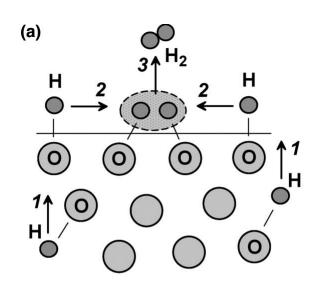
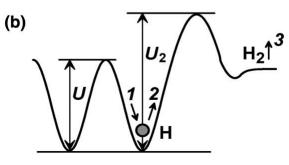

Solar wind implantation into lunar regolith: Hydrogen retention in a surface with defects

- W. M. Farrell ^{1,3}, D. M. Hurley ^{2,3}, M. I. Zimmerman ^{2,3}
 - 1. NASA/Goddard Space Flight Center, Greenbelt, MD
 - 2. Johns Hopkins University/Applied Physics Laboratory, Laurel, MD
 - 3. NASA's Solar System Exploration Research Virtual Institute, NASA/Ames Research Center, Moffett Field, CA

Proton/surface interaction pathways: The end state for proton in surface

The end state for proton in surface interactions can be one of the following [Starukhina, 2001, 2006]:

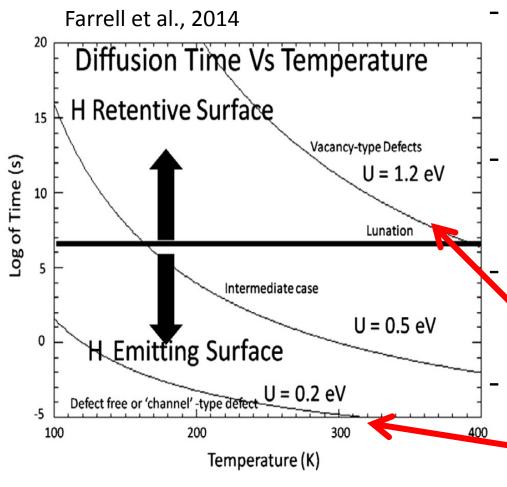

- H thermally migrates & diffuse out of crystal to form neutral H exosphere
 emission or H₂ emission
- H gets trapped in crystal vacancy
- H creates a local ionization event to immediately react [Poston et al., 2012]
- Proton reflects from surface back into solar wind [Saito et al., 2008]


The observation of substantial neutral H emission from the lunar surface [McComas et al., 2009] and H₂ [Cook et al., 2013] suggests implantation and outward diffusion is a substantial pathway

H Implantation & Internal Reactions

Starukhina 2006

From **Starukhina** [2001, 2006, 2012], an implanted H will migrate from the surface with diffusion time


$$\tau_D = h^2 D_o^{-1} \exp(U/kT)$$

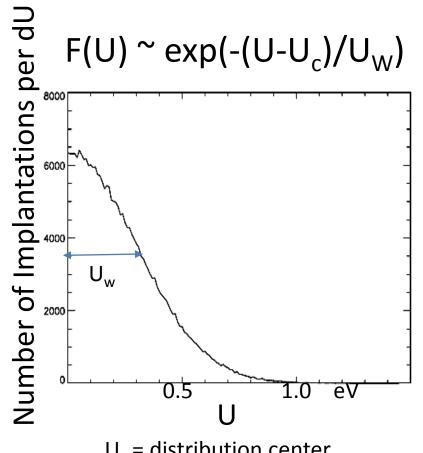
- Depth: $h \sim 10^{-7} \, m_r$
- Diffusion D = D_0 exp (-U/kT)
- U is diffusion 'activation' energy defining both mobility and trapping of H at a position.
- With defects, U has a range of values, but U
 1 eV in regions leading to trapped or 'loitering' H's in vacancies

H Diffusion (or Residency) time

Diffusion time as a function of temperature for a family of activation energies, U.

Diffusion (outward) time, $\tau_D = h^2 D_o^{-1} \exp(U/kT)$ can also be considered the H residency time

Residency time is STRONGLY controlled by temperature and activation energy, U


High U: the H can **'loiter'** for 10's of days to possibly form OHs..H retentive surface

Low U value: the H is emitted back out of the surface in seconds ..H emitting surface

