Modulation of Immune Effector and Regulator Cells by Sunitinib: Potential for Combination Therapy in Renal Cell Carcinoma Patients

James Finke PhD,¹ Brian Rini MD,¹Jennifer Ko MD PhD¹, Pat Rayman,¹ Dan Lindner MD PhD¹, Ernie Borden MD¹ Patricia A. Parsons-Wingerter, PhD² Walter Storkus⁴ PhD and Peter Cohen³ MD

Cleveland Clinic¹, John Glenn NASA Research Center², Mayo Clinic Arziona³ and UPMC⁴

Outline

- 1) Modulation of Immune Cells by sunitinib in RCC patients
- 2) Sunitinib combined with vaccine in B16.OVA Tumor Model
- 3) Suppressive and angiogenic activity of G-MDSC and neutrophils
- 4) MDSC role in sunitinib resistance

Renal Cell Carcinoma (RCC)

- ~50,000 new cases in US/year with ~13,000 deaths
- Incidence rising >2.5%/year
- Renal cell carcinoma arising from the renal cortex is responsible for 80-85% of all kidney cancers.
- It is an aggressive tumor that often has spread beyond the kidney before being diagnosed.
- Most common histological form of RCC is clear cell (>85%)
- Common to have mutation/inactivation of the VHL tumor suppressor gene.
- Unresponsive to modern chemotherapy or radiotherapy
- Anti-angiogenic receptor tyrosine-kinase inhibitors (RTKIs) now firstline therapy
 - sunitinib (Sutent)
 - sorafenib (Nexavar)

Multitargeted Approaches in mRCC: Sunitinib (Sutent)

- Small-molecule receptor tyrosine kinase inhibitor¹
- Inhibits all VEGFRs, PDGFR-A, PDGFR-B, c-KIT, and FLT-3¹
- Oral administration¹
- Both antitumor and antiangiogenic activity¹
- FDA approved January 26, 2006 for treatment of advanced RCC²
- 45% response rate in mRCC

- Treatment schedule-50mg daily for 4 weeks + 2 weeks off = one cycle

MDSC Isolated from RCC Patient's Tumor

Β.

G-MDSC M-MDSC Linage Negative-MDSC b= band cell p= polymorphoneuclear m=monocyte i=immature

MDSC subsets RCC patients

Changes in MDSC and MDSC Subpopulations Following 1, 2, and 4 Cycles of Sunitinib

Modulation of Myeloid DC by Sunitinib

Reduction in G-MDSC Coincides with Increased T cell IFNγ Production

%IFN-_Y⁺ (FACS)

Pretreatment Levels

MDSC and T cells ability to produce IFN γ in RCC Tissue Post Sunitinib Treatment

Pazopanib Treated Patients

n=12 pts

Conclusions:

- 1. Sunitinib mediates reversal of MDSC accumulation in peripheral blood of RCC patients and enhances T cell IFNγ production.
- 2. Sunitinib at concentrations achievable in plasma do not inhibit T cell proliferation or production of cytokine/chemokines *in vitro*.
- 3. Sunitinib decreases the number of myeloid DC in the peripheral blood.
- 4. Sunitinib-mediated MDSC decline in RCC patients was not correlated with changes in tumor volume. However, preliminary findings suggest that reduced levels of MDSCs after two cycle of therapy was associated with progression-free survival (p=.005).
- 5. Preliminary analysis of tumors from sunitinib treated patients in a neoadjuvant setting show variability in MDSC reduction and T cell function.
- 6. Pazopanib is also effective at reducing MDSC levels and promoting T cell IFN γ production.

Combining Sunitinib with Immunotherapy

Superior Anti-Tumor Efficacy of Vaccine + TKI Co-Therapy

Vaccine/TKI Co-Therapy Promotes the Inhibition of Suppressor Cells and the Activation/Recruitment of Protective CD8⁺ T cells

Bose et al. Int. J. Cancer 2011; 129: 2158 - 2170.

Combination Treatment with Vaccine and Sunitinib Improved T cell Response

Bose et al. Int. J. Cancer 2011; 129: 2158 - 2170

Combination Therapy Results in a Type-1 Biased Immune Profile in the Tumor

Bose et al. Int. J. Cancer 2011; 129: 2158 - 2170.

The Anti-tumor Efficacy of Combined Sunitinib/Vaccine Therapy is CXCR3 and VCAM-1 Dependent

Bose et al. Int. J. Cancer 2011; 129: 2158 - 2170.

Conclusions

• Sunitinib improves anti-tumor efficacy when combined with specific immunization as a combinational therapy.

• Combinational therapy associated with reductions in MDSC and Treg frequencies in the TME

• Therapeutic benefits correlated with vaccine-induced CD8+ TIL frequencies (tetramer)

Sunitinib Combined with Immunotherapy in Murine Tumor Models

- Ozao-Choy et. al. J Cancer Res 69:2514, 2009 4-1BBLigand/IL12(adenoviral vector)/sunitinib (MCA26)
- Bose A et. al. Int J Cancer 129: 2158, 2010 OVA-DC vaccine /sunitinib (B16-OVA)
- Farsaci et. al. Int J Cancer 130:1948, 2012 Poxvirus-based vaccine (CEA) /sunitinib
- Kujawski et. al. Cancer Res 70:9599, 2010 CD8⁺T cells/sunitinib(Renca)

