

Summary of Wind Tunnel Tests and Vehicle Analysis for Open Rotor Propulsion Systems

Presentation to ICAO's Noise Technology Independent Expert Panel February 1, 2012

National Aeronautics and Space Administration U.S.A.

General Electric/CFM International

NASA Subsonic Fixed Wing Project Environmentally Responsible Aviation Project Aeronautics Test Program Arctic Slope Research Corporation

Federal Aviation Administration

Specific NASA Contributors: Aeropropulsion Division Structures and Materials Division Facilities Division Testing Division

Model Scale Open Rotor Wind Tunnel Tests

NASA/FAA/GE Open Rotor Collaboration

- **Objective:** Explore the design space for lower noise while maintaining the high propulsive efficiency from a counter-rotating open rotor system.
- **Approach:** A model scale, low-noise open rotor system was tested in collaboration with General Electric (GE) and CFM International. Candidate technologies for lower noise were investigated. Installation effects such as pylon integration were investigated in partnership with GE and the Federal Aviation Administration (FAA).

Gen-1 Blade Sets (NASA/GE) Historical Baseline Modern Baseline 4 Advanced Designs Gen-2 Blade Sets (NASA/FAA/GE) 6 GE Advanced Designs Pylon wake mitigation

Historical Baseline (12 x 10 Blade Count)

History (1/3)

Image: Constant of the second secon		First Researce Oct 28	ch Run	Influence Body Dec 14	/ Tests
Aug	Sep	Oct	Nov	Dec	
Drive	e Ria Chec	kout	Lin	ear Array Checko	ut

Drive Rig Checkout Sep 24 – Oct 27

Linear Array Checkout Dec 7-11

Continued Influence Body Tests Concluded – Apr 28

Flow Measurements Jul 19 – Sep 7

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Drive Imple	Rig M ementa	uffler			NASA Glenn Annual Facility Shutdown						Open Rotor Installed In the 8x6 Wind Tunnel

History (3/3)

2011

Diagnostic Tests

Flow Measurements & Diagnostic Tests

The 3D **PIV** measurements provide a wealth of information about the blade wakes and vortex track.

> The location of peak noise level in the **Phased Array** map changes in the presence of the CFMI pylon indicating a change in the relative strength of sources.

A canonical **Shielding** configuration provides code validation data.

The **Pressure Sensitive Paint** measurements show phase locked static pressure on the surface of the rotating blade.

Approved for Public Release

Systems Analysis Results of an Open Rotor Propulsion System on an Advanced Single Aisle Transport

Background

- NASA's systems analysis team has been investigating potential environmental benefits of advanced propulsion systems on "Advanced" Single Aisle aircraft
 - Direct Drive
 - Geared Turbofan
 - Open Rotor
- Open Rotor assessment is joint effort between NASA's Subsonic Fixed Wing (SFW) & Environmentally Responsible Aviation (ERA) projects
 - SFW had FY11 milestone to assess fuel burn/noise characteristics of an open rotor propulsion system
 - ERA measured advanced open rotor blade performance/acoustic data
- ERA funded task with General Electric was conduit to NASA/industry partnership
 - Enabled NASA access to data for use in system assessment
 - Allowed coordination with industry on modeling approaches/technical assumptions

Historical Look at Propulsion Studies

- NASA has been conducting an on-going engine trade study to assess propulsion options for advanced single-aisle (B737/A320 class) aircraft
 - Multi-year, Multi-phase effort
 - Initial focus on ultra-high bypass ratio (UHB) turbofan concepts, followed by investigation of open-rotor engine architectures
 - Multiple interactions with industry over the years to obtain feedback
 - Numerous technical reports and conference papers produced, plus 1 journal article

Open Rotor Cycle Model (NASA Notional Engine)

- A complete Numerical Propulsion System Simulation (NPSS) model was created for a geared, pusher open rotor engine
- Core component performance assumptions are similar to those used in a recent NASA advanced turbofan study
- Counter-rotating propeller data from a favored Gen-1 rotor set was used to create performance maps NPSS component