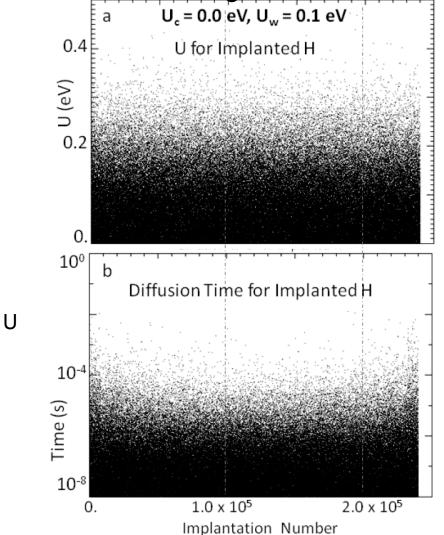
New Statistical Approach:

Distribution of Activation Energy

U_c = distribution center, U_w = distribution width

- For a given sample, the numerous implantations have a **distribution of U values** not a single U but an **average <U>** and δ**U deviation** about the average.
- Expect many of implantations into complete lattice structure (with low U), but some implantations onto lattice with defects represented by higher U
- This statistical view lends itself to a Monte Carlo approach
 - We attempt to search for the distribution of U's and temperatures that provides long-lasting, **loitering Hs**candidates to form OH.

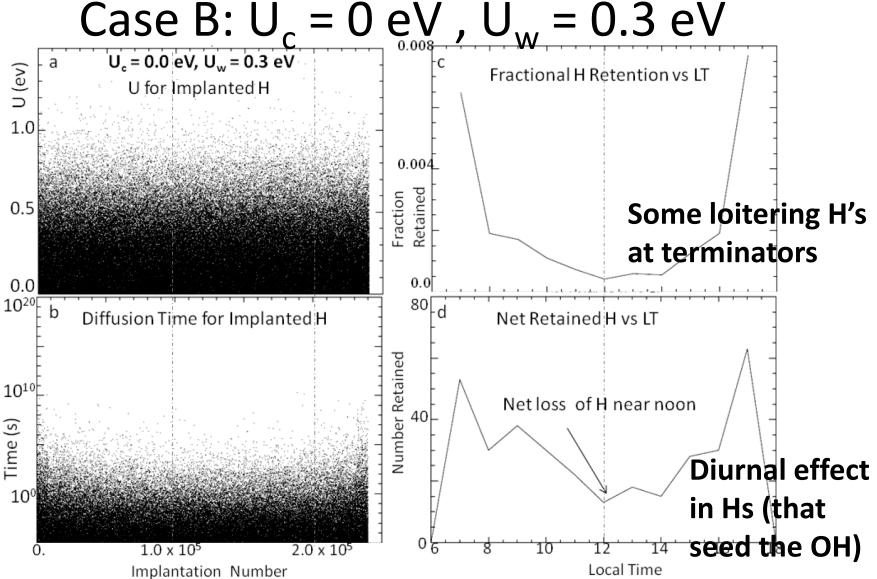
Methodology


- Divide the lunar equatorial frontside region into local time bins (~1 hour LT or 15° long bins)
- Solar wind ions flux represented by N = 240000 test particles delivered to surface in a flux which varies with local time (i.e., cos of SZA)
- For each implantation, assign an individual U value quasi-randomly but weighted by a pre-defined Gaussian.
- We then determine diffusion (residency) time as a function of local surface temperature.
- The number of H's with residency time, $\tau_D > 10^5$ s are considered loitering Hs and candidates to eventually form OH. We count these in each local time bin.
 - H Continuity Eq.: $dn_H/dt = S L_{diff} L_{OH}$
 - Cold, terminator: Balance near-terminator solar wind flux, F, onto surface vs estimated amount of OH content from IR observations:

 $T > n_{OH}h/F > 10^5$ s (cannot be much longer than a ¼ lunation)

- We thus examine the conditions to obtain substantial amounts of these 'loitering', long-lasting Hs that are candidates to form OH.
- Example cases now shown

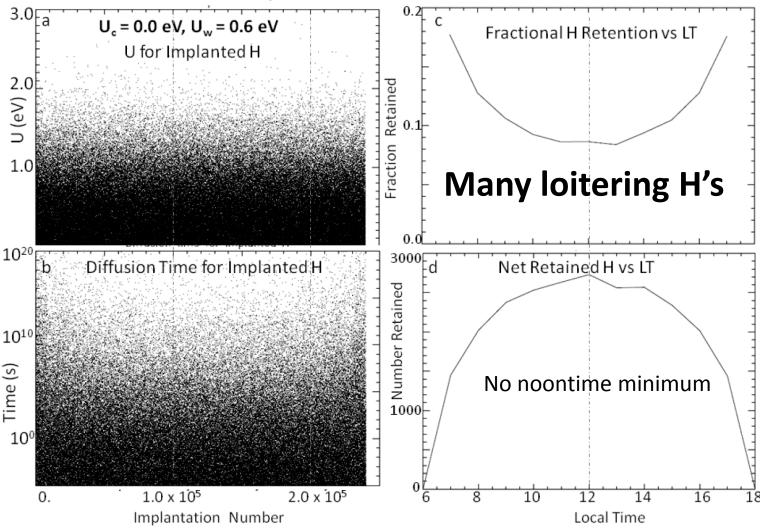
Case A: $U_c = 0 \text{ eV}$, $U_w = 0.1 \text{ eV}$