Therapeutic Tumor Blood Vessel Antigen (TBVA) Targets

	Cells Expressing	Aliases	Comments
DLK-1	Pericytes "Stemmy" cells	Delta-like 1 homologue Preadipocyte factor 1 Fetal Antigen 1	NOTCH ligand (antagonist) EGF Family Member Shed by ADAM17/TACE Inhibits adipogenesis.
EphA2	VEC	ECK	RTK; binds ephrin A1, A5 Involved in angiogenesis, migration; poor prognosis
НВВ	Pericytes	Hemoglobin-β (CD113t-C)	Expressed by pericyte progenitors (from hemangioblasts)
NRP1	Pericytes >> VEC	Neuropilin-1 (CD304)	Co-receptor for VEGF/ semaphorin 3A; Involved in angiogenesis, axon guidance, and cell survival & migration
RGS5	Pericytes	Reg. G-protein signaling 5	Regulates heterotrimeric G proteins as a GTPase activator; Hypoxia-responsive.
TEM1 Zhao Zhao	Pericytes, VEC X et al J Immunol 188:17 X et al Molecular Therapy	Endosialin (CD248) 82, 2012 19:805.2011	Binds fibronectin/collagen, Role in cell migration

Overexpression of TBVA Transcripts in Tumor Versus Normal Adjacent Kidney (NAK): Real-Time RT-PCR (Mean +/- SD)

Ratio of RCC/NAK mRNA expression (N = 6)

Antigen	Pericyte	VEC	
CD31	-	0.8 <u>+</u> 0.5	
DLK1	52.4 <u>+</u> 3.1	5.4 <u>+</u> 1.6	
EphA2	-	6.5 <u>+</u> 2.6	
HBB	37.5 <u>+</u> 4.3	7.6 <u>+</u> 3.2	
NG2	1.3 <u>+</u> 0.8		
NRP1	8.8 <u>+</u> 3.4	0.6 <u>+</u> 0.5	
PDGFRβ	13.7 <u>+</u> 4.2	-	
RGS5	9.5 <u>+</u> 3.2	1.0 <u>+</u> 0.6	
TEM1	14.6 <u>+</u> 6.1	0.4 <u>+</u> 0.6	
VEGFR1	3.5 <u>+</u> 1.1	2.1 <u>+</u> 0.6	
VEGFR2	2.7 <u>+</u> 0.7	1.7 <u>+</u> 1.2	
αSMA	2.2 <u>+</u> 1.0	0.2 <u>+</u> 0.4	

Sunitinib-Induced Alterations in Type-1 T Cell Response to Vascular Antigens in HLA-A2⁺ RCC Patients (d35 versus d0; IFN-γ real-time)

	T cell Response Against Antigen	Patient 1	Patient 2
Thaw PBMC	HIV-nef [-]	-	-
Recovery o.n. 37°C	FluM1 [+]	0.95	1.03
	DLK1	4.86	0.97
Add 1 uM Poptido	EphA2	6.49	1.16
	HBB	1.87	0.93
	NG2	0.96	1.02
Culture 2h, 37°C	NRP1	1.10	0.91
	RGS5	1.57	1.13
Extract mRNA	TEM1	2.12	3.74
Run real-time PCR	VEGFR1	0.91	1.07
	VEGFR2	1.16	0.96
	G250	2.94	4.18

W Strokus et al

A Randomized Phase II Pilot Trial of Type-1-Polarized Autologous Dendritic Cell Vaccines Incorporating TBVA Peptides In Combination With SUNITINIB (SUTENT®) In Patients with Metastatic Clear Cell Carcinoma of the Kidney

Suppressive and Angiogenic Activity of G-MDSC in RCC Patients

(Representative of 8 Exp)

Suppression of T cells by G-MDSC & Neutrophils from RCC Patient & Normal

RCC Patient (Representative of 8 Exp)

Normal

(Representative of 5 Exp)

VEGF-C

Angiogenic Proteome Profile Array

Mean Pixel Intensity

G-MDSC and Patient Neutrophils are Proangiogenic in vivo- Xenograft Nude Mouse Model

RCC Patient

Nude Mouse Xenograft Model of Angiogenesis

Tumor

Tumor + G-MDSC

MDSC in 4T1 Tumor Bed Are Relative Resistant to Sunitinib Compared to MDSC in Renca

MDSC Persistence in RCC Tissue Post Sunitinib Treatment (Neoadjuvant)

Conclusions:

- G-MDSC and neutrophils isolated from are RCC patients are immunosuppressive.
- Tumor conditioned medium from RCC cell lines can activate neutrophils from healthy donors to acquire suppressive activity.
- This activation causes degranulation of neutrophils with release of T cell suppressive arginase and angiogenic MMP9.
- Granulocytic MDSC and activated neutrophils may promote increase in tumor vasculature.
- Persistence of MDSC after sunitinib treatment in the tumor may promote resistant in some patients and mouse tumor models.
- Tumor derived products including GM-CSF may protect MDSC from sunitinib mediated apoptosis.

Lab members Patricia Rayman, Yu Yang MD, Joanna Ireland, Dr. Kausik Biswas (PhD), Soumika Biswas Dr. Charles Tannenbaum PhD

Collaborators Brian Rini MD Peter Cohen MD, Mayo Clinic AR Walter Strokus PhD, UPMC Ernest Borden MD Daniel Lindner MD PhD **Kevin Bunting PhD** Mike Vogelbaum MD Baisakhi Raychaudhuri PhD Patricia A. Parsons-Wingerter PhD Jennifer Ko MD PhD

Grant Support - NIH, Pfizer Corporation, and GlaxoSmithKline