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NATIONMAL ADVISORY COMMITTEE FOR AEROFAUTICS

ApvavcE (I REroRT

HIGH-SPEED WIND-TUNNEL TESTS OF A 0,3-SCALI lODEL
0F THE P-47D AIRPLANE

By William T. Hamilton and Iee XH. Boddy

SUMMARY

-

Presented in this report are the results of high-spead
wind—tunnel tests of a O.Z%-scale model of the P-47D airplane.
Included are the merodynamic characteristics of the model,
pressure digtributions on the wing and horizontal tail, ele~
vator hinge moments, and tuft photographs showing the flow
ovar the wing and horizontal tail.

t The results indicate that, at level-flight 1ift coef-

N ficients, the P-47D airplane will not exhibit a diving ton-

” dency below a Mach number of 0.78 at an altitude of 20,000
feet or below a Mach number of 0.72 2t an altitude of
40,000 feet. The Mach number at which the 1lift, drag, and
pitching-moment coefficients diverged rapldly fron the low-
spocd values is about C.15 higher than the critical lach
number., This is an uvnusually large margin.

INTRODUCTION

As the speed of an airplane approaches the speed of
sound, drastic changes in its aerodynamic characteristics
gonerally take place. In ordar to approach logically tho
problems encountored in high-speed flight, it 1s necessary

. to determine these high—speed charactoristics and the de-
g, gree to which they vary from those at low speed.

v Thig report presents the rogults of tests of a 03—
secals model of the P-47D airplane which were carriocd out in
the Ames 16-foot wind tunnel in order to obtain iaformation
concerning the high-speod charactaeristics, especially the
longitudinal stability, trim, and control. HRefersacc 1
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presents the results of tests of this same model to deter—
mine the usefulness of dive-recovery flaps under the wing in
gaining additional longitudinal control.

MODEL AYD APPARATUS

The 0.3~-scale model of the P-47D airplane was designed
and built by the Ames Aeronautical lLaboratory. The wing,
fuselage, vortical fin, and horizontal stabilizer were each
constiructed of a steel spar covered with mahogany., The rud-
der and elevator werce cast of aluminum and the engine cowl
was formed from sheet aluminum. The elevator deflection was
controlled remotely through a unit whieh incorporated an
electric motor for power, an clegtric strain gage for meas-—
uwring the elavator hinge moments, and a selsyn motor for
indicating the alevator angle,

Figure 1 is a threes=view drewing of the modasl, Tae
nore important dimensions eres as follows:

Tiag area, sq f% . . . . v 0 4 e e v 4 4 s s s e s o 27,000
fing snan, £33 .+ o ¢« o« ¢ o o + & s s u » s s s & & « 12,233
-.ea) aerodynamie chord, £t . + + + & & ¢ ¢ &+ ¢ o » « 2,187
Ting sectdon o ¢ ¢« 4 4 4 4 e & 2 s+ s+ s = « « Bepudlic S$-3
Win~g thickness at root, poercent chord . . . . « .« . 15,0
Wiag incidenes at Toov, 48 o o s o o = o + & 2 & = 1.00
Wiing incidence at tip, deg « & + 4+ ¢ ¢ + v ¢ ¢ 2 o &« —=2.96
Eorizontal-tail area, 89 ff + & v o« o « « o & s & 4,95

Horizontal—tail length (c.g. %o elevator hingce
line)' 1 6.786

Horizontal—tail incidence. deg ] - . - - . . » L] - [ ] 208
The wing and horizontal-tail statlons are denotad by
their distances in inches along the surfece from the center

line of tho model,

The modol was suppoertsed in ths wind tunnel by three
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struts as Shown in figure 2, Angle—of-attack variation was
obtained by vertical movement of the rear strutb. The forces
and moments were recordsd by self-balancing, recording, beam
scales.

SYMBOLS

The symbols used in this report are definod as follows:
v free—-stream veloecity, feet per socond

1
a free—-stream dynamic pressure (;,5v2) y Ppounds per
£r

square foot

H Mach number ( v )
veloelity of sound

3 wing area, square feet

11.A.0, menn asrodynamic chord, fest

Cy, 1ift coefficient (li};.:&)
q
Cp drag coefficient (_cl;%g)
q
Cn pitching-moment coefficient (nitChing_EOﬂBnV )
qS ¥.A,.C.
o angle of attack of the fuselage refersnce liae,
degrees
= angle between the fuselage reference line aacd the

tunnel center line, degrees

63 glevator deflection, degreas
St elevator—tab deflectisn, degrees
i angle between the stabilizer and %the fuselage refer~

ence line, degrees

Py static pressure in free stiream, pounds per scunre

foot
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Py, static prossure on the model surface, pounds per sguare

foot
' N S
P nrassure coafficiant (BL——-—-?—-B-.*
q s
Pcr eritienl pressurs coefficient (P at which the local

v2loecity equals the loeul velocity of scund)

