

Design Considerations for High Power Spacecraft Electrical Systems

2012 Space Power Workshop April 16 to April 19, 2012

Anastacio Baez NASA Glenn Research Center Cleveland, Ohio

Outline

- Space Power Challenge
- Background
- Trends is Space Power Requirements
- Future Space Systems
- Challenges and Driving Requirements
- Modular Power Systems
- Advanced Power Technologies
- Conclusions
- Credits

Space Power Grand Challenge

- Needs: Abundant, Reliable and Affordable Power
 - NASA's future missions of science and human exploration require abundant, reliable and affordable energy generation, storage and distribution.
 - Power needs grow exponentially as we look at extending human presence beyond near earth.
- Problem: Today's space power systems limit our ability to conduct human exploration beyond LEO.
 - Current spacecraft power systems key driving requirements become even more critical as we look at meeting growing power needs.

Background: Types of Space Power Systems

Mission Duration

Traditional Space Power Systems

- Power Level ≤ 15 kW
- PMAD Distribution Voltage \leq 120V
- Custom systems created from oneof-a-kind components.
- Limited or no growth potential.
- Require extensive infrastructure for verification and operation.
- Limited or no autonomous operation.

Deep Space Spacecrafts STS Orbiter

Rovers

Crew Vehicle (Orion)

Hubble Telescope

GEO ComSats

International Space Station EPS

- Power Source
 - Largest ever space solar array
 - 8 solar array wings on space station (2 per PV module)
 - Nominal electrical power output ~ 30 kW per PV wing BOL for ~ 240 kW total power
- Energy Storage
 - 24 NiH2 Batteries NiH2
 - Nominal storage capacity is ~4 kW-hr
- Power Distribution
 - Power Level 75 kW
 - 8 power channels
 - Distribution Voltage
 - 116-170 V primary
 - 120 V secondary

Trends in Space Power Systems

Power Requirements Autonomous Operation Reliability DDT&E Cost Operations and Logistics Cost

Manned Exploration Beyond LEO

International Space Station

Potential Future Missions & Applications

SEP Propulsion Stage

Space Outposts

Multi-mission Space Exploration Vehicle

Advanced Cryo Propulsion Stage

www.nasa.gov

Challenges for Space Power Systems

- Environment
 - Radiation
 - Thermal
- Cost
- Wide Range of Spacecraft Configurations
 - Unique Requirements promotes "one of a kind" design.
- Long Term Operation with minimal human intervention
 - Health Monitoring
 - Power Management

- Space Power System Design Drivers:
 - Efficiency/Power density
 - Safety/Reliability
 - Radiation Hardness
 - Thermal requirements
 - Autonomous operation
 - Mass/Volume
 - DDT&E cost
 - Operations cost

Given these challenges

What should be our focus...

www.nasa.gov

Modular Power System Concept

- Develop a set of modular power components that can be mixed and matched to meet "unique" requirements for different applications
 - <u>Reduces DDT&E cost</u> through design reuse
 - <u>Reduces logistics cost</u> across missions through reduction of vehicle unique components.
- "Monolithic" EPS functional units are replaced by collections of common "smart modules".
- The power system can be "modularized" at various levels.
 - Module Level
 - Uses common devices with master-less intelligent controllers to create "smart modules" to build EPS functional units (converters, switchgear, batteries, etc.).
 - System Level
 - Integrate "smart modules" into sub-systems (power generation, storage, and distribution).

Modular PMAD - Hardware

Description

 Reusable building block(s) that can be configured in series and parallel arrangements for power management and distribution.

Key Issues to Address

- Mechanical packaging and interconnects.
- Low mass complexity parasitic.
- Control/configuration for multifunction, series, and/or parallel operation.

Key Benefits

- Reduced DDT&E and logistics costs.
- Enables high voltage/high power conversion and conditioning

Modular PMAD - Controls Intelligent Control Systems

Description

 Replaces a traditional, hierarchical control system with peer-to-peer cooperating elements with each power module for enhanced operational effectiveness.

Key Issues to Address

- Embedded controls in power elements.
- Collaborative agents in components for active power quality and stability control.
- Sensor web and distributed networks for health monitoring.
- Fault isolation and reconfiguration at the lowest levels.
- Reliable inter-module communication

Intelligent PMAD Functional Block Diagram

Benefits

- Enhanced safety and reliability.
- Facilitates "plug & play" growth and system enhancement.
- Reduces cost of system verification and logistics.

