Material Characteristics for an Analytic Hypervelocity Impact Performance Model

Joshua E. Miller
University of Texas El Paso/CASSMAR
NASA JSC/Jacobs JETS
June 11, 2015
An approach to derive material inputs has been developed for use within analytic ballistic performance models

- A large database of over 1,100 impact tests into two wall shields has been gathered to evaluate performance dependence on material properties
 - Big data analytics including Artificial Neural Networks (ANN) have been used to probe the dataset
 - From ANN many key shield characteristic effects have been quantified
- Insights from the dataset have been used to examine important parameters for the impact event
 - Material properties needed for impedance match principles to calculate residual velocity
 - Material properties needed for thermal properties and wave speeds for expansion
- Using this approach, improved extrapolations have been achieved across the large database of impact conditions over a broad range of materials and arrangements
- Matching these energy estimates with path dependent simulations have increased the understanding of simulation results
Double wall shields have been integral in maintaining reliability in the solid particle environment and ANN data analytics have yielded shield performance metrics.
Shock wave parameters are derived from a non-constant slope in the linear kinematic model for wall interactions.

Aluminum

\[
\text{Aluminum} = \text{Al (U-u) Data: Shockwave Database}
\]

\[
\begin{align*}
 s &= s_0 + \delta s \, \text{Exp} \left[-\frac{u}{\delta u} \right] \\
 u &= u_\infty \\
 u &= u_i
\end{align*}
\]
Expansion about the center of mass occurs in all directions at the sound speed of the compressed material.

\[c_R = \sqrt{(2s - 1)(U^2 - u^2)/2} \]

Black: Al Shock Wave Data from Shockwave Database
Blue: Al Release Wave Data from Shockwave Database
Using the same approach to describe the release wave speeds can describe a broad range of materials

- Aluminum
- Copper
- Iron
- Lead
- Nylon
- Quartz
The projectile thermally expands over the rear wall and stops when the particle velocity is lower than the material strength capability of the rear wall.

\[
\omega = \frac{c_R}{c_R + u_o} \left(1 - \frac{u_o^2}{u_i^2} - \frac{\sigma_S \epsilon N}{1/2 \, \rho_W \, u_i^2} \right)
\]

\[
\sigma_S = \left(\frac{4 \, \rho \, c_R \, K^2}{\dot{\epsilon}} \right)^{1/3}
\]

\[
N = \frac{d \, \rho \, c_R^2 \, \sigma_U \, \epsilon}{4 \, K^2}
\]

\[
d_i = \frac{3}{2} \left(\frac{\bar{m}_W'}{\rho_i} \left(\sqrt{\rho^*/\rho_i} + \omega_i S/r_i \right) \frac{\hat{u}'}{1 + \hat{R}_W'} \right) - \hat{u}'
\]

\[
\hat{u}' = \left(\frac{u_F' + \frac{c_W'}{s^{W'+1}}}{u_{\infty}' + \frac{c_W'}{s^{W'+1}}} \right)^2 \frac{s^{W'+1}}{s_{W'+1}}
\]

\[
\hat{R}_W' = \frac{\rho_W' \left(s_{W'} u_{\infty}' + c_{W'} \right)}{\rho_i \left(s_i (u_o - u_{\infty'}) + c_i \right)}
\]
With appropriate material models the consideration of a broad range of configurations and impact conditions

- 1500+ double wall impacts have been performed and collected into a database
 - Impactors include Cadmium, Copper, Nylon, Glass, Aluminum, Alumina and Steel and many more
 - Impact speeds from 2 to 10 km/s and obliquities from normal to 75° to normal

Open-Pass
Closed-Fail
Black-Normal
Blue-45° to Normal

Solid curve: This work
Dashed curve: NASA TP-2009-214785 with $V_{in} = 9.1$ km/s
Hydrodynamic simulations have a large array of material input parameters that make understanding shields difficult without analytic understanding

- **Equation of state**
 - Mie-Gruneisen with shock wave reference/constant specific heat
 \[p - p_o = \Gamma_o \rho_o (e - e_o) \]

- **Deviatoric model**
 - Johnson-Cook with linear thermal dependence for first wall
 \[Y = (A + B\epsilon^n) (\frac{(T_m - T)}{(T_m - T_o)}) \]

- **Johnson-Cook with fourth root strain rate for second wall**
 \[Y = (A + B\epsilon^n) \left(1 + (\frac{\dot{\epsilon}}{\dot{\epsilon}_o})^{1/4}\right) \]

- **Fracture model**
 - Johnson-Cook with strain change proportional to strain and linear thermal degradation
 \[\epsilon_F = D2 \exp[-D3 P/Y] \]
Hydrodynamic simulations have a large array of material input parameters that make understanding shields difficult without analytic understanding.

- Equation of state
 - Mie-Gruneisen with shock wave reference/constant specific heat
 \[p - p_o = \Gamma_o \rho_o (e - e_o) \]
- Deviatoric model
 - Johnson-Cook with linear thermal dependence for first wall
 \[Y = (A + B\epsilon^n) \left(\frac{(T_m - T)}{(T_m - T_o)}\right) \]
 - Johnson-Cook with fourth root strain rate for second wall
 \[Y = (A + B\epsilon^n) \left(1 + (\dot{\epsilon}/\dot{e}_o)^{1/4}\right) \]
- Fracture model
 - Johnson-Cook with strain change proportional to strain and linear thermal degradation
 \[\epsilon_F = D2 \exp\left[-D3 \frac{P}{Y}\right] \]

Steel

- Density Effects Test #7
- Velocity: 6.7 km/s
- Projectile: 6-mm Diameter 440C Stainless Steel
- Bumper Plate: 6061-T6 Aluminum
- Catcher Plate: 2219-T87 Aluminum
Using simulations with the analytic model yield insights into the role of material properties in expansion
An approach to derive material inputs has been developed for use within analytic ballistic performance models

- A large database of over 1,500 impact tests into two wall shields has been gathered to evaluate performance dependence on material properties
 - Big data analytics including Support Vector Machines (SVM) have been used to probe the dataset
 - From SVM many key shield characteristics have been quantified
- Insights from the dataset have been used to examine important parameters for the impact event
 - Material properties needed for impedance match principles to calculate residual velocity
 - Material properties needed for thermal properties and wave speeds for expansion
- Using this approach, improved extrapolations have been achieved across the large database of impact conditions over a broad range of materials and arrangements
- Matching these energy estimates with path dependent simulations have increased the understanding of simulation results