Component	Parameter	Value
	Pressure Ratio	4.2
LPC	Adiabatic Efficiency (%)	89.6
	Pressure Ratio	10.0
прс	Adiabatic Efficiency (%)	88.6
НРТ	Adiabatic Efficiency (%)	91.9
LPT	Adiabatic Efficiency (%)	94.2
Power Turbine	Adiabatic Efficiency (%)	94.0
Counter-	Net Efficiency (%)	
Rotating	Front Tip Speed (ft/s)	Proprietary Data
Propellers	Power Loading (shp/ft ²)	

Open Rotor Engine Performance

Flight Condition	Engine Performance Parameter	Value
Top of Climb (M0.78, 35kft)	Net Thrust (lbf) TSFC (lbm/hr/lbf) OPR OR Advance Ratio OR Power Coefficient OR Thrust Coefficient OR Net Efficiency (%)	5000 0.428 42.0 Proprietary Data
Rolling Takeoff (M0.25, 0 ft, +27F)	Net Thrust (lbf) TSFC (lbm/hr/lbf) OPR OR Advance Ratio OR Power Coefficient OR Thrust Coefficient OR Net Efficiency (%)	19,000 0.229 28.5 Proprietary Data
Sea Level Static (M0.0, 0 ft, +27F)	Net Thrust (lbf) TSFC (lbm/hr/lbf) OPR OR Advance Ratio OR Power Coefficient OR Thrust Coefficient	27,300 0.158 29.4 Proprietary Data

Engine Flowpath and Weight

- Key cycle parameters passed to flowpath tool (WATE++) to calculate engine core weight
- Turbomachinery aeromechanical limits and materials consistent with those of previous N+1 turbofan studies
- Propeller weight estimates derived from data developed during the Advanced Turboprop Project in the 1980's
- Gearbox (6:1 gear ratio) weight derived from NASA gearbox weight model (based on actual gearbox weight data from over fifty rotorcraft, tiltrotors, and turboprop aircraft).

Weights and Dimensions	Value
Open Rotor Weight (Ibm)	3244
Gearbox Weight (Ibm)	1028
Total Engine Pod Weight (Ibm)	9219
Propeller Diameter (ft)	13.76
Nacelle Diameter (ft)	5.6
Overall Length (ft)	23.2

Airframe Modeling and Analysis

NASA Open Rotor Airplane

See AIAA-2011-7058 for airplane design details

Results (System Performance)

• Engine models combined with airframe models

	Airframe:	MD90-30like	CSAT-re	ASAT-re	ASAT-or		
	Engine:	V2525-D5	V2525-D5	Adv. GTF	Geared OR		
Design Mission:							
Design Mission Range	nm	2040	3250	3250	3250		
OWE	lb	88162	94450	79646	87817		
Mission Fuel	lb	36825	49164	35803	31056		
Passengers		158	162	162	162		
Payload	lb	31000	32400	32400	32400		
Ramp Weight	lb	155987	176014	147849	151273		
Wing Area	ft ²	1278	1530	1240	1250		
W/S	lb/ft ²	122	115	119	121		
Thrust(SLS)	lb	25033	25195	23075	26914		
Engine scale factor		1.00	1.01	0.99	0.99		
T/W		0.321	0.286	0.312	0.356		
Cruise Mach		0.760	0.780	0.780	0.780		
~Cruise L/D		14.0	17.0	16.2	16.6		
~Cruise SFC	lb/(lb-h)	0.601	0.603	0.494	0.432		
Land field length	ft	5527	5802	5944	6006		
T.O. field length	ft	7000	7000	6996	6262		
Block Fuel	lb	29410	41550	30396	26710		
Block NOX	lb	217.18	292.38	205.16	215.73		
LTO NOX	lb/cycle	27.59	27.77	9.96	6.41		
		Takeoff	Takeoff	Takeoff Performance,	10.1.0		
Active Sizing Constraint		Performance	Performance	ICAC	ICAC		
Economic Mission: 1000 nm,							
Ramp Weight	lb	140543	146252	126064	131868		
Block Fuel	lb	14711	13205	9648	8229		
Block NOX	lb	120.17	114.86	90.52	75.95		

