

Propulsion Technologies for Future Aircraft Generations: Clean, Lean, Quiet, and Green

Dr. Rubén Del Rosario

Project Manager, Subsonic Fixed Wing NASA John H. Glenn Research Center Cleveland, OH USA

Outline of Talk

Introduction

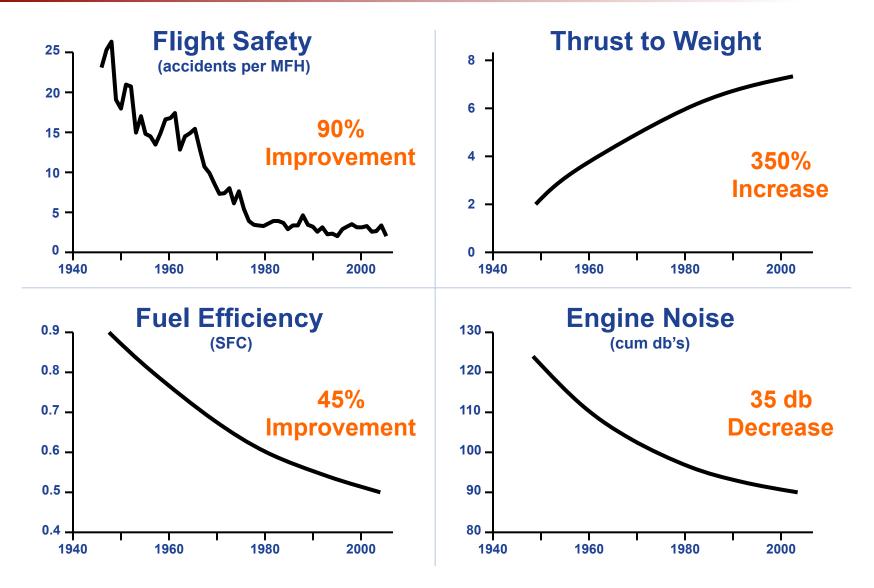
Historical Trends and Future Challenges

NASA Subsonic Transport Research

Future Propulsion Technologies

NASA Gen N+3 Advanced Vehicle Concept Studies

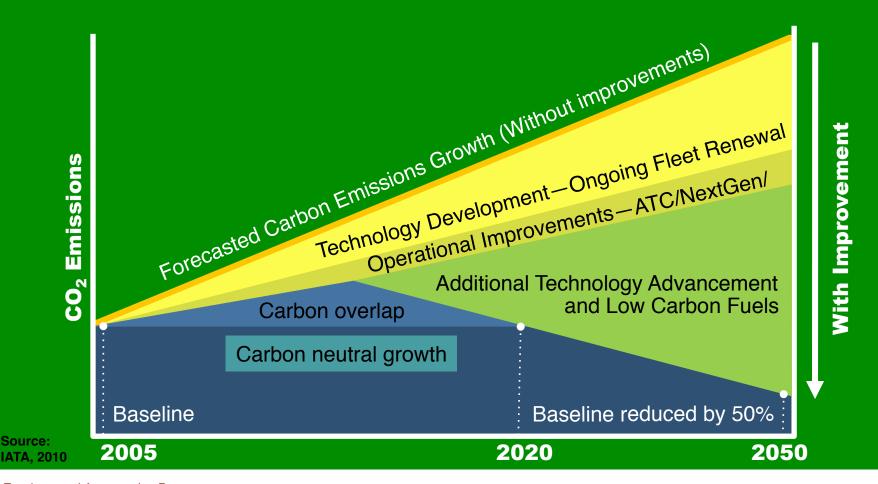
Improved Brayton Cycle-Based Technologies


Towards Electric Propulsion

Other "Far-Out" Propulsion Concepts

Concluding Remarks

Gas Turbine Engines... The Past 50 Years



Major Future Challenges for Aviation

By 2050, substantially reduce emissions of carbon and oxides of nitrogen and contain objectionable noise within the airport boundary

NASA Aeronautics Programs

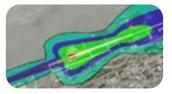


Fundamental Aeronautics Program

Conduct cutting-edge research that will produce innovative concepts, tools, and technologies to enable revolutionary changes for vehicles that fly in all speed regimes.

