NASA Glenn Research Center's Collaborative Modeling for Parametric Assessment of Space Systems (COMPASS) team

OVERVIEW

Study Objective Study Assumptions Study Figures of Merit

Summary of prior studies

Mission Trades

Baseline Concept of Operations and Trajectory Baseline Vehicle

Technology Trades

Summary

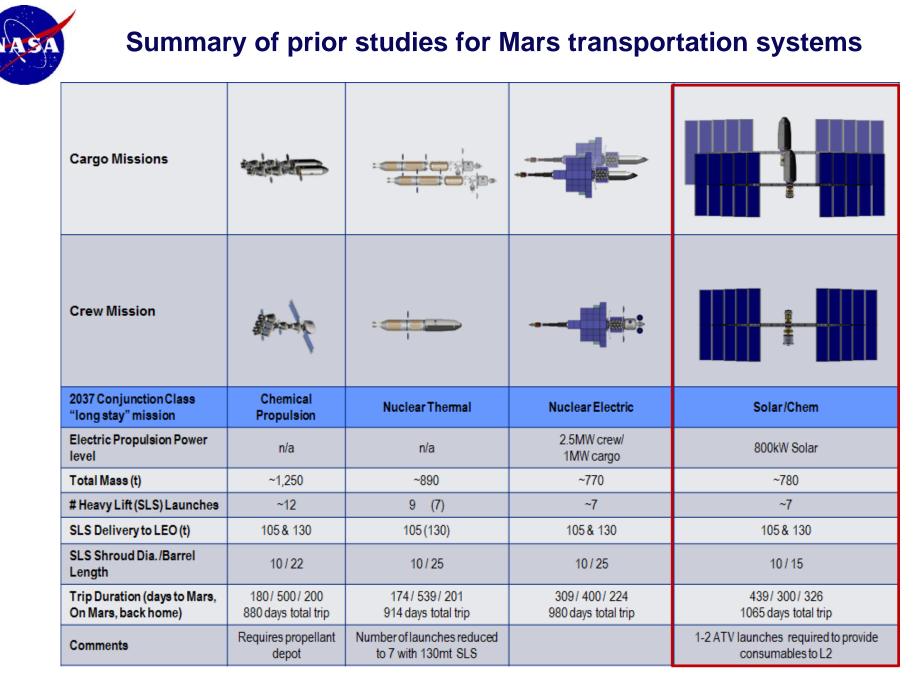
Solar Electric Propulsion for Piloted Mars Mission

Study Objective

Determine the feasibility of using power-constrained solar electric propulsion (SEP) to transport crew and cargo according to the Design Reference Architecture 5.0 (DRA 5) mission.

Study Assumptions:

Per DRA 5.0: 2037 launch date; conjunction-class "long-stay" mission for six crew


Study Figures of Merit:

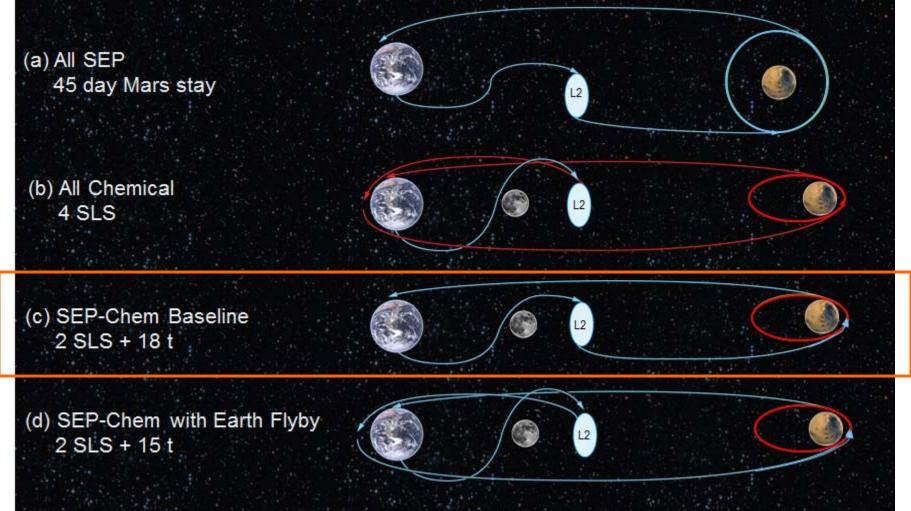
Total crew time of 1000 days or less Mars stay time of 365 days or more

