SATELLITE Capabilities and Limitations For the ACPC Box Experiment

Ralph Kahn NASA/Goddard Space Flight Center

Overall Satellite *Limitations*

- Polar orbiters provide snapshots only
- Difficult to probe *cloud base*
- Typically ~100s of meters or poorer *horizontal resolution*
- Passive instruments offer little vertical information
- Active instruments offer little spatial coverage
- Little-to-no information about aerosol *particle properties*
- Bigger issues retrieving aerosols *in the presence of clouds!*
- Cloud property retrievals can be aliased *by the presence of aerosols*

These points are summarized in *Rosenfeld et al. Rev. Geophys. 2014*

Finer Points on Satellite Aerosol Retrieval *Limitations*

- Difficult to retrieve aerosols that are *collocated with cloud* -- *Cloud-scattered light* & cloud "contamination" can affect near-cloud aerosol retrievals
- Rarely can detect aerosol in *droplet-formation region* below clouds need cloud & aerosol *vertical distributions*
- Aerosols smaller than about *0.1 micron diameter* look like atmospheric gas molecules must *infer CCN* number
- Must deduce aerosol *hygroscopicity* (composition) from qualitative "type" – size, shape, and SSA constraints
- Environmental (Meteorological) Coupling Factors can *co-vary* -- LWP can decrease as aerosol number concentration increases (also depends on atm. stability)
- Many aerosol-cloud interaction time & spatial scales do not match *satellite sampling*

Satellites are fairly blunt instruments for studying aerosol-cloud interactions!!

Satellite "Direct" Capabilities

- Polar orbiting imagers provide *frequent*, *global coverage*
- Geostationary platforms offer high temporal resolution
- Multi-angle imagers offer aerosol plume height & cloud-top mapping
- Passive instruments can retrieve total-column aerosol amount (AOD)
- Active instruments determine aerosol & some cloud vertical structure
- UV imagers and active sensors can retrieve aerosol above cloud
- Multi-angle, spectral, polarized imagers obtain some aerosol type info.
- Active sensors can obtain some aerosol type info., day & night
- Satellite trace-gas retrievals offer *clues about aerosol type*
- Vis-IR imagers can retrieve cloud phase, r_c , T_c , p_c , τ_c , α_c , C_f , LWP

Need to be creative & Play to the strengths of what satellites offer!!

Historical Examples

(a) Ship tracks off the coast of California, from AVHRR.
(b) Retrieved r_c and τ_c differences. [*Coakley & Walsh JAS 2002*].

(d) Correlation between AVHRR particle number (N_a) and cloud droplet (N_c) concentrations, for 4 months in 1990;
Yellow indicates high N_c with large N_a; red indicates high N_c despite small N_a. [*Nakajima et al., GRL 2001*]

(c) False-color AVHRR: Red indicates large droplets, yellow signifies smaller droplets [*Rosenfeld, Sci. 2000*]

(e) Atlantic convective cloud invigoration from MODIS; aerosol optical depth (AOD), cloud fraction (C_f), cloud droplet effective radius (r_c), water optical depth (ω_c) vs. height; p_c encoded in colors, increasing from blue to green. [*Koren et al.*