Integrated **Systems Research Program**

Conduct research at an integrated system-level on promising concepts and technologies and explore/assess/demonstrate the benefits in a relevant environment



Airspace Systems Program

Directly address the fundamental ATM research needs for NextGen by developing revolutionary concepts, capabilities, and technologies that will enable significant increases in the capacity, efficiency and flexibility of the NAS.

Aviation Safety Program

Conduct cutting-edge research that will produce innovative concepts, tools, and technologies to improve the intrinsic safety attributes of current and future aircraft.

Aeronautics Test Program

Preserve and promote the testing capabilities of one of the United States' largest, most versatile and comprehensive set of flight and ground-based research facilities.

The NASA Subsonic Fixed Wing Project

Explore and Develop Tools, Technologies, and Concepts for Improved Energy Efficiency and Environmental Compatibility for Sustained Growth of Commercial Aviation

Objectives

- Prediction and analysis tools for reduced uncertainty
- Concepts and technologies for dramatic improvements in noise, emissions and performance

Relevance

- Address daunting energy and environmental challenges for aviation
- Enable growth in mobility/aviation/transportation
- Subsonic air transportation vital to our economy and quality of life

Evolution of Subsonic Transports

903

1930s

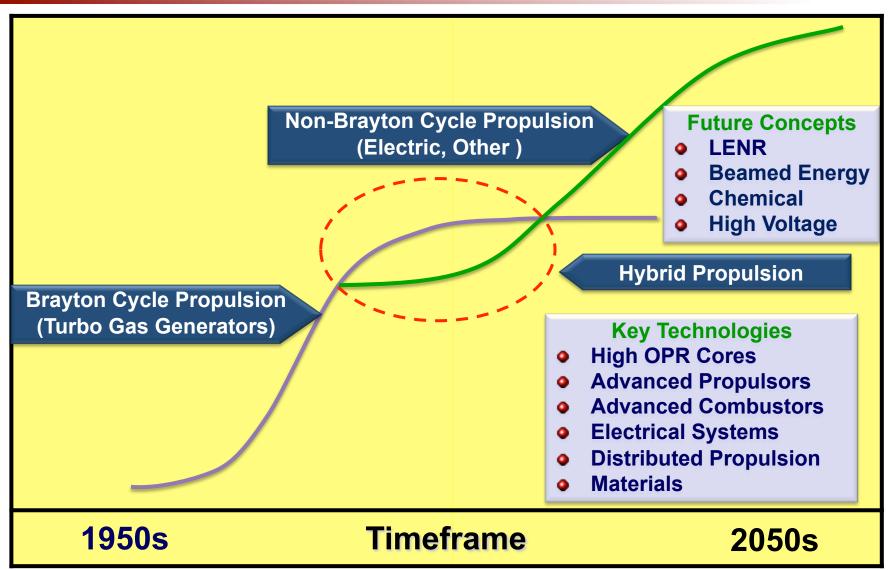
1950s

2000s

NASA Subsonic Transport System Level Metrics

.... technology for dramatically improving noise, emissions, & performance

TECHNOLOGY BENEFITS*	TECHNOLOGY GENERATIONS (Technology Readiness Level = 4-6)		
	N+1 (2015)	N+2 (2020**)	N+3 (2025)
Noise (cum margin rel. to Stage 4)	-32 dB	-42 dB	-71 dB
LTO NOx Emissions (rel. to CAEP 6)	-60%	-75%	-80%
Cruise NOx Emissions (rel. to 2005 best in class)	-55%	-70%	-80%
Aircraft Fuel/Energy Consumption [‡] (rel. to 2005 best in class)	-33%	-50%	-60%


^{*} Projected benefits once technologies are matured and implemented by industry. Benefits vary by vehicle size and mission. N+1 and N+3 values are referenced to a 737-800 with CFM56-7B engines, N+2 values are referenced to a 777-200 with GE90 engines

^{**} ERA's time-phased approach includes advancing "long-pole" technologies to TRL 6 by 2015

[‡] CO₂ emission benefits dependent on life-cycle CO_{2e} per MJ for fuel and/or energy source used