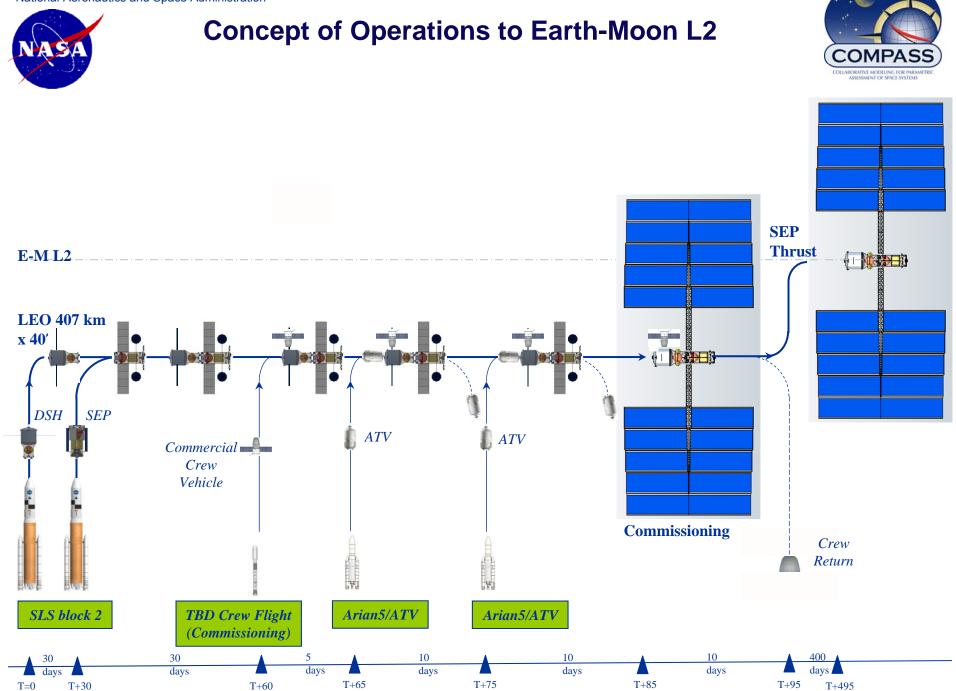
Mass and volume

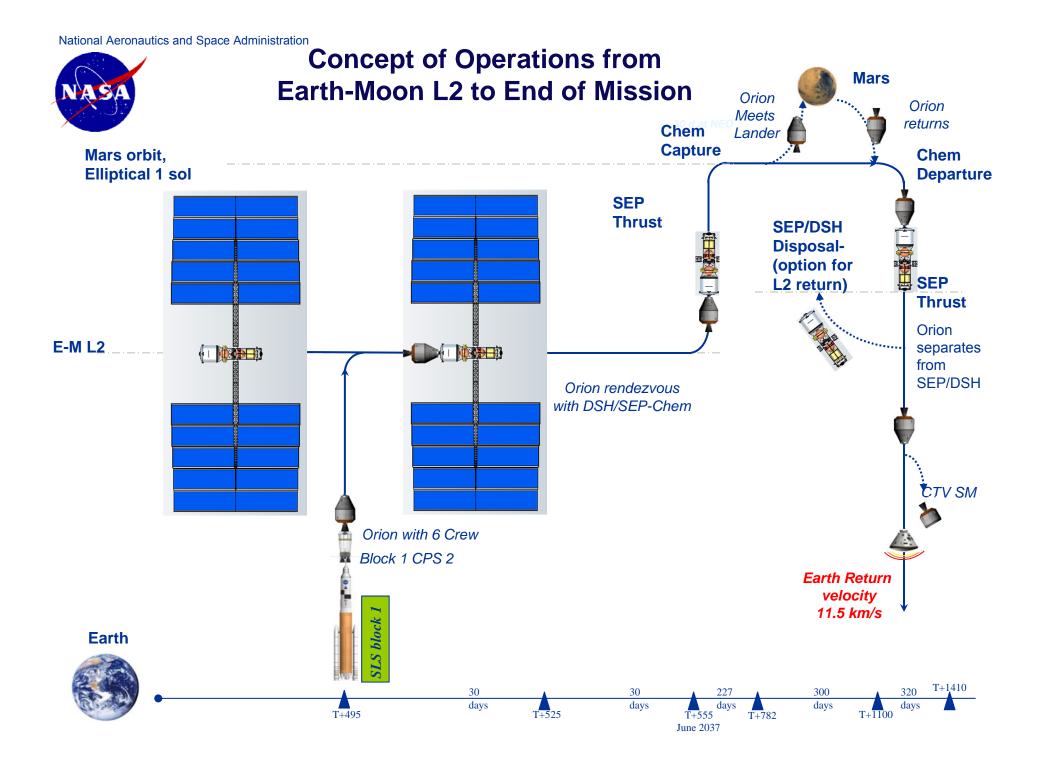
Minimize initial mass of the spacecraft in LEO to reduce the required number of Space Launch System (SLS) launches to 2 SLS net launch capability of 113.8 t delivery to LEO (–92.5 km by 407 km), with an 8.5- by 25-m shroud