	Parameter	Marine Sc	Trade Wind Cumuli	Deep Convective	Achievable Accuracy	Instrument	Platform
*	Radiation Satellite measurements of TOA radiation, separated to cloud-free	н	н	н	2 W m ⁻² for SW instantaneous grid point measurement; 3.7 W m ⁻²	MODIS, CERES	Satellite
	and doudy conditions Surface downwelling radiation measurements during doud-free and doudy conditions	н	н	н	 For LW [Leeb et al., 2009 JC.] LW: 1%; SW: 2% (daily) [Wild et al., 2013] +3 W/m² representativeness error of a point observation for regional (19) means [Hakuba et al., 2013] 	Pyranometer (SW total), Pyrheliometer (SW direct), Pyrgeometer (LW)	Surface
*	Satellite measurements of water vapor, with emphasis on upper tropospheric vapor that is detrained from anvils.	L	L	н	10-30% [<i>Hegglin et al.</i> , 2008; Stiller et al., 2012 and references therein]	ACE-FTS, MIPAS, AURA-MLS, AIRS	Satellite
*	Satellite measurements of CO ₂ and CH ₄ . (near-surface-sensitive column-averaged dry air mole fractions)	м	м	м	CO ₂ 0.5–1%, CH4 1% [Buchwitz et al., 2014]	CO ₂ , CH ₄ : SCIAMACHY, GOSAT	Satellite
*	Tropospheric ozone: Tropospheric column or layer averaged mixing ratio				Tropospheric ozone: 10–20% [Zhang et al., 2010; Boynard et al., 2009]	Tropospheric ozone: TES, OMI, IASI	
*	Satellite measurements of doud top temperatures, albedo and e missivity.	н	н	н	Temperature: ~ ± 5 K for optically thin clouds ±1 K for optically thick douds	AIRS and TOVS (T and Emissivity) CERES (Albedo)	EOS Aqua (AIRS) Various NOAA polar-orbiting satellites (TOVS)
*					Emissivity: ±0.05 for effective emissivity > 0.50; ±0.15 for emissivity < 0.50 Albedo: No absolute uncertainty reported; Stability better than 1%/year SW TOA Flux ~ 4% for all-sky, 2–3% over thick doud	MISR-MODIS-CERES (TOA Flux)	EOS Terra and Aqua (MODIS, CERES) EOS Terra (MISR)
	Nonradiative heat transfer: Surface sensible and latent heat fluxes. Atmospheric and oceanic heat storage and transport; atmospheric vertical profiles of latent heating.	н	н	н	Sensible and latent heat fluxes: ~15–20% half-hourly (~5% daily) random error, order of 10–20% surface energy balance closure deficit [Kessomkiat et al., 2013]	Sonic anemometer for fluxes	
*	Calculation of heat advection, based on the atmospheric motions and soundings, and accounting for the latent heating.	н	н	н	0.25 K d ⁻¹ of atmospheric heating		Soundings and satellites, aircraft
*	Air motions: Air motions: The changes in air mass fluxes at the lateral boundaries determine the forcing of circulation systems. This requires the documentation of lateral mass and latent and sensible energy fluxes	н	н	н	Divergence of 0.01 kg m $^{-3}$ h $^{-1}$		Soundings and satellites, aircraft
	nos and man on science energy indica.	м	м	м	5 m/s, 30 km		Satellite

Table 1. The Measured Parameters, Measuring Instruments, and Achievable Accuracy for the Box Experiments^a

Rosenfeld et al. Rev. Geophys. 2014

Table 1. (continued)

	Parameter	Marine Sc	Trade Wind Cumuli	Deep Convective	Achievable Accuracy	Instrument	Platform
*	Satellite-retrieved winds at various heights, based on tracking clouds and moisture features (Atmospheric Motion Vectors)						
	(clear air motions)	н	н	н	1 km, 1 m/s		Surface radars
	Precipitation measurements are required for obtaining a vertical profile of the latent heat and moisture fluxes.	н	н	н	10% of the rainfall accumulation	Polarimetric Radar and rain gauges	Surface and satellite radars
	3D coverage of Doppler and polarimetric hydrometeor type and size measurements	м	м	н	20% of MVD	Polarimetric radar	Surface radar
	3D evolution of drizzle in MSC, with a cloud radar	н	м	м	Sensitivity of -15 dBZ	Cloud radars	Surface and satellite radars
	Separate to convective and stratiform components	-	-	н	10% of the rainfall accumulation	Radar data analysis	
	Hydrologic measurements of soil moisture, runoff, and stream flows.	NA	NA	м	10%	Stream flows	
	Measurements of evaporation and evapotranspiration.	н	н	н	see latent heat flux: ~15–20% half-hourly (~5% daily) random error) [Kessomkiat et al., 2013]	Link to latent heat	
*	Atmospheric height-dependent moisture convergence, as measured by the sounding network and satellite measurements of moisture soundings.	н	н	н	0.0001 kg m ⁻³ h ⁻¹	Link to soundings lateral fluxes	
	Aerosols and their precursors:				F	Manitan instanta	Almhan aufor
	measurements of precursor gases	M	M	m	typically better than 5%: e.g. 1% or 0.2 ppb for 50-	Monitor Instruments	Airpiane, surface
	Aerosol size distribution	н	н	н	±10% in number size distribution in submicron ranges from 20 to 200 nm [Wiedensohler et al., 2012], decreasing accuracy (±30%) at higher particle sizes. Total particle number concentrations better than ±5%	SMPS or DMPS APS, PCASP (supermicron)	Airplane, lidar, surface
	Measurements of size-resolved aerosol chemistry	м	м	м	At best 0.1 μg/m ³ for size specific speciation, 25% for PM1 [<i>Canagaratna et al.</i> , 2007]. Lower detection limit varying with species, 0.03 μg m ⁻³ (nitrate, sulfate, and chloride) up to 0.5 μg m ⁻³ (organics) [<i>Drewnick et al.</i> , 2009]	AMS, time of flight mass spectrometer	Airplane, surface
	Measurements of aerosol hygroscopicity and CCN-activity	м	м	м	Better than ±20% in hygroscopicity parameter [Su et al., 2010]. For hygroscopic growth factor, typically ±0.05 [Swietlicki et al., 2008]. For hygroscopic growth factor, typically ±0.05 [Swietlicki et al., 2008]	CCNC, HTDMA	Airplane, surface
	CCN activation spectra induding giant CCN	н	н	н	Similar to aerosol hygroscopicity, above	DMPS, SMPS, CCNC, PCASP	Airplane, surface
	Ice nucleating activity of the aerosols	N/A	N/A	н	Better than order of magnitude in the activated fraction [Jones et al., 2011],	INC	Airplane, surface