Advanced Geared Turbofan (GTF) (fan pressure ratio = 1.5)

Nomenclature

CSAT: Current technology Single-Aisle Transport ASAT: Advanced technology Single-Aisle Transport

re – rear engine

or - open rotor

Advanced Geared Open Rotor (OR)

Relative Improvements

- ASAT relative to 1990s technology...
 - Empty Weight: -16%(GTF); -7%(OR)
 - Gross Weight: -16%(GTF); -14%(OR)
 - Block Fuel: -27%(GTF); -36%(OR)
 - Total NO_X: -30%(GTF); -26%(OR)
 - LTO NO_X: -64%(GTF); -77%(OR)

- Open rotor relative to advanced turbofan...
 - Empty Weight: +10%
 - Gross Weight: +2%
 - Block Fuel: -12%
 - Total NO_X: +5%
 - LTO NO_X: -36%

Acoustic Data Processing Steps

Part 36 Noise Certification

- Tonal content penalties
- Ground observer noise-time history

Perceived Noise Level

Trajectory Modeling

2050 ft

1000 ft

- Open rotor propulsion system and airplane performance modeled
- Detailed takeoff and landing trajectory analysis using Flight Optimization System performance code

2.5

Altitude, 1000 ft AFE 1.5 1.0 0.5

0.0

394 ft

Impact of AoA and Pitch on Flyover EPNL

Flyover EPNL, EPNdB

22

Rotor Inflow Angle and Airplane Angle of Attack

- Rotor inflow angle (α_{Inflow}) is needed to infer the correct rotor noise from wind tunnel data
- Vortex-lattice code analysis used to determine relationship of open rotor inflow angle to airplane angle of attack (α)
- Nose-up engine mounting angle $(\alpha_{Cant} = 2 \text{ deg}, \text{ re clean airplane waterline})$ gives $\alpha_{Inflow} = 0$ at cruise
- Downwash angle into rotor at $\alpha = 0$ (ε_0) and $d\varepsilon/d\alpha$ are functions of airplane configuration (i.e., C_L with flaps/slats degree of extension)
- $\alpha_{\text{Inflow}} = \alpha_{\text{Cant}} \varepsilon_0 + \alpha [1 d\varepsilon/d\alpha]$

Departure:

- $d\varepsilon/d\alpha = 0.336$
- $\varepsilon_0 = 2.342 \deg$
- *α* ≈ 7 deg
- $\alpha_{\text{Inflow}} \approx 4 \text{ deg}$

Approach:

- $d\varepsilon/d\alpha = 0.349$
- $\mathcal{E}_0 = 5.194 \deg$
- *α* ≈ 7 deg
- $\alpha_{\text{Inflow}} \approx 1.5 \text{ deg}$

13.67 foot diameter rotor

	Approach	Lateral	Flyover	Cumulative
Isolated	88.8	88.2	80.1	257.1
AoA Effects	0.5	1.5	1.5	3.5
Flight Mach Effects	0.1	1.2	1.3	2.6
Pylon Effects ⁺	2.0	1.0	2.0	5.0
Mitigation [‡]	-1.4	-0.7	-1.4	-3.5
Overall	90.0	91.2	83.5	264.7
Stage 3 Rule**	100.3	96.5	91.0	287.8
Stage 3 Margin	-10.3	-5.3	-7.6	-23.1
Stage 4 Margin				-13.1

[†]Estimated from F31/A31 data [‡]Assumed "70%" reduction of the pylon penalty ^{**}Rule based on NASA's 151.3 klb airplane

NASA Study Results – Fuel Burn vs. Noise

% Fuel Burn Benefit

Relationship to Prior UHB Study