Nearly defect free lattice with low U values

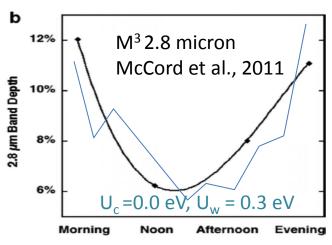
No loitering H's!

- -Most of implantations have activation energies below 0.4 eV.
- -Retention time/loitering time of H's less than 1 second at all locations all H's lost, no OH.



- -Only at the terminators is there a substantial population of loitering Hs
- -The warmer regolith near noon releases the Hs, possibly creating a neutral H exosphere

Case C: $U_c = 0 \text{ eV}$, $U_w = 0.6 \text{ eV}$



- -Substantial population of loitering Hs even at warm noontime
- -Still noontime loss via diffusion, but the loss is offset by greater retention at numerous defects sites

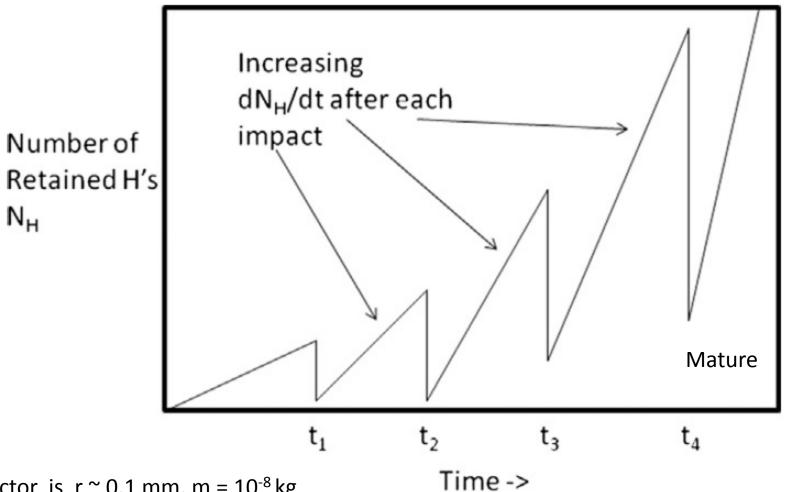
Comparison to the Moon

Loitering
H
30(Candidates
For OH)

- Clark et al. 2009: Mild retention of OH (well below saturation) at 10-1000 ppm (over long term)
- Sunshine et al 2009: Reduction in OH at sub-solar point
- Consistent with H implantations having U_c < 0.3 eV, U_w < 0.2 eV

Table 1Values of total fraction retained and the relative retention at noon LT (compared to 8 h LT) for a set of runs under varying U_c and U_w for a thermal profile like that at the lunar equator. Bold values indicate U_c/U_w values where a local noontime minimum is modeled. The shaded values are U_c/U_w values that could be similar to the Moon's mild retention (see text for further discussion).

	$U_c = 0.0 \text{ eV}$	$U_c = 0.3 \text{ eV}$	$U_c = 0.6 \text{ eV}$	$U_c = 0.9 \text{ eV}$
$U_w = 0.1 \text{ eV}$	0.0 0.0	0.0 0.0	0.001 -1.0	0.22 -0.60
$U_w = 0.2 \text{ eV}$	0.0 0.0	0.001 -0.64	0.034 -0.51	0.34 +0.06
$U_w = 0.3 \text{ eV}$	0.001 -0.56	0.013 -0.29	0.10 -0.004	0.39 +0.35
$U_w = 0.4 \text{ eV}$	0.016 -0.19	0.04 +0.02	0.17 +0.27	0.42 +0.51
$U_w = 0.6 \text{ eV}$	0.10 +0.35	0.14 +0.41	0.27 + 0.53	0.45 +0.67
Uw=0.75 eV	0.19 +0.54	0.22 +0.56	0.33 +0.63	0.46 +0.72
$U_w = 0.9 \text{ eV}$	0.27 +0.64	0.30 +0.65	0.37 +0.70	0.48 +0.76