No more than 1 MW of electric power to the electric propulsion system at beginning of life

Mission trades




All-SEP – SEP provides all change in velocity (ΔV) from L2 to Mars and back


All-Chemical – Chemical propulsion provides all ΔV from L2 to Mars and back

SEP-Chem – SEP provides interplanetary ΔVs ;

chemical propulsion provides gravity well ΔVs

Baseline Trajectory (No Earth Flyby, Direct Drive)

SEP Delta-Vs: EML2 Departure: 4204 m/s S13 Mars Arrival: 391 m/s SEP Departure from Mars Departure: 2203 m/s Mars Coast **Chemical Delta-Vs:** Mars Arrival: 345 m/s Coast VENUS Mars Departure: 226 m/s 65 Chemical Departure S9N from Mars SEP Arrival at Earth Departure Date: June 17, 2037 Mars Mars Arrival Date: August 30, 2038 Mars Departure Date: June 26, 2039 Chemical SEP Departure from Arrival at Mars Earth Arrival Date: May 17, 2040 S16 EML2 SARTH Mars Stay Time: 300 days **Total TOF:** 1066 days *Optimized for inert mass of 122mt

Baseline SEP-Chem System

SEP: 800 kW, 2400 sec Isp Chemical: Orion-derived storable, 327 sec Isp

2 SLS-launched SEP-Chem vehicles to deliver 6 crew from EM-L2 to elliptical 1 sol Mars orbit and back to Earth

Spiral from LEO 400km to EM-L2 unpiloted; Rendezvous with MPCV launched to EM-L2 on separate vehicle.

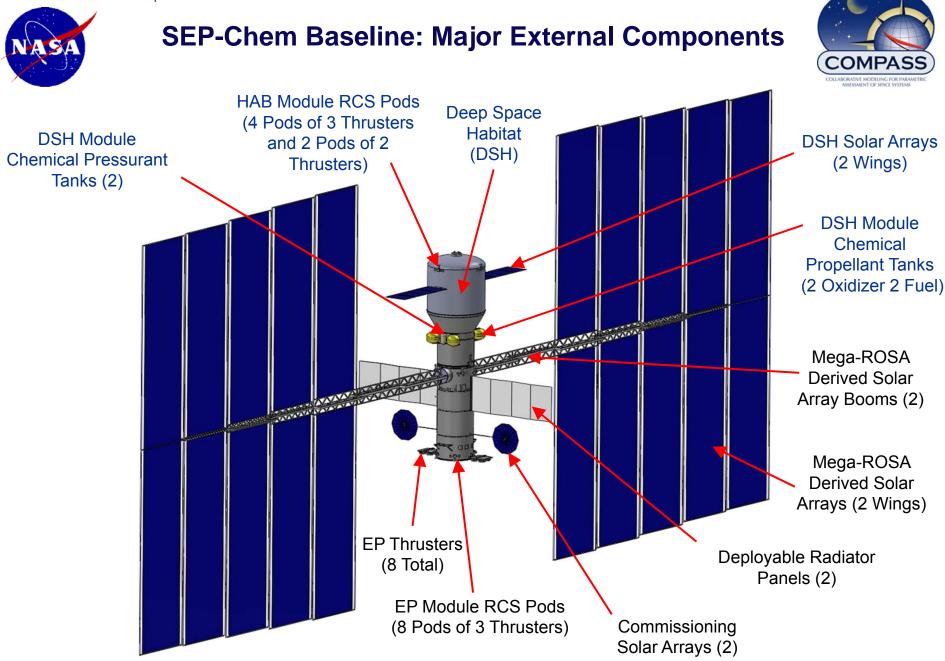
SEP:

(2) 500-kW solar arrays beginning-of-life (BOL) 400 kW end-of-life at 1 AU (EOL)

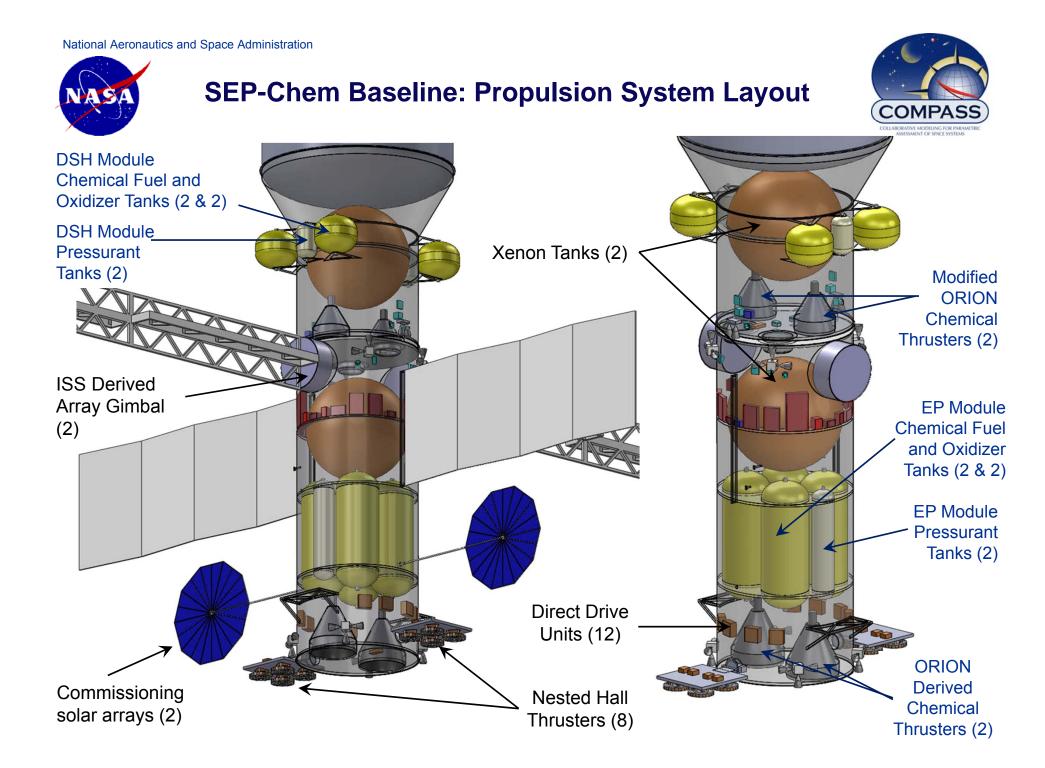
500V power bus voltage

(8) 125-kW nested Hall thrusters at 2400 s lsp with direct drive 6 operational; 2 as spares

(2) 3.9-m-diameter COPV Xe tanks (109 t)


Chemical:

(2) Orion-derived storable bi-propellant chemical thrusters (7000 lbf)



