

Mechanical and Vibration Testing of Carbon Fiber Composite Material with Embedded Piezoelectric Sensors

Kirsten P. Duffy – University of Toledo / NASA GRC Bradley A. Lerch – NASA GRC Nathan G. Wilmoth – ASRC / NASA GRC Nicholas Kray, Gregory Gemeinhardt – GE Aviation

Background

Idea:

- Use piezoelectric sensors and actuators as part of active vibration control of composite fan blades
- Embed the piezoelectric elements into the composite material
- Question:
 - How does the inclusion of packaged piezoelectric elements into composites affect the strength?

Previous Research:

- Generally full inclusion of piezo into composite:
 - Warkentin and Crawley (1991) embedded silicon chips
 - Bronowicki et al. (1996) tension, compression, temperature, fatigue
 - Mall et al. (1998, 2000) tension, electromechanical fatigue
 - Paget and Levin (1999) tension and compression
 - Lin and Chang (2002) fabrication techniques; tension, compression, shear, quasi-static impact
 - Konka et al. (2012) foam sandwich structures, flexible piezoelectric elements; tension, bending, short beam shear
- Our goal Determine localized strength of the composite with embedded piezoelectric elements

Approach

- Embed off-the-shelf piezoelectric sensors into carbon fiber composite material
- ✓ Mechanical Testing
 - 4-Point Bending
 - Short Beam Shear
 - Flatwise Tension
- ✓ Vibration Sensor Testing
 - Effect of curing temperature and pressure on sensor
- Application to composite fan blades
 - Active vibration control:
 - Spin testing with surface-mounted piezoelectric elements in small subscale fan blades
 - Vibration testing with embedded piezoelectric elements in larger subscale fan blades

Materials

Composite Material	Туре	Description	
Polymer matrix fiber composite	HexPly 8551-7 with IM 7 carbon fibers	Epoxy resin with unidirectional carbon fibers, ply stack-up	
Piezoelectric Elements	Туре	Description	
Monolithic	Non-flexible, PZT-5A, solid material	250µm (0.010") thick PZT	
Flexible-1	Flexible, PZT-5A, rectangular fibers	175μm (0.007") thick PZT fibers	
Flexible-2	Flexible, PZT-5A, circular fibers	250μm (0.010") thick PZT fibers	

Mechanical Test Specimen Preparation

Mechanical Testing

Mechanical Testing

Test Type	Standard	Specimen Dimensions	Piezoelectric Location	
4-Point Bending	ASTM D7264	165 mm x 12.7 mm x 4.72 mm (6.5" x 0.5" x 0.186")	Two patches, piezo surface 0.3 mm (0.012") below PMFC surface	
Short Beam	ASTM	76 mm x 25 mm x 12.7mm	One patch	
Shear	D2344	(3.0" x 1.0" x 0.5")	located at midplane	
Flatwise	ASTM	22 mm diameter x 20 mm thick	One patch	
Tension	D7291	(0.88" dia. x 0.78" thick)	located at midplane	

4-Point Bending

Baseline

Embedded

4-Point Bending

4-Point Bending

Short Beam Shear

Short Beam Shear

Flatwise Tension

piezoelectric fiber

Failure within patch at interface

Failure within patch at piezoelectric

Flatwise Tension

Vibration Testing

Beam Dimensions (Beyond Clamp)	Patch Dimensions	Patch Properties	Patch Sensitivity	Configuration ID	Embedding Depth
191 mm (7.5") long 33.0 mm (1.3") wide 5.66 mm (0.223") thick	28.0 mm x 14.0 mm (1.10" x 0.55")	C = 25 nF E = 30.3 GPa d ₃₁ = -210 pC/N	10x10 ⁻⁶ m/m/V	Flexible-1-1	0.3 mm (0.012") deep
				Flexible-1-2	1.5 mm (0.060") deep

Vibration Testing

Conclusions

- Mechanical Testing
 - 4-Point Bending 31-47% reduction in strength
 - Short Beam Shear 19-29% reduction in strength
 - Flatwise Tension 83-85% reduction in strength
- Vibration Testing
 - Curing process did not adversely affect sensing ability
- Improving Strength
 - Active vibration control will reduce resonant stresses in the structure; however, it may not be adequate to account for the reduced composite strength
 - Perform analysis to better understand stresses in and between composite and piezoelectric elements
 - Investigate embedding techniques to reduce stresses in piezoelectric elements (e.g. interlacing)
 - Develop packaging techniques to increase the strength in piezoelectric elements
- Plans
 - Embed piezoelectric elements into subscale composite fan blade, perform active vibration control of resonant modes