The Multiscale Generalized Method of Cells and its Utility in Predicting the Deformation and Failure of Woven CMCs

Dr. Steven M. Arnold

Multiscale Analysis Center of Excellence NASA Glenn Research Center Cleveland, OH Dr. Kuang C. Liu Research Scientist Arizona State University Tempe, AZ

Multiscale Analysis Center of Excellence

Outline

- Integrated multiscale Micromechanics Analysis Code (ImMAC)
- Multiscale Generalized Method of Cells (MSGMC)
- Modeling of Woven Fabrics (Plain & 5HS)
- Results
 - Tensile (Deterministic, Stochastic)
 - Load and Unloading
 - Creep
- Concluding Remarks

Presentation Objective:

Apply a **synergistic** multiscale modelling technique to woven composites to determine underlying reasons for nonlinear response

- Understand influence (i.e., primary, secondary, etc.) of <u>architectural parameters</u> (e.g., fiber/void volume fraction, weave geometry, tow geometry, void geometry)at <u>multiple length scales</u> on the mechanical response of CMCs.
- Analyze the significance of effects and compare to material scatter

Goal is to Balance Efficiency vs Fidelity

Model Efficiency

Model Fidelity

NASA's Integrated multiscale Micromechanics Analysis Code (ImMAC) Suite

MAC/GMC is Evolving Anisotropic Thermoelastic Inelastic and Damage Constitutive Model

Fidelity vs. Efficiency in Composite Micromechanics

Comparison of Local Stress Invariants

Transverse Loading; 50% Glass/Epoxy

Individual Stress Components

Axial stress (MPa)

Transverse stress in loading direction (MPa)

Transverse stress (MPa) normal to loading direction

Transverse shear stress (MPa)

ARIZONA STATE UNIVERSITY

Failure Criterion for Strength and Durability

Integrated Multiscale Analysis of Arbitrary Composite Structures with FEAMAC

Synergistic Multiscale Modeling

- Embed micromechanics within FEA at element integration points
- New tool for micro/macro analysis of composite structures:

FEAMAC

• Localize/homogenize on the fly

Structure-Scale FEA

Element/Integration Point

MAC/GMC micromechanics analysis

Problem Definition

Multiscale Generalized Method of Cells(MSGMC) Overview

- Newly developed recursive GMC methodology
 - Each length scale in each subcell can call a separate GMC analysis
- Works for any arbitrary multiphase material
 - Elastic / Inelastic / Damage

 $\sigma^{\{\alpha\beta\gamma\}\{\beta g\}} = C^{\{\alpha\beta\gamma\}\{\beta g\}} A^{\{\alpha\beta\gamma\}\{\beta g\}} A^{\{\alpha\beta\gamma\}} A^{\{\alpha\beta\gamma\}}_{tt} A^{\{\beta\gamma\}}_{tp} \Delta \varepsilon$

Macroscale (Weave) Two Step Homogenization

To compensate for lack of normal-shear coupling within GMC a two-step homogenization scheme is employed for woven composites. (Bednarcyk & Arnold, IJSS, 41, 2003)

ARIZONA STATE UNIVERSITY

Constituent Constitutive Model and Strain Localization Microscale

Assume Fiber and Interface Linear Elastic Hashin Fiber Failure Criteria (1980)

f _	σ_{11}^2	1	$(\sigma^2 \pm \sigma^2)$
J –	$\overline{\sigma_{axial}^{2}}$	$ au_{axial}^2$	$(O_{13} + O_{12})$

Assume Linear Elastic with a Scalar Damage constitutive relationship

$$\sigma^{\{\alpha\beta\gamma\}\{\beta\gamma\}} = \left(1 - \phi^{\{\alpha\beta\gamma\}\{\beta\gamma\}}\right) C^{\{\alpha\beta\gamma\}\{\beta\gamma\}} \varepsilon^{\{\alpha\beta\gamma\}\{\beta\gamma\}}$$

Matrix damage driven by magnitude of triaxiality

If
$$\sigma_H > \sigma_{critical}$$

 $f = 3\varepsilon_H nK - \sigma_H = 0$

$$1 - \phi^{i+1} = \lambda^{i+1} = \frac{n\Delta\varepsilon_{H}^{i+1} + \lambda^{i}\varepsilon_{H}^{i+1}}{\left(\Delta\varepsilon_{H}^{i+1} + \varepsilon_{H}^{i+1}\right)}$$

$$\vec{\varepsilon}_{H} \qquad \qquad \left(\varepsilon^{i+1} = \varepsilon^{i} + \Delta\varepsilon^{i+1}\right)$$

Full Multiscale Modeling of 5HS Weave with **Porosities**

5HS and most other orthogonal weaves can be discretized into 8 unique subcell groups. Furthermore model tow and matrix with voids using lower scale RUCs

Tow

Matrix with void

Three Void Modeling Schemes Considered

Voided Matrix Response Achieved via Separate GMC Analysis

Simulation Identifies Local Damage Events / Mechanisms Explaining Nonlinearities in Macro Stress Strain Curve Assuming 5HS RUC with Localized Porosities

50

0

0

0.1

0.2

Estimated Crack Density, #/mm

2

0

0.6

Low stress, tunnel and microcrack

0.4

0.5

formation and growth

0.3

Strain, %

Fiber: Elastic , Hashin Fiber Failure Criteria (includes shear stress)
 Interface: Elastic (very compliant 1/20th)
 Matrix: Elastic, Hydrostatic-Driven Damage

Study Effects Of Micro, Meso, And Macro Parameters on Macroscale Response

ARIZONA STATE UNIVERSITY

Influence of Varying Matrix Material Parameters on the Macroscale Response

ARIZONA STATE UNIVERSITY

Depicts Entire Range Of Macro Response Curves Given the 27 Variations In Architectural Parameters

Utilized Localized Void Model

Architectural Variations clearly contribute to variation in measured material response.