Propulsion Systems of The Future

Gen N+3 Advanced Vehicle Concepts: Phase 1 Results

- Advanced concept studies for commercial subsonic transport aircraft for 2030-35 EIS
- Intended to stimulate far-term thinking towards future aircraft needs and identify key technologies needed
- Some key ideas emerged
 - Lower cruise speeds at higher altitude (~40-45k ft)
 - Heading toward BPR 20 (or propeller) with small, high efficiency core
 - Higher wing aspect ratio and laminar flow to varying degrees
 - Unique enablers (e.g., strut/truss, double bubble, hybridelectric battery propulsion)
 - Broad technology advances needed (e.g., lightweight and hi-temp materials, gust load alleviation)
 - Conventional/biofuel energy most prevalent, some hybridelectric
- Results being used to guide future SFW roadmaps and plans.
 Phase 2 investigations underway

Northrop Grumman/Rolls Royce SELECT

"Revolutionary performance obtainable from cascading benefits"

Technology Suite

Three-Shaft Turbofan Engine

- -Ultra-High Bypass Ratio ~18
- -CMC Turbine Blades
- -Lean-Burn CMC Combustor
- -Intercooled Compressor Stages
- -Swept Fan Outlet Guide Vanes
- -Fan Blade Sweep Design
- -Lightweight Fan/Fan Cowl
- -Compressor Flow Control
- -Active Compressor Clearance Control

-Shape Memory Alloy Nozzle

Swept Wing Laminar Flow

Large Integrated Structures

Aeroservoelastic Structures

Ultrahigh Performance Fibers

Carbon Nanotube Electrical Cables

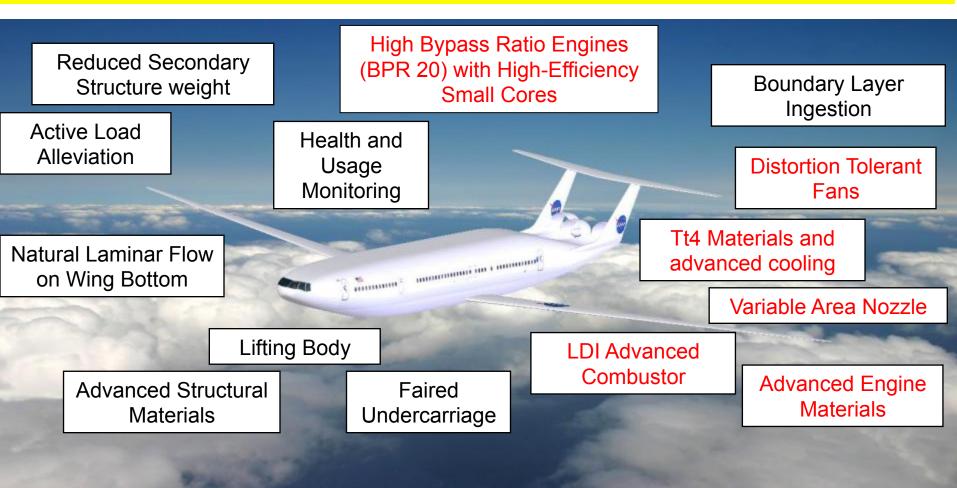
3-D Woven Pi Preform Joints

Advanced Metallics

Landing Gear Fairings

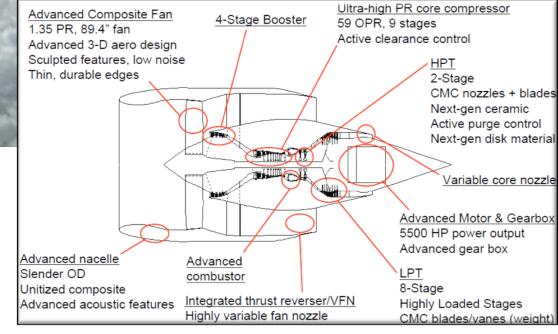
Advanced Acoustic Inlet Liner

NASA-CR-2010-216798



MIT/Pratt & Whitney D Series

Novel configuration plus suite of airframe and propulsion technologies, and operations modifications