Rosenfeld et al. Rev. Geophys. 2014

Table 1. (continued)

	Parameter	Marino Sc	Trade Wind	Deep	Achievable Acquirace	Instrument	Platform
	raiameter	marine sc	Cumun	Convective	Achievable Accuracy	insu unienc	Hauonn
					14% for activated fraction in deposition		
	Surface sup photometers	м	м	м	Cimel 0.01 [Eck et al. 2010]	sun nhotometers	Aimlane surface
	(spectral AOD)				Microtops 0.02 [khoku et al., 2002]	(Cimel)	Auplane, surface
*	Satellite measurements of aerosol	н	н	н	AOD: The larger of 0.05 or 20% over land;	(Satellite
	parameters: AOD, SSA, spectral AOD,				the larger of 0.03 or 10% over dark water.		
	depolarization ratio, UVAAI.				SSA—qualitative two-to-four bins between		
					very absorbing and nonabsorbing.		
					Particle size—qualitative fine/coarse		
					three-to-five size bins from MISR		
					UVAI-Precision of 0.1 for AI > 0.8		
					over ocean, and for Al > 0.5 over land.		
					from OMI [Torres et al., 2013]		
	Cloud-aerosol interactions						
	Ine aerosol direct and doud-mediated						
	budget of the atmosphere, and the						
	resultant changes in the atmospheric						
	motions that feed back to the douds,						
	precipitation and aerosols. The great						
	challenge here is disentangling the						
	aerosois from meteorological effects						
	Cloud cover, ontical denth, albedo and radiative	н	н	н	I WP. r., N., doud ontical depth	Data processing	
	effects under different aerosol conditions				for convective and layer clouds	j	
	in as similar meteorology as possible.						
	Study of adjacent douds in and out of						
	aerosol plumes can be effective.						
	effective radius liquid water path and doud	н	н	н	LWP, rev Nd, doud optical depth for	Data processing	
	drop concentrations. Validation with aircraft				convective and layer clouds		
	measurements and cloud radar						
	For convective clouds: satellite-retrieved	н	н	н	10% of the effective radius	Data processing	
	vertical profiles of doud particle effective						
	radius and thermodynamic phase.						
	Cloud base undraft spectra, by	н	н	н	On the order of 0.1 m s^{-1}	Radar, lidar	Surface and aircraft
	vertically pointing radar and lidar.					10001,100	Surface and and are
	and by aircraft and UAVs.						
	Cloud base CCN, as obtained from cloud base	н	н	н	30% of drop concentrations	Data processing	
	updrafts and drop number concentrations.				at cloud base		
	Secondary activation of aerosols in deep	N/A	м	м	30% of small drop and	Data processing	
	the satellite retrieved vertical profiles of cloud				ice concentrations at any level		
	particle effective radius, and validated						
	in more detailed by aircraft.						

