National Aeronautics and Space Administration





#### Multifunctional Graphene Polyimide Nanocomposites

#### Mitra Yoonessi, Matthew A. Dittler, Daniel Scheiman, Marisabel Lebron-Colon, James Gaier, John Peck, Michael A. Meador

Ohio Aerospace Institute, Cleveland, OH NASA Glenn Research Center, Cleveland, OH ASRC, Cleveland, OH





**Graphene in Space,** NASA's Spitzer Space Telescope has spotted the signature of flat carbon flakes, called graphene, in space



### Nanotechnology Engineered Materials and Structures



#### **Light Weight Materials**

- Multifunctional

-Adaptive Materials

-Self Healing Materials

Development of nanostructured materials 50% lighter than conventional materials with equivalent or superior properties

**Reduced Vehicle Mass** 



Boeing 787 composite aircraft Copper mesh 4000 lb of weight











NGST <sup>1</sup>/<sub>2</sub>-scale Sunshield Demonstration Model Deployment, Cadogan, D. P.et al. nour sonication

e Administration

#### particles:

- ljima 1991 1315 m<sup>2</sup>/g DCNT ~ 700-800 Graphite and Graphene – Giem 2004 Fraphene ~ theoretical:2600 m²/g, 700- 1300 m²/g arbon nanofibers

Alumina silicates — Fukushima, Toyota 1987 ontmorillonite~ 725 m²/g Magadiite, Laponite, Vermiculite

#### agnetic Nanoparticles rganometallic physical crosslinkers DSS

### posite Nanoparticles

tic graphene ide graphene







pace Administration

craft launched from Space Shut

### Polyimide High Performance Polymer

Aromatic polyimide: **Satellite PMR-15 - GRC** - Low color - Low dielectric constant After burner - Flexibility - High T<sub>a</sub> - Radiation resistance - High thermal stability - Dimensional stability - Low coefficient of thermal expansion **Multifunctional General Ind Electronics** Stiffness and modulus and packaging **Actuation** and reinforcement and morphing **Electrical performance Thermal performance** and EMI shielding and stability •Space **Continuous operating** •Aero Quartz fabric-polyimide 815 °C range between Electronics

-65 °C to +357 °C

<sup>1</sup>Qu,L., Connell, J.W., Sun, Y.-P., Macromolecules, 2004, 37, 6055-6060. <sup>2</sup>Lebron-Colon, M. Meador, M. A., Gaier, J. R., Sola, F., Scheiman, D.A., McCorkle, L.S. ACS Applied Materials and Interfaces, 2010, 2,3, 669–676.



# **Polyimide Graphene Nanocomposites**



PMR-15 GRC After burner

Polyimide, thermal stability >500 °C,  $T_{\alpha}$  > 200 °C, flexible and semi-transparent.



#### Thermal imidization:

- Mixing and dissolving equi-molar ratio diamine in anhydrous-NMP under dry  $N_2$  followed by addition of dry anhydride and stirring for 24h in flame dried vessels.

- Then, increasing the temperature ~230 °C (NMP reflux) for 3h and precipitating in methanol and drying



Interfaces, 2010, 2, 3, 669-676.

www.nasa.gov 5

National Aeronautics and Space Administration

Ohio Aerospace Institute

**Polyimide Graphene Nanocomposites** 



#### **Electrical Performance**

 $\sigma_{DC} = \sigma_f [(\phi - \phi_C)/(1 - \phi_C)]^t$ 



Viet Hung Pham et.al, J. Mater. Chem., 2011, 21, 11312

National Aeronautics and Space Administration

## **AC Electrical Performance**



Broad band AC impedance spectroscopy

#### Extended pair approximation model

 $\sigma(\omega) / \sigma_{DC0} = 1 + k(\omega / \omega_{c})^{s}$ 

| Vol.%   | σ <sub>DC0</sub> ,<br>S/cm | ω <sub>c,</sub><br>Hz | S     | S/cm          |
|---------|----------------------------|-----------------------|-------|---------------|
| 0.03046 | 8.21e-9                    | 150.47                | 0.499 | <b>.</b><br>b |
| 0.3051  | 1.879e-6                   | 7.027e3               | 0.647 |               |
| 0.6115  | 2.11e-4                    | 1.241e5               | 0.446 |               |



S ~ 0.99 -> hopping S ~ 0.72 -> 3D material S ~ 0.58 -> anomalous diffusion in fractal cluster exist

Linares, A., Ezquerra, T.A et al., Macromolecules, 2008, 41, 7090



www.nasa.gov 8

Ohio Aerospace Institute



### **Temperature Dependence Conductivity**



 $\sigma = 0.2844T^{0.2177}$  $T = 322.404\sigma^{4.6}$ 

5 vol. % graphene polyimide



Addition of graphene resulted in composite reinforcement without adverse effect on the  $T_{\mbox{\scriptsize q}}$ 





# **Controlled Property Direction**

#### **Ni-Tethered Graphene**



#### Composites Nanoparticles Thermal decomposition of Ni(acac)<sub>2</sub> in the presence of O-graphene











## **Controlled Directionality**



|   | В       | B <sub>x</sub> | <b>B</b> <sub>y</sub> | B <sub>z</sub> |
|---|---------|----------------|-----------------------|----------------|
|   | (Gauss) | (Gauss)        | (Gauss)               | (Gauss)        |
| А | 1150    | -1150          | -237                  | -50            |
| В | 976     | -948           | 475                   | 50             |
| С | 440     | -432           | -55                   | -120           |
| D | 500     | -520           | -12                   | 42.3           |



2.8 wt% Ni-Graphene polyimide nanocomposite

www.nasa.gov 12



# **Anisotropic Properties**











## **Transmission Electron Microscopy**

1.77 wt% Ni-graphene polyimide 90% parallel and 5% perpendicular















### Conclusions

-Addition of graphene resulted in nanocomposites with high conductivity with a percolation as low as 0.036 vol.% and a maximum conductivity of 0.94 S/cm

-Dynamic moduli of the nanocompsoties increased with addition of graphene with no adverse effect on  $T_{\alpha}$  or flexibility.

-Magnetic graphene were synthesized enabled controlled orientation of graphene in magnetic fields.

-Ni-graphene/PI nanocomposites were obtained which has e-2 S/cm *in-plane* conductivity and insulating in the *through-plane* direction.

-Ni-graphene/PI nanocomposites exhibited increased modulus with increasing orientation.

-The orientation was verified by magnetic characterization and TEM studies.







•The NASA Aeronautics-Subsonic Fixed Wing Program: Contract NNC07BA13B

- •Dr. Dave Kankam, NASA USRP program, NASA GRC
- Dr. Kathy Chuang, NASA GRC
- •Dr. Dean Tigelaar, NASA GRC
- •Dave Hull, Derek Quade, Terry McCue, NASA/GRC
- Professor Aksay, Princeton University,
- Vorbeck Materials Inc., John Lettow