PMAD - Power Distribution High Voltage

Description

 AC or DC high voltage, > 300V, delivery of large power, >100kW, from source to load

Key Issues to Address

- Insulation stress.
- High current/power connectors.
- Corona management in certain environments.
- High current switching and fault control.
- Radiation tolerance.

Key Benefits

- High voltage distribution reduces cable mass and ohmic losses.
- Minimizes power conversion which maximizes efficiency.

PMAD - Advanced Components

Description

• Components that can withstand the harsh environments, wide temperature variations, and high radiation of deep space.

Key Issues to Address

- Development of Silicon Carbide and Gallium Nitrate semiconductors.
- High current/high energy density capacitors.
- Low loss magnetic materials that can withstand high temperatures.

SiC Semiconductors

Advanced Capacitors

Key Benefits

- Facilitates high voltage switching.
- Increased radiation tolerance.
- Ruggedness improves safety and reliability.
- Lower mass/higher energy density.
- Increased operating temperature range.

Power Generation: High Efficiency & Low Mass Photo-voltaic

State of Practice

- Current Systems: Crystalline Si Cells; Triple Junction GaAs Solar Cells;
- Efficiency: Si Cells: 15%; MJ Cells: 31%
- Specific power: 50 to100 W/kg
- Array stowage volume: 5 to 15 kW/m³

Advanced Solar Arrays

- 4-5 Junction Solar Cells; Quantum Dot Solar Cells; Thin-Film Solar Cells
- Efficiency >50%
- Specific Power > 500 W/kg
- Array stowage volume > 100 kW/m³

Power Generation: Low Mass Solar Arrays

Advanced Mechanism

State of Practice

- Semi-rigid Deployment Mechanism
- Alpha and Beta Joints With Slip Rings or Roll Rings
- Truss Structure To Add Additional Solar Array Blankets
- Centralized Momentum Control

Advanced Solar Arrays

- Rigid Light Weight Deployment and Restowage Mechanism
- Lower Mass Pointing Mechanism Allowing Power and Thermal Transfer
- Integrated/Controlled Truss Structure
 With Distributed Momentum Control

Energy Storage: Batteries

State of the Art

- Ni-H2: 30 Wh/kg at the cell level life > 10 years – ISS Application
- Li-Ion: 100 Wh/kg at the cell level life > 5 years

Advanced Battery Materials

Advanced Batteries

- Li-ion: 160 200 Wh/kg at the cell level for > 2000 cycles -- Rover / Lander application
- Li-ion: 270 Wh/Kg at the cell level for > 100 cycles – EVA applications

Energy Storage Li-Ion vs. NiH2 Batteries

Cell Characteristics	ISS NiH2	140Ah Li ion
Rated capacity	81 AH	134-144 A
Energy density	~65 wh/kg	~150 wh/kg
Discharge voltage	1.25 V	> 3.6 V
Self discharge rate	~7% per day (20°C)	< 0.05% per day
Cycle life in LEO (20%-30%DOD)*	~ 10 years (60,000-75,000 cycles) @ 20%-30% DOD	~ 10 years (58,000 cycles) @ 20%-25%DOD
Spec Cycle life	6.5 years @ 35%	10 years @ ISS power levels
Storage life	4 years	6 years
Overcharge	Tolerant	Controlled by 2 FT design
Total Energy Storage (Important for contingency operations)	8 kW-hr (Two ORUs combined)	15 kW-hr (One ORU)
Battery Weight	744 lbs (Two ORUs)	415 lbs (One ORU)

Replacement of two NiH2 ORUs with one Li-ion ORU Half the logistics flights Fewer EVAs to replace batteries

Conclusions

- As human space exploration power needs increase, high power / high voltage systems will be required for future missions
- Power system technology development is critical for the future of human space exploration
- Spectrum of technology development will be needed to meet the increasing power needs of future manned missions

Credits

- Robert Scheidegger NASA GRC
- James Soeder NASA GRC
- Raymond Beach NASA GRC
- Walter Santiago NASA GRC
- Tom Kerslake NASA GRC
- Penni Dalton NASA GRC
- Jameka Humphrey NASA GRC (SGT inc.)
- Azam Arastu Boeing Space & Intelligence Systems