Rosenfeld et al. Rev. Geophys. 2014

Table 1. (continued)

		Trade Wind	Deep			
Parameter	Marine Sc	Cumuli	Convective	Achievable Accuracy	Instrument	Platform
New particle formation	м	м	м	Qualitative in smallest sizes (diameter < 3 nm), similar to particle number size distribution measurements in larger sizes (Kulmala et al., 2012)	AIS, NAIS, DMPS, PSM	Surface and aircraft
Vertical profile of hydrometeor types, concentrations and sizes, by surface and space borne radars.	м	м	н	20% of MVD	link to polarimetric radar measurements	
Detrained aerosols from the douds at various heights, as measured by aircraft. Scales	м	м	м	Similar to the size distribution measurements (above)	SMPS, PCASP	aircraft
Horizontal along wind	1500 km	500 km	500 km			
Horizontal across wind	200 km	200 km	500 km?			
Vertical resolution	50 m	100 m	100400 m			
Horizontal resolution	50 m	100 m	1000 m			
Temporal scale	3 days	1 day	1 day			
Potential locations	Offshore	South China Sea,	Indonesia,			
	California,	Gulf of Mexico	Amazonas,			
	Canany Islands		Congo			
	or Cape Verde					

^aThe importance codes in columns 2–4 are as follows: High (essential, must be included), M (important to be included), L (low priority). Instrument names are as follows: AIS, Aerosol and Air Ion Spectrometer; AMS, Aerosol Mass Spectrometer; CCNC, Cloud Condensation Nuclei Counter; Gmel, Sun photometer; DMPS, Differential Mobility Particle Sizer; HTDMA, Hygroscopic Tandem Differential Mobility Analyzer; INC, Ice Nuclei Counter; NAIS, Nanometer aerosol and Air Ion Spectrometer; PCASP, Passive Cavity Aerosol Spectrometer Probe; PSM, Particle Size Magnifier; SMPS, Scanning Mobility Particle Sizer.

Hoped-for Satellite Products; Rosenfeld et al. 2014*

- TOA *radiation* cloud-free & cloudy conditions
- Precipitable water vapor
- Upper tropospheric *water vapor*
- CO₂ and other *greenhouse gases*
- Cloud-top temperature, albedo, emissivity
- Cloud-top r_{c_eff} and *thermodynamic phase*
- Height-resolved *winds*
- Moisture soundings
- AOD, SSA, ANG, polarization Aerosol Type
- Cloud *vertical profile* r_{c_eff} and *thermodynamic phase*
- Vertical profile hydrometeor type
- Composition & longevity of supercooled cloud layers
- Cirrus radiative effects and dependence on CCN, IN

Would you believe the answer if it were a surprise?

MISR Aerosol Type Discrimination

January 2007

July 2007

InterviewInterviewInterviewMixture Group1-1011-2021-31-4041-5051-6263-7071-74Spherical, non-absorbNon-sphericalNon-sphericalKaiSpherical, absorbingKai

Kahn & Gaitley JGR in press

Large, non-spherical = natural

SEAC⁴RS – MISR Overview 19 August 2013

Passive-remote-sensing *Aerosol Type* is a *Total-Column-Effective*, *Categorical* variable!!

Correlation Between AOD from Space and CCN in Remote & Polluted Regions

Andreae ACP 2009

USING AI (= $\tau_a X Ang$) to Estimate CCN

Kapustin, Clarke, et al., JGR 2006

- <u>Test Idea</u>: Smaller particles more likely to become *CCN*; *Ang* is a smaller quantity for larger particles
- ACE-Asia, Trace-P in situ field data CCN proxy
- AI does not work quantitatively in general, but can <u>if the data are stratified</u> by:
- -- *RH* in the aerosol layer(s) observed by satellites
- -- Aerosol Type (hygroscopicity; pollution, BB, dust)
- -- Aerosol Size (Ang is not unique for bi-modal dist.)

Practically, in addition to τ_a and Ang, this requires:

- -- Vertical humidity structure
- -- Height-resolved aerosol type
- -- Height-resolved size dist. [extrapolated to small sizes(?)]

