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Space Power Grand Challenge 

• Needs: Abundant, Reliable and Affordable Power 

– NASA’s future missions of science and human exploration 

require abundant, reliable and affordable energy generation, 

storage and distribution. 

– Power needs grow exponentially as we look at extending 

human presence beyond near earth.  

• Problem: Today’s space power systems limit our ability 

to conduct human exploration beyond LEO.  

– Current spacecraft power systems key driving requirements 

become even more critical as we look at meeting growing 

power needs. 
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Background: Elements of a Power System 
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Background: Types of Space Power Systems 

 

Technology used  

for a power system  

depends on power 
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Traditional Space Power Systems 

• Power Level  15kW 

• PMAD Distribution Voltage  120V 

• Custom systems created from one-

of-a-kind components. 

• Limited or no growth potential. 

• Require extensive infrastructure for 

verification and operation. 

• Limited or no autonomous operation. 
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International Space Station EPS 

• Power Source 
– Largest ever space solar 

array 

– 8 solar array wings on space 
station (2 per PV module) 

– Nominal electrical power 
output ~ 30 kW per PV wing 
BOL for ~ 240 kW total power 

• Energy Storage 
– 24 NiH2 Batteries NiH2 

– Nominal storage capacity is 
~4 kW-hr 

• Power Distribution 
– Power Level 75 kW  

– 8 power channels 

– Distribution Voltage 
• 116-170 V primary 

• 120 V secondary 
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Power Requirements

Autonomous Operation

Reliability

DDT&E Cost

Operations and Logistics Cost
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Potential Future Missions & Applications 
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Challenges for Space Power Systems 

• Environment 
– Radiation 

– Thermal 

• Cost 

• Wide Range of 
Spacecraft 
Configurations 
– Unique Requirements 

promotes “one of a kind” 
design. 

• Long Term Operation 
with minimal human 
intervention  
– Health Monitoring 

– Power Management 

• Space Power System 
Design Drivers: 
– Efficiency/Power density 

– Safety/Reliability 

– Radiation Hardness 

– Thermal requirements 

– Autonomous operation 

– Mass/Volume 

– DDT&E cost 

– Operations cost 
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Given these challenges 

 

What should be our focus… 
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Modular Power System Concept 

• Develop a set of modular power components that can be 
mixed and matched to meet “unique” requirements for 
different applications 

– Reduces DDT&E cost through design reuse 

– Reduces logistics cost across missions through reduction of 
vehicle unique components. 

• “Monolithic” EPS functional units are replaced by 
collections of common “smart modules”. 

• The power system can be “modularized” at various levels. 

– Module Level 

• Uses common devices with master-less intelligent controllers to 
create “smart  modules” to build EPS functional units (converters, 
switchgear, batteries, etc.). 

– System Level 

• Integrate “smart modules” into sub-systems (power generation, 
storage, and distribution). 
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Modular PMAD - Hardware 

Description 

• Reusable building block(s) that 

can be configured in series and 

parallel arrangements for power 

management and distribution. 

 

Key Issues to Address 

• Mechanical packaging and 

interconnects. 

• Low mass – complexity – 

parasitic. 

• Control/configuration for multi-

function, series, and/or parallel 

operation. 

Key Benefits 

• Reduced DDT&E and logistics 

costs. 

• Enables high voltage/high power 

conversion and conditioning 
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Modular PMAD - Controls 
Intelligent Control Systems 

Description 

• Replaces a traditional, hierarchical control 

system with peer-to-peer cooperating 

elements with each power module for 

enhanced operational effectiveness. 

 

Key Issues to Address 

• Embedded controls in power elements. 

• Collaborative agents in components for 

active power quality and stability control. 

• Sensor web and distributed networks for 

health monitoring. 

• Fault isolation and reconfiguration at the 

lowest levels. 

• Reliable inter-module communication 

Benefits 

• Enhanced safety and reliability. 

• Facilitates “plug & play” growth and 

system enhancement. 

• Reduces cost of system verification 

and logistics. 
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PMAD - Power Distribution 
High Voltage 

Description 

• AC or DC  high voltage, > 300V, 
delivery of large power, 
>100kW, from source to load 

 

Key Issues to Address 

• Insulation stress. 