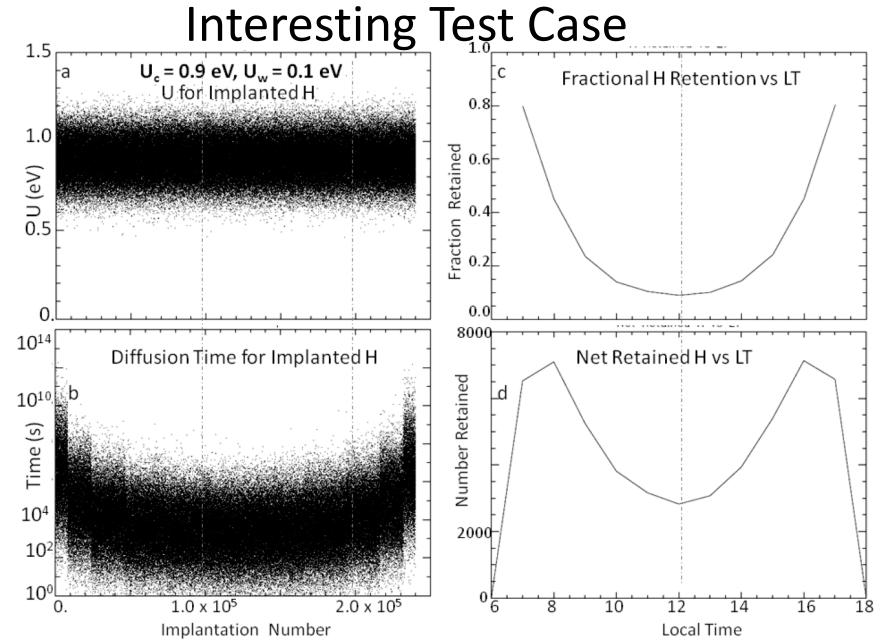
3 Classes of Implantations

	U (eV)	Diffusion time (s)	Loss from surface via	Observed in	Observed via
Low U	< 0.3	< 10 ¹	Quick diffusion	Emitted H or H ₂	IBEX, LAMP
Intermediate U	0.3 to 0.9	10 ² - 10 ¹⁴	Diurnal –scale thermal diffusion	Surface	IR (e.g., M ³)
High U	> 0.9	10 ⁷ To over 10 ^{16.5}	Impactors	Surface	IR (e.g., M ³)

- Model a continuum in U but 'classes' based on loss process
- -We propose that **impactors** as a loss process regulate the amount of long-term loitering H
- -Micro-meteoroids act to 'reset' the affected regolith by releasing H's and by adding defects to make the surface more retentive.
- -Keep surface from becoming saturated by 'impact-reset' (Over long term, see only 10-1000 ppm –well below saturation)
- -Look at U/T: Explains both thermal effect and increase H in mature (highland) soils

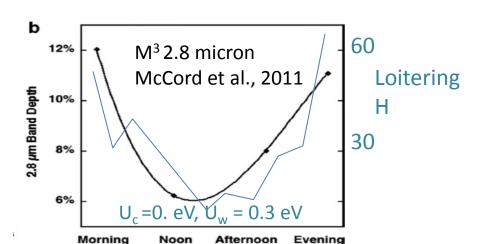
Illustration of Implantation history of a 1 mm x 1mm area

Impactor is $r \sim 0.1$ mm, $m = 10^{-8}$ kg Impacts a 1 mm x 1mm region every 10^5 years.


Conclusions

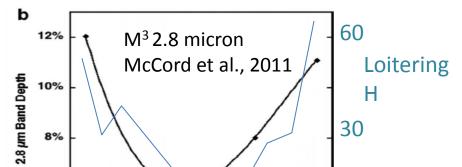
- The defect properties of a crystal has as much (or more) control on solar wind H retention in an exposed regolith as temperature and solar wind influx
- U/T is the primary variable in residency, not just T
 - T varies by a factor of 4, U varies by a factor of 100
 - T appears as a controlling variable only at intermediate U values
- The nature of the crystal may be a variable in H retention and OH formation that is under-appreciated.
- Focus on U/T: Can explain a diurnal cycle to H and also increased retention in mature soils (lunar highlands)
- We use Gaussian's to illustrate of effect but real crystal defect distribution (U distribution) likely more complicated (e.g., amorphized rims - Noble et al., 2005)
- Starukhina's work pioneering
- Extended discussion in recent Icarus paper!