This study includes enough detail to assess $AI \sim N_a$ and $AI \sim CCN$

AI vs. *in situ CCN* proxy
(a) all ACE (blue) & Trace-P, <u>dry</u>
(b) ACE - OPC-only, amb. *RH*(c) TP - OPC-only, amb. *RH*

AIRS - Temperature & Water Vapor Profiles

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)

Vertical Range (km)	Horizontal Resolution (km)	Vertical Resolution (m)		
30.1 - 40	5	300		
20.2 - 30.1	1.7	180		
8.2 – 20.2	1.	60		
-0.5 – 8.2	0.33	30		

• Lower AOD sensitivity than SAGE

Launched April 2006

- But higher space-time resolution than SAGE
- 15 orbits per day, ~100 m wide sampling *curtain*; averaged to 333 m
- 532 and 1064 nm + polarization (at 532 nm); to ~40 km elevation
- Layer height for AOD $\geq 10^{-2}$; AOD for layers having AOD ≤ 3
- For low AOD, need the higher S/N of *nighttime*, 532 nm observations

The Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO)

Omar et al., JAOT 2009

MISR Stereo Imaging Cloud-top Height

All camera combinations

different camera combinations used

Seiz & Davies, RSE 2006

VERTICAL STRUCTURE r_c – CLOUD 'TOP' VS. CLOUD COLUMN, & LTS

- TRMM data, March-May, 2000; 37°N to 37°S
- Vis-IR Radiance Imager (VIRS) for $r_c(top)$, τ_c
- Microwave Imager (**TMI**) for $r_c(col)$, *LWP* (19, 37GHz)
- Warm clouds only $(T_c > 273 \text{ K})$
- VIRS to find cloud-filled TMI pixels
- AI from MODIS
- Lower Trop. Stability (*LTS*) from NCEP
- *IE* appears larger for $r_c(col)$ than $r_c(top)$
- **Higher** *LTS* and/or *AI* ~ **reduced** *r*_c and **suppressed rain conditions**
- Aerosol effect ~ 50% larger than *LTS* effect
- TMI *LWP* decreases with reduced $r_c \rightarrow$ net change in cloud albedo SMALL

 $[d\alpha_c/dLTS \sim 9\%; LTS \text{ effect dominates}]$

Matsui et al., GRL 2004

The Clouds and the Earth's Radiant Energy System (CERES) Short-Wave (SW) Albedo

- Instruments on 3 satellites (Terra, Aqua, S-NPP) [formerly TRMM; future JPSS-1, 2]
- **Channels**: SW (0.3-5 μm), IR (8-12 μm); Total (0.3-200 μm)
- Daily global coverage in across-track mode (+ along-track & rotating az options)
- **Spatial Resolution**: ~ 20 km at nadir

CERES SW Albedo **Absolute Calibration accuracy:** ~1% Instantaneous SW TOA Flux **Uncertainty**: ~ 4% for all-sky **Stability**: ~0.3 Wm⁻²/decade (0.001/decade in *global* albedo) *Loeb et al., JGR 2006; J. Clim. 2009; Surv. Geophys. 2012*

MODIS global cloud regimes

50 CR1

0 1.3 3.6 9.4 23 60 379

CF: 0.99 RFO: 3.63

CTP vs. TAU Cluster Analysis (10 "Cloud Regimes"; MOIDS V5.1)

Courtesy of Lazaros Oreopoulos

Courtesy of Lazaros Oreopoulos

Summary

Observed trends when going from low aerosol index (1Q) to high (3Q)

	CR _{ice} Land/Ocean (CR 1, 2, 3)		CR liq Land/Ocean (CR 6, 7, 8)		CR ₁₀	
Prcp	1 ↓		-	-	\uparrow	
CF	-		ſ		ſ	
СТН	1	1	1 -		ſ	
Tau	€	₩	1		ſ	
Re	Ų	-	1 U		ſ	
PrcpNZ	€	₩	- U		ſ	

red arrow: consistent with invigoration; blue arrow: consistent with 1st and 2nd indirect effect

Courtesy of Lazaros Oreopoulos

Box Model Considerations

• Spatial Domain: 5° x 5° (~500 km) 3-D Spatial Resolution: ~10 – a few 100 m

• **Temporal Coverage:** (at least) 24 hours, multiple times **Temporal Resolution:** ~ (at least) 1-3 hours

• Need top, bottom, and *side* fluxes

Satellites *Cannot* **Provide** All This

But satellites can provide *context* over the domain ... and some *validation* of the modeling

What is the *fractional coverage* of different cloud types in the domain?
How do the TOA *radiative fluxes vary* with atmospheric conditions?
What are the *background AOD* and aerosol type gradients?
What are the cloud-top, aerosol layer, and aerosol *plume heights*?

Kahn, Survy. Geophys. 2012