• High current/power connectors. 

• Corona management in certain 
environments. 

• High current switching and fault 
control. 

• Radiation tolerance.  

 

Key Benefits 

• High voltage distribution 
reduces cable mass and ohmic 
losses. 

• Minimizes power conversion 
which maximizes efficiency. 
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PMAD - Advanced Components 

Description 

• Components that can withstand 

the harsh environments, wide 

temperature variations, and high 

radiation of deep space. 

 

Key Issues to Address 

• Development of Silicon Carbide 

and Gallium Nitrate 

semiconductors. 

• High current/high energy density 

capacitors. 

• Low loss magnetic materials that 

can withstand high temperatures. 

Key Benefits 

• Facilitates high voltage switching. 

• Increased radiation tolerance. 

• Ruggedness improves safety and 

reliability. 

• Lower mass/higher energy density. 

• Increased operating temperature range. 

SiC Semiconductors 

Advanced Capacitors 
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Power Generation: High Efficiency & Low Mass 

Photo-voltaic 

State of Practice 

• Current Systems:  Crystalline Si Cells;  

Triple Junction GaAs Solar Cells;  

• Efficiency:  Si Cells: 15%;  MJ Cells:  

31%   

• Specific power: 50 to100 W/kg 

•  Array stowage volume:  5 to 15 

kW/m3 

 

 Advanced Solar Arrays 

• 4-5 Junction Solar Cells; Quantum Dot 

Solar Cells; Thin-Film Solar Cells 

• Efficiency  >50% 

• Specific Power  > 500 W/kg 

• Array stowage volume > 100 kW/m3 
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Power Generation: Low Mass Solar Arrays 

State of Practice 

• Semi-rigid Deployment Mechanism 

• Alpha and Beta Joints With Slip Rings 

or Roll Rings 

• Truss Structure To Add Additional 

Solar Array Blankets 

• Centralized Momentum Control 

 

 Advanced Solar Arrays 

• Rigid Light Weight Deployment and Re-

stowage Mechanism 

• Lower Mass Pointing Mechanism 

Allowing Power and Thermal Transfer 

• Integrated/Controlled Truss Structure 

With Distributed Momentum Control 

Advanced 

Mechanism 
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Energy Storage:  Batteries 

State of the Art 

• Ni-H2:  30 Wh/kg at the cell level 

life > 10 years – ISS Application 

• Li-Ion: 100 Wh/kg at the cell level 

life > 5 years  

Advanced Batteries 

• Li-ion:  160 - 200 Wh/kg at the cell level 

for > 2000 cycles  -- Rover / Lander 

application 

• Li-ion:  270 Wh/Kg at the cell level for > 

100 cycles – EVA applications 
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Energy Storage 
Li-Ion vs. NiH2 Batteries 

Cell Characteristics ISS NiH2  140Ah  Li ion 

Rated capacity 81 AH 134-144 A 

Energy density ~65 wh/kg ~150 wh/kg 

Discharge voltage 1.25 V > 3.6 V 

Self discharge rate ~7% per day (20oC) < 0.05% per day 

Cycle life in LEO (20%-30%DOD)* 
~ 10 years (60,000-75,000 cycles) @ 

20%-30% DOD 

~ 10 years (58,000 cycles) @ 

20%-25%DOD 

Spec Cycle life 6.5 years @ 35% 10 years @ ISS power levels  

Storage life 4 years 6 years 

Overcharge Tolerant  Controlled by 2 FT design 

Total Energy Storage (Important for 

contingency operations) 
8 kW-hr   (Two ORUs combined)  15 kW-hr  (One ORU) 

Battery Weight 744 lbs  (Two ORUs) 415 lbs (One ORU) 

Replacement of two NiH2 ORUs with one Li-ion ORU  

Half the logistics flights 

Fewer EVAs to replace batteries 
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Conclusions 

• As human space exploration power needs increase, 

high power / high voltage systems will be required for 

future missions 

• Power system technology development is critical for 

the future of human space exploration 

• Spectrum of technology development will be needed 

to meet the increasing power needs of future manned 

missions 
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