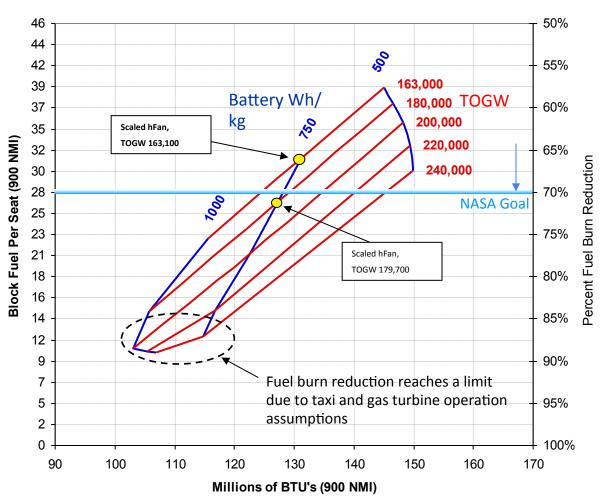

NASA-CR-2010-216794 Vol. 1 & 2

Boeing/GE SUGAR "Volt"

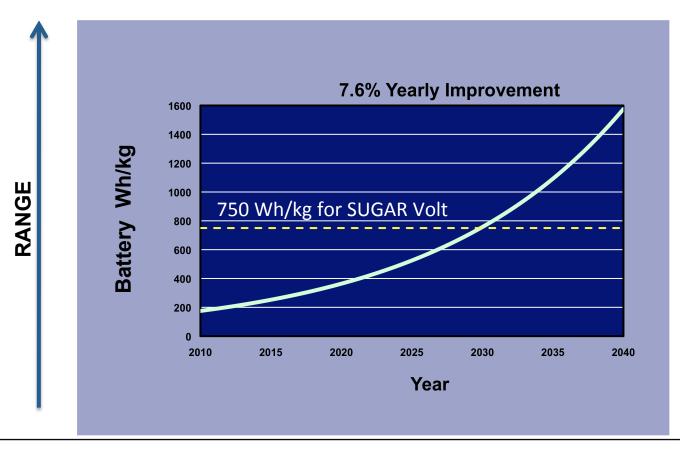
High Aspect Ratio Truss Braced Wing Hybrid Electric (Batteries) Propulsion Systems

NASA-CR-2011-216847

Fundamental Aeronautics Program Subsonic Fixed Wing Project



SUGAR Volt – Opportunities



- With a 750 Wh/kg battery, increasing aircraft weight to accommodate higher battery capacity reduces fuel burn and total energy
- >500 WH/kg battery technology needed to meet NASA fuel burn goal
- 85-90% fuel burn reduction is max. achievable for SUGAR hybrid architecture and assumptions

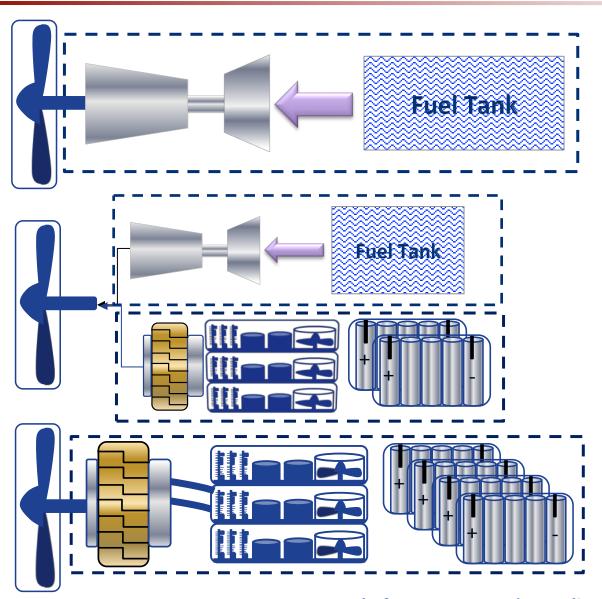
Electrical Capability: Where Are We?

Advances in Battery Technology Required

- Present capabilities for batteries does not meet required levels for large commercial applications ... similarly for fuel cells...
- Trend of progress is promising to meet hybrid concepts needs within the next 30 years

NASA Turboelectric Distributed Propulsion N3X

N3-X Concept Description


- TeDP-HWB: Turboelectric Distributed Propulsion

 Hybrid Wing Body
- Decoupled propulsive producing device from power producing device
- Two wingtip mounted turboshaft engines driving superconducting generators
- Superconducting electrical transmissions
- Fifteen superconducting motor driven propulsors embedded in fuselage
- Two cooling schemes, cryo-cooled and LH2-cooled

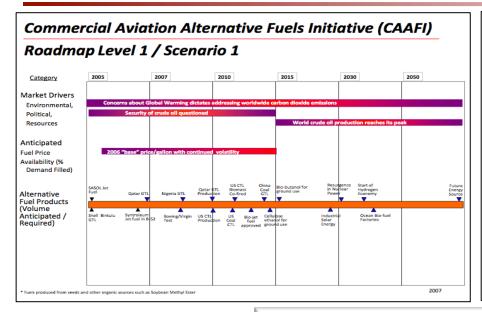
How about all Electric?

