

Background
PSI and upconversion luminescence imaging have been demonstrated useful for monitoring TBC delamination progression.

Objective
Directly compare TBC delamination monitoring using both PSI & upconversion luminescence imaging on same specimens.
Furnace-cycling induced delamination.
Indentation-induced delamination at different stages of furnace cyclic life.

























## Monitoring Indentation-Induced Delamination



- · PSI
  - Luminescence intensity shows good delamination contrast only when failure is between TGO & bond coat (30 cycles).
    Poor contrast when failure is between TBC & TGO).
  - TGO stress shows excellent contrast for all indents. Stress reduction may be due to deformation of bond coat.
- · Upconversion Luminescence
  - Excellent delamination contrast for all indents.
  - Poor discrimination between TBC/TGO and TGO/bond coat failure.



- •Delamination cracks between TGO & bond coat at 30 cycles.
- •Delamination cracks between TBC & TGO at all later stages of cyclic life.

## Conclusions



- PSI & upconversion luminescence imaging provide complementary information
  - PSI evaluates delamination-driving TGO stress, but poor at evaluating damage accumulation (especially above TGO).
  - Upconversion luminescence evaluates damage accumulation but gives no indication of delamination-driving TGO stress.
  - Combined PSI & upconversion luminescence imaging allows for better discrimination of delamination failure location than either technique alone.