

Effect of Graphene Addition on Shape Memory Behavior of Epoxy Resins

Tiffany Williams¹, Michael Meador¹, Sandi Miller¹, Daniel Scheiman²

¹NASA Glenn Research Center Structures and Materials Division-Polymers Branch Cleveland, OH

> ²ASRC Aerospace Cleveland, OH

Motivation and objective

- Motivation and objectives:
 - Determine feasibility of using polymer matrix composites for morphing aircraft structures
 - Evaluate the use of high T_g epoxies and determine the effects of graphene nanofiller on shape memory behavior
- Why polymer nanocomposites?
 - Lower shape recovery with some reinforcement
 - Possibility of debonding during repetitious cycling in fiber reinforced composites

Adaptive polymers for morphing aircraft structures

<u>Structures of interest</u>

- Wings
- Aircraft engine fan blades
- Shrouded (ducted) fan blades (VTOLs)
- Rotor blades
- Aircraft skins
- Chevrons
- <u>Benefits</u>
 - Reduced drag
 - Noise reduction
 - Reduced fuel consumption
 - Better engine efficiency
 - Increased aerodynamic efficiency

•Morphing Type

- -Twisting
- -Camber change
- -Change in length
- -Bending

Shape memory materials

- Shape memory polymers (SMPs) (1980's)
- Shape memory alloys (SMAs)
 - Gold-cadmium alloy (1938)
 - Nickel-titanium alloy (1963)
 - Nickel Titanium Naval
 Ordinance Lab
 - Shape change driven through temperature-dependent phase transformations

- Ероху
- Polyurethane
- Polylactic acid (PLA)
- Poly(ε-caprolactone)
- Shape change by exceeding T_{sw} in polymer
 - Polymer blends
 - Copolymers (block, graft, random, etc)
 - Covalent networks (crosslinking, IPNs)
- Actuation
 - pH
 - Temperature
 - External fields
 - Light
 - Magnetic
 - Electrical

Materials & Methods

- T_g target: >145°C
- SMP Epoxy:
 - Epon 862 and Epon 828 mixture with Epikure W curing agent
- Nanofiller:
 - Graphene
 - 0.05 wt%
 - 0.1 wt%
 - 0.2 wt%

Vor-X: Surface-modified exfoliated graphene

National Aeronautics and Space Administration Thermo-mechanical properties of neat epoxy and

National Aeronautics and Space Administration

Effect of graphene concentration on shape memory behavior

Thermal effects on shape memory behavior—24 hr. dwell at T_d

Samples heated to T_d prior to cycling showed more consistent strain response

Thermal effects on shape memory behavior—24 hr. dwell at T_d

Samples heated to T_d prior to cycling showed more consistent strain response

Effect of heat on chemical functionality—FTIR spectroscopy

No significant chemical change when samples were heated to T_d

Effect of graphene on thermal transitions of epoxy

No thermal exposure	Т _g (°С)
Neat Epoxy SMP	147.2 <u>+</u> 1.5
0.05 wt% graphene/epoxy SMP	149.3 <u>+</u> 1.4
0.10 wt% graphene/epoxy SMP	147.0 <u>+</u> 6.3
0.20 wt% graphene/epoxy SMP	123.4 <u>+</u> 4.1

Thermal exposure	Avg. T _g (°C)
Neat Epoxy SMP	164.4
).05 wt% graphene/epoxy SMP	163.9

Thermo-mechanical properties of epoxy nanocomposites (before and after T_d dwell)

DSC temperature cycles- Neat Epon 828-W curing agent

DSC temperature cycles- Neat Epon 862-W curing agent

National Aeronautics and Space Administration Effect of graphene on flexure properties

16

	Flexure modulus (GPa)	Flexure stress (MPa)	Flexure strain (%)
Neat epoxy	1.6 <u>+</u> 0.3	108.0 <u>+</u> 16.5	9.6 <u>+</u> 1.6
0.05 wt% graphene-epoxy	2.4 <u>+</u> 0.5	110.8 <u>+</u> 15.6	7.0 <u>+</u> 1.6
0.1 wt% graphene-epoxy	3.1 <u>+</u> 1.0	96.2 <u>+</u> 12.9	4.0 <u>+</u> 0.8
0.2 wt% graphene-epoxy	0.4 <u>+</u> 0.09	58.2 <u>+</u> 11.8	14.1 <u>+</u> 3.7

Thermal stability of epoxy nanocomposites—TGA

Summary

- Adding graphene improved consistency between cycles, but reduced the strain recovery range
- Samples cycled following 24 hour T_d exposure showed better shape memory behavior possibly due to structural relaxation changes
- Flexural modulus increased by at least 50% in graphene-epoxy nanocomposites, but decreased flexure stress → low interfacial bonding
- T_{onset} decomposition of epoxy nanocomposites slightly decreased with increasing graphene concentrations

Future work

- Incorporate more compatible functionalized nanofillers to improve interfacial adhesion
- In depth analysis of relaxation behavior

Acknowledgements

- Derek Quade: Mechanical property testing
- Linda McCorkle: SEM analysis
- David Hull: TEM analysis
- Vorbeck Materials: Supplier of exfoliated graphene sheets
- Funding Program: Subsonic Fixed Wing

National Aeronautics and Space Administration

Questions?

National Aeronautics and Space Administration Dispersion of graphene nanofiller in epoxy

Neat Epon 862 vs. neat Epon 828 with Epikure W curing agent

Epon 828 vs. Epon 862-828 mixture