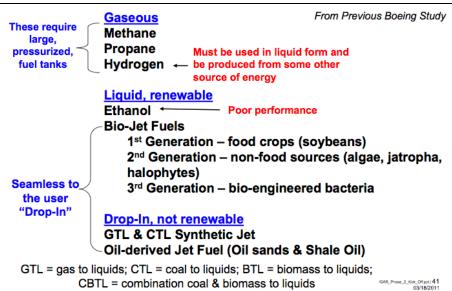
Gas Turbine Engine Propulsion

- Engines ~15,000 lbs
- Fuel ~8,000 lbs
- Total ~ 23,000 lbs

Hybrid Turbo-Electric Propulsion

- Engines ~15,000 lbs
- Fuel ~5,000 lbs
- Motors + Converters~ 2000 lbs
- Batteries ~ 25,000 lbs
- Total ~47,000 lbs


All Electric Propulsion


- Fans + Nacelles ~ 6000 lbs
- Motors + Converters~11,000 lbs
- Batteries ~ 55,000 lbs
- Total ~72,000 lbs

Example for Narrow-Body Application

Alternative Fuels: Are They Part of the Solution?

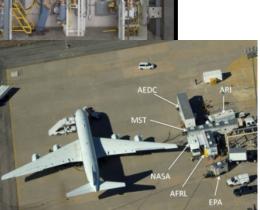
Alternative Fuel Viability

- Viability of Fuel Composition
 - Is the fuel compatible with the current fleet of transportation vehicles?
- Viability of Fuel Pathway
 - Fuel pathway comprised of feedstock, processing technique and fuel composition
 - Are fuel feedstock and processing techniques amenable to large-scale production?
 - Determined (in no particular order) by life cycle GHG emissions, land usage, impact on local environment, fresh water withdrawal and consumption, air quality impacts, economics

Jim Hileman, MIT/PARTNER (NASA Green Aviation Summit, 2010)

Alternative Fuels Research Effort

National Plan Goals...


Energy and Environment Goal 1: Enable new aviation fuels

Energy and Environment Goal 3: Technologies and operational

procedures to decrease Environmental Impact of Aviation

Technical Challenge:

Reduced Emission of Aircraft - Enable concepts and technologies to dramatically reduce or eliminate harmful emissions affecting local air quality/health and global climate change attributable to aircraft energy consumption.

Alternative Fuels Research Objectives:

- Characterize the performance and emissions of alternative & bio-fuels in aircraft propulsion systems.
- Predict the combustion performance and emissions characteristics to enable more effective design of combustors utilizing alternative fuels and bio-fuels.

Other Breakthrough Ideas

- Propulsion
 - Low Energy Nuclear Reaction
 - Beamed Energy
 - Chemical Propulsion
 - Thomson Propulsion Device
 - High Voltage Propulsion in Air and Vacuum
- Energy Storage and Conversion
 - Enhanced Superconducting Magnetic Energy Storage
 - Supercapacitors and Ultraconductors
 - Zero-Point Energy Concepts
 - Motionless Electromagnetic Generators
 - Longitudinal Electric Waves
- Physics
 - Gravity and Gravitational Waves
 - Aharonov-Bohm Effect
 - Theoretical Electrodynamics

Concluding Remarks

- Revolutionary ideas needed in a variety of areas
- Brayton cycle-based propulsion technologies
 - Alternative fuels/biofuels research also key
- Materials
 - Lighter weight, higher temperature
- Electric and hybrid-electric propulsion
 - High power density energy storage
 - Cryogenics and superconducting technologies
 - High efficiency, high density electric machines
 - Prime reliable electrical components
- Highly Integrated Systems
- Vehicles, Propulsion, Energy, Operations

