Advanced Concepts for Aircraft LTO NOx Reduction: A NASA Perspective

Dr. Rubén Del Rosario
Project Manager, Subsonic Fixed Wing
NASA John H. Glenn Research Center
Cleveland, OH USA

Collaborations by NASA ERA and SFW Projects
NASA Subsonic Transport System Level Metrics

... technology for dramatically improving noise, emissions, & performance

<table>
<thead>
<tr>
<th>TECHNOLOGY BENEFITS*</th>
<th>TECHNOLOGY GENERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(Technology Readiness Level = 4-6)</td>
</tr>
<tr>
<td>Noise (cum margin rel. to Stage 4)</td>
<td>-32 dB</td>
</tr>
<tr>
<td>LTO NOx Emissions (rel. to CAEP 6)</td>
<td>-60%</td>
</tr>
<tr>
<td>Cruise NOx Emissions (rel. to 2005 best in class)</td>
<td>-55%</td>
</tr>
<tr>
<td>Aircraft Fuel/Energy Consumption† (rel. to 2005 best in class)</td>
<td>-33%</td>
</tr>
</tbody>
</table>

* Projected benefits once technologies are matured and implemented by industry. Benefits vary by vehicle size and mission. N+1 and N+3 values are referenced to a 737-800 with CFM56-7B engines, N+2 values are referenced to a 777-200 with GE90 engines.

** ERA's time-phased approach includes advancing "long-pole" technologies to TRL 6 by 2015.

† CO₂ emission benefits dependent on life-cycle CO₂e per MJ for fuel and/or energy source used.
Trading Performance & NOx Reduction

![Diagram showing the relationship between Specific Fuel Consumption (SFC), NOx, and Overall Compressor Pressure Ratio (Thermal Efficiency). The diagram illustrates the trade-off between SFC and NOx emissions, with improvements in Combustor Technology leading to reduced NOx emissions at the cost of increased SFC.](image)
Addressing LTO NOx Emissions

Low NOx, Fuel-Flexible Combustors
- Innovative Injector Concepts
 - Alternative fuels
 - ASCR Combustion Rig
- High bypass ratio, high pressure smaller-core engines
- Superior alternative fuel properties

CMC Combustor Liner
- CMC combustor liner for higher engine temperatures and reduced cooling air flows

CFD Models and Validation Experiments
- Validated CFD tools for emissions predictions
- RANS, URANS, TFNS, LES
- CFD Modeling
- Validation Experiments - quantitative time resolved measurements of major species and temperature

Active Combustion Instability Control
- Capability to suppress combustor instabilities for low emission combustors
 - High Temperature SiC electronics circuits and dynamic pressure sensors
 - Fuel Modulation – high frequency fuel delivery systems
 - Instability Models and Control Methods
Ultra-Low Nox, Fuel Flexible Combustor
Objective: Reduce LTO NOx 75% from CAEP6

<table>
<thead>
<tr>
<th>TRL</th>
<th>FY10</th>
<th>FY11</th>
<th>FY12</th>
<th>FY13</th>
<th>FY14</th>
<th>FY15</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>Comple</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Combustor Concept Studies</td>
<td>Single-Injector Flametube Screening</td>
<td>ASCR activation 01/12</td>
<td>Complete sector test</td>
<td>Complete sector evaluation</td>
<td>Proposed core engine Test 2015</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Benefits:
- Injector concept valid
- Flame stabilized
- Feasible fuel staging

Benefits:
- Stable flame propagation
- Injector-injector interaction
- Combustor cooling
- Radial and axial stability
- Fuel-flexibility

Benefits:
- Full envelope operability
- System integration
- Durability (liner temps)
- Pattern Factor/Radial Profile
- Real engine environment

Goal

Combustor concept validated – full Annular or core test

ERA: Ultra-Low NOx Combustor Technology Maturation Roadmap

New Combustor concepts required to meet the Goal
Low Emissions Combustors for N+3
Subsonic Fixed Wing Project

- Combustion CFD Model Development and Application
- Validation Experiments
- Low Emissions Combustion Concepts
 - N+3 Goals (Subsonic Fixed Wing and Supersonics Projects)
- Active Combustion Control
- Alternative Fuels
Combustion CFD Modeling

- Chemical Kinetics for conventional and alternative fuels
- Primary/Secondary Atomization models
- Turbulent combustion modeling
- RANS/URANS/TFNS(VLES)/LES models
- Radiation Heat Transfer
- Combustion Dynamics
- Soot Modeling
- Spray Vaporization
- Coupled Combustor/Turbine calculations

Image: Gas-phase temperatures for two different length Single-element LDI Combustors coupled to the 1st stage of a High Pressure Turbine consisting of Stator and Rotor
N+3 Low Emissions Combustor Concepts

- Smaller Higher Pressure Engine Cores for Advanced Airframe Concepts: BWB, Hybrid Propulsion, etc.
- Emissions Goals may be expanded to include particulates and CO₂
- Fundamental Combustion Research
 - Fuel-Air Mixing
 - Combustion Dynamics
 - Passive Damping
- Advanced Concepts
 - Multipoint Lean Direct Injection, other advanced Lean Burn Concepts
 - Pressure Gain Combustion Feasibility
National Plan Goals:
Energy and Environment Goal 1: Enable new aviation fuels
Energy and Environment Goal 3: Technologies and operational procedures to decrease Environmental Impact of Aviation

Technical Challenge:
Reduced Emission of Aircraft - Enable concepts and technologies to **dramatically reduce or eliminate harmful emissions** affecting local air quality/health and global climate change attributable to aircraft energy consumption.

Alternative Fuels Research Objectives:
- Characterize the performance and emissions of alternative & bio-fuels in aircraft propulsion systems.
- Predict the combustion performance and emissions characteristics to enable more effective design of combustors utilizing alternative fuels and bio-fuels.
Alternative Aviation Fuel Experiments (AAFEX 1 and 2)

Boeing, GE, Pratt & Whitney, CMU, Harvard, MSU, UCSD, and UTRC

Flight Experiment planned for late FY12 using multiple fuels

AAFEX1 - 2009
2 FT fuels pure and 50-50 mix

AAFEX2 – 2011
Tallow fuel, FT Low and High Sulfur both neat and 50-50 mix

Nonvolatile Aerosols @ 1m
Differences in emissions greatest at idle, less at higher engine powers.
Questions?