backup

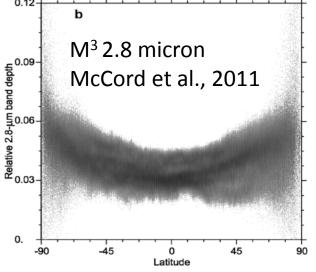


Comparison to the Moon

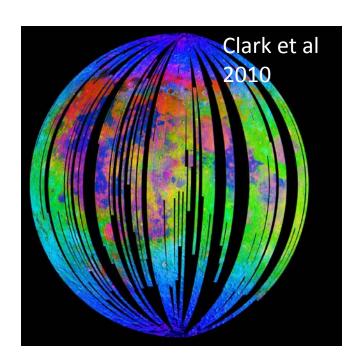
- Clark et al. 2009: Mild retention (well below saturation) at 10-1000 ppm (over long term)
- Sunshine et al 2009: Reduction in OH at sub-solar point
- Consistent with H implantations having U_c < 0.3 eV, U_w < 0.2 eV


Table 1Values of total fraction retained and the relative retention at noon LT (compared to 8 h LT) for a set of runs under varying U_c and U_w for a thermal profile like that at the lunar equator. Bold values indicate U_c/U_w values where a local noontime minimum is modeled. The shaded values are U_c/U_w values that could be similar to the Moon's mild retention (see text for further discussion).

	$U_c = 0.0 \text{ eV}$	$U_c = 0.3 \text{ eV}$	$U_c = 0.6 \text{ eV}$	$U_c = 0.9 \text{ eV}$
$U_w = 0.1 \text{ eV}$	0.0 0.0	0.0 0.0	0.001 -1.0	0.22 -0.60
$U_w = 0.2 \text{ eV}$	0.0 0.0	0.001 -0.64	0.034 -0.51	0.34 +0.06
$U_w = 0.3 \text{ eV}$	0.001 -0.56	0.013 -0.29	0.10 -0.004	0.39 +0.35
$U_w = 0.4 \text{ eV}$	0.016 -0.19	0.04 +0.02	0.17 +0.27	0.42 +0.51
$U_w = 0.6 \text{ eV}$	0.10 +0.35	0.14 +0.41	0.27 + 0.53	0.45 +0.67
Uw=0.75 eV	0.19 +0.54	0.22 +0.56	0.33 +0.63	0.46 +0.72
$U_w = 0.9 \text{ eV}$	0.27 +0.64	0.30 +0.65	0.37 +0.70	0.48 +0.76



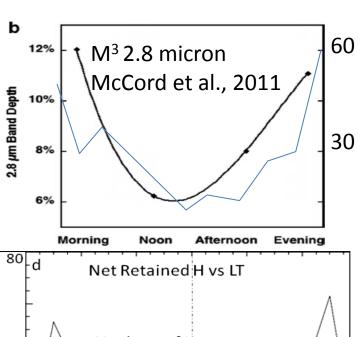
Comparison to Moon

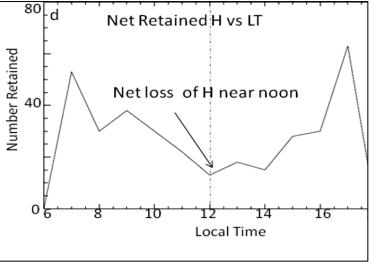


 $U_c = 0. \text{ eV}, U_w = 0.3 \text{ eV}$ Morning Noon Afternoon Evening

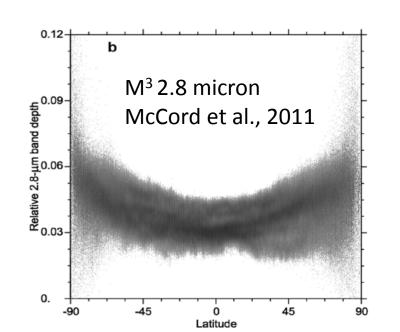
6%

- Mild retention (well below saturation)
- Reduction in H (and hence OH) at subsolar point
- Consistent with U_c < 0.3 eV, U_w < 0.2 eV
- Have a fraction of implantations with 0.3 eV < U < 0.9 eV





Comparison to Moon


H's Retained

 $U_c = 0. \text{ eV}, U_w = 0.3 \text{ eV}$

- Mild retention
- Reduction in H (and hence OH) at sub-solar point
- Consistent with U_c < 0.3 eV, U_w < 0.2 eV
- Have a fraction of implantations with 0.3 eV < U < 0.9 eV