- Initial Modulus $\approx 24\%$
- UTS $\approx 2\%$
- 1st matrix cracking ≈ 16%
- Post matrix cracking Modulus ≈ 24%
- ε_f impacted $\approx 16\%$

Assumed Normal Distributions for Architectural Parameters

Note: Material Properties held fixed at Baseline Values; Void shape – sheet like

*Bonacuse, P., Subodh M., and Goldberg, R.; "CHARACTERIZATION OF THE AS MANUFACTURED VARIABILITY IN A CVI SIC/SIC WOVEN COMPOSITE, Proceedings of ASME Turbo Expo 2011, GT2011, June 6-10, 2011, Vancouver, Canada

Procedure for Incorporating Stochastics Requires Significant Computation Resources

Macro Stress-Strain Response Curves Given Stochastic Assumption of Architectural Parameters

Utilized Localized Void Model

Secant Through Thickness Moduli (E_{zz}) Degrades With Loading As Does In-plane (E₁₁)

ARIZONA STATE UNIVERSITY

Loading Histories with Unloading Are Critical For Deducing Mechanisms Driving Nonlinear Response

Examine Plain Weave Discretization to Study Architectural Parameters on Structural Scale

Macroscale – Plain Weave Discretization Assumes Normal Distribution for all Architectural Parameters

Sensitivity To Architectural Features Changes With Increasing Structural Scale: Plain Weave

ARIZONA STATE UNIVERSITY

Sensitivity To Architectural Features Changes With Increasing Structural Scale: Plain Weave

Property	E11 (GPa)	PLS	H (GPa)	σ_{UTS}	
Mean	211	111	73.7	460	
±σ	9.5	10	6.5	42.5	
±2σ	19	20	13	85	

Comparison of Reconstructed 95% (2σ) Confidence Plain Weave Stress-Strain Response

Blue = 1x1, Yellow = 6x6

Property	E11 (GPa) 1x1	E11(GPa) 6x6	PLS 1x1	PLS 6x6	H (GPa) 1x1	H(GPa) 6x6	σ _{υτs} 1x1	σ _{uts} 6x6
Mean	209.5	211	116	111	74.5	73.7	512.5	460
±σ	13	9.5	10	10	6.5	6.5	15	42.5
± 2σ	26	19	20	20	13	13	30	85

Conclusion

- 1. Demonstrated that a synergistic analysis using the multiscale generalized method of cells (MSGMC) can accurately represent woven CMC tensile behavior (loading/unloading)
 - 4 level of scales analyzed
 - Nonlinear behavior due to damage demonstrated by unloading
 - Critical invariant is I₁ (brittle) not J₂ (metals)
 - Failure mechanisms capture via local continuum damage model
- 2. Non-uniform distribution of voids/porosities must be incorporate within the RUC accurate deformation and failure response
- 3. Variations in Weave Parameters (micro, meso, and macro) appear to contribute to variation in measured material <u>macrolevel</u> response.
 - a) Primary Variables appear to be
 - Constituent material constants (micro)
 - Spatial distribution of void locations (meso); shape is sheet like
 - b) Secondary Variables appear to be
 - i. Tow void content (meso)
 - ii. Tow Aspect Ratio (meso)
 - iii. Tow volume fraction (macro)
- Assuming Normal Probability Distributions → showed that only the ultimate failure stress/strain (statistically speaking) is influenced at the <u>structural level</u> by lower scale features .

Future Work

- 1. Examine the influence of these parameters on the time-dependent material response and corresponding life.
- 2. Incorporation of constituent property distribution in the analysis
- 3. Incorporate environmental degradation (due to oxidation / moisture)
- 4. Multivariate statistics and stochastic processes for coupled architectural/material parameters
- 5. Incorporate MSGMC into ImMAC 5.0

Acknowledgement

- S.M. Arnold work supported by the <u>Supersonics Project</u> within the Fundamental Aeronautics Program
- K.C. Liu Partially funded under NASA GSRP.

THANK YOU

QUESTIONS Steven.M.Arnold@nasa.gov

Multiscale Analysis Center of Excellence

NASA Multiscale Analysis Center of Excellence (MACE) Established in 2010 at GRC

ARIZONA STATE UNIVERSITY

DIMULIA W

Performance

COLLABORATORS

MISSISSIPPI STATE

UNIVERSITY

TEXAS A&M University

UNIVERSITY OF MICHIGAN

UNIVERSITY

REHOLE

MIAMI UNIVERSITY

Properties

Internal Structure

للمعمد

Processing

Average Values of Four Key Composite Response Attributes: E, PLS, H and σ_{UTS}

Average Values of Four Key Composite Response Attributes: E, PLS, H and σ_{UTS}

Remember 5x5 has lowest DoF