SEP-Chem Element

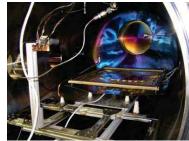
www.nasa.gov

Technology variants

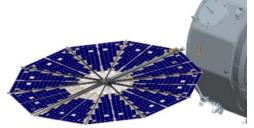
Specific impulse (Isp): 2000 to 3000 s Power to thrusters: 600 to 900 kW Bus voltage: 300 to 500 V Thruster type: Hall effect and nested Hall effect Power processor: Direct drive (DDU) and conventional power processing unit (PPU)

Chemical system: Storable and cryogenic systems

		SEP-Tug SEP-Chem		SEP-Chem					All SEP	SEP Cargo	
		all Chem	Earth Flyby		Baseline		LOx LCH4		PPU	all SEP	SEP Cargo
Transport	LEO to L2	SEP	SEP		SEP					SEP	SEP Cargo
	Earth/Moon Depart flyby	chem	chem/SEP		none - SEP from L2					none - SEP from L2	none - SEP from L2
	Interplanet propulsion	None - coast	SEP		SEP					SEP	SEP
	Mars gravity well propuls	chemical	chemical	hemical SEP		chemical					none - cargo aerocapture
	Mars parking orbit	Elliptic 1 sol	Elliptic 1 Circular 1 sol sol		Elliptic 1 sol					Circular 1 sol	none - SEP flys by Mars
	Launch requirements	~4 SLS	2 SLS + 3 ATV		2 SLS + 2 ATV				2 SLS + 2 ATV	2 SLS (1 SEP + 1 aeroshell cargo)	
	Outbound/Inbound transit time		344 / 315 days		439 / 326 days	416 / 321 days	470 / 330 days	439 / 326 days	405 / 337 days		
	Mars stay time	~500 days	367 days		300 days	300 days	270 days	300 days	300 days	45 days	n/a
	Total trip time		1026 days		1066 days	1037 days	1070 days	1066 days	1041 days		
Propulsion	Power system	800 kW EOL/1AU, 500 V			800 kW EOL/1AU, 500 V					800 kW, 500V	800 kW, 300 V
	Electric thruster type (Direct Drive unless noted)	Nested Hall			Nested Hall 8 @ 125 kW	Nested Hall 12 @ 75 kW	Nested Hall 8 @ 125 kW	Hall 20 @ 50kW	Nested Hall (PPU) 12 @ 75 kW		PPU
	Electric thruster Isp	2400 sec			2400 sec	2000 sec		2400 sec	3000 sec / 2140 sec	2400 sec	2870 sec
	Xenon mass				109 t						74 t
	Chemical propulsion	Orion-derivative storable chemical propulsion (327 sec Isp)			327 sec Orion-derived		349 sec LOx/LCH ₄	327 sec Or	ion-derived	n/a	n/a


Technology Development

Existing technology development may be extensible to these power levels –


- 20-kW-class Mega-ROSA and MegaFlex solar array structures being built with extensibility to 250kW-class operation; Modular designs may be scalable to 1 MW
- 100-kW-class nested Hall thrusters are currently under development; 50-kW to 125-kW thrusters could be used for very high power system
- Photovoltaic (PV) cells are being characterized for operation at high voltage and robust operation near electric thruster plumes
- Electronic parts are being characterized for robustness in the deep space radiation environment

100-kW-class nested Hall thruster (University of Michigan)

High voltage electronic parts radiation testing (NASA GSFC)

PV plasma testing (NASA JPL)

Mega-ROSA solar array (DSS, Inc.)

MegaFlex solar array (ATK, Inc.)

Summary

Figures of Merit nominally met –

Total crew time of 1000 days or less :Final design has 1065 day crew timeMars stay time of 365 days or more:Final design is 300 daysSolar arrays sized for ≤1 MW at beginning of life:Final design is 1 MW BOL, 800kW EOL

Reduce the required number of SLS launches to 2:

Final design required additional ~18 t of crew consumables on ELV to LEO

Solar Electric Propulsion can be viable to transport both crew and cargo to Mars at reasonable power levels for reasonable trip times.

Existing technology development may be extensible to these power levels:

Solar array structures, nested Hall thrusters, direct drive power processing.