Mer critical ilach number (free-stream ilach numbar at
wiich P, 1s first reached on the model)

RISULTS

The moAol of the P-47D airplane was originally mounted
on l2-mercent—thick shielded struts for tests (fig. 2(a))
and later ox r~un improved S—percent—thick unshielded strut
syetem {fi-, 2(b)). The wing and tail tuft studies, sle-
vator hinze moments, and horizontal—tail pressure distri-
bution and effectiveness, presented in thils report, were
obtained fron tesis with the l2-percent—thick strut system.
They havo besen checked and found to be essentially unafi-
fectad % the change of model-support system. A1l other
data in tais report were gained from tests with the im-
proved 5-—percent—thick strut system.

The wiand-tunnel dynamic—-pressure and Mach number
calibrations, support—strut tares, and model-constriction
correction were obteined in the manner describted ia ref-—
erence 2,

The following corrections wure applied to mecount for
the effect of the wing~tunnel wallg:

Angle—or-a.ttaelr correction . . . . . . .« 1,060 Gy (deg)
Drag—coefficiant correction ., ., . . . . . 00,0185 GLa

Pitehinz~-noient coefficient correctlion . . ¢C.0200 GL

The mitching moments were referred to a center-of-
gravity locntion 1,650 inches below the fuselage reference
line aacd abvove the 27.5 percent point of the mean aerody-—
namic chord.
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DISCUSSION

Goneral Charmcteristics

The 1ift, drag, and pitehing-moment characterisgtics of
the P~47D airplane model are shown in figures 3 to 7. The
1ift changed only slightly with speed except that a sharp
decrease in slope occurred at a successively lower 1lift
coefficlent for esach higher Mach number. Up to & liach num-
ber of 0.65 the lift—curve slope increased only half as

auch as predicted by Glavert'!s relation 1 y ané uy to
113

a2 lach number of 0.815, the limit of the tests, the angle

of attack for zero lift changed only slightly.

The drag coefficient remained essentially constant
with speed up to a Mach number of 0.60, then started in-
creasing slowly at the low 1lift coefficlents and more rap-—
idly at the high 1lift coefficiente, and finally increased
ranidly at all 1ift cceffieients.

The variation of pitching~moment coefficient with Mach
nunber was similar to that discussed in reference 3, Above
the eritical Mach number for each lift coefficient, the
gtatic longitudinal stability increased %o three or four
times the low~-speed value, It should be noted that for
1ift coefficients of 0.1 or less, and through the rangas of
ilach numbers inecluded in the tests, the change in the 1ift
coefficient for balanes was small, The pitching-—noment
coefficients for the model without the tail indiceted nega-—
tive stabllity up t0 a2 Mach number of 0.69; then the stability
increassd until, at a Mach number of 0.815, it wes essen—
tially neutral. This increase of stability at hizh spead,
due to the wing and fuselage alone, was equal to one-~half
the stabllity increase of the complets modsl.

Hing

The wing pressure distribution was measured nt two
stations, 10.80 (figs. B tec 15) and 30.00 inches from the
center of the span (fige. 16 to0 23). Statlion 10,80 was
Just outboard of the wing fillet and had slightly greater
negatlve pressure cosefficients than station 30,00 uantil
well past the ceritical Mach number.
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As socon as the peak-pressure coefficient ceased %o
increase with speed, the pressure coefficienfs at station
30.00 became more negative than those at station 10.80.
The pressure variation over the ' upper surface of % he wing
et constant angle of attack remained similar to that at
low speed until the critical dach number was excesded by
15 %o 20 percent, after vhich the peak-pressure coafiicient
became less negative and separation of t he flow occurred
at the higher angles of attack., The pressure variation
chonged in a like manner over the lower surfece of tae wing
except for the formation of twin pressure peaks above the
critical-presgure coefficient at high speeds and negative
aagles of sttack,

The tuft photographs for the upper surface of the wing
(figs, 24 to 26) indicated no areas of rough flow for 1ift
coefficients below 0.7 and & Mach number of 0.59, or ot a
ach number of 0.73 for 1ift coefficients near zero. The
first area of rough flow to appesar was a narrow baid ot
sbout 30 percent of the chord,and it extended outvard from
thae wing root about one—third of the s emispan. This band
of rough flow appeared at about 0,72 1ift coefficiout ond
0.59 ilach number, and was found at lower 1ift coefficiasants
and higher Mach numbers up to about 0.24 1ift coefiicient
ot 0.73 Mach number, The flow aft of this band was anearly
as smooth as that aheed of it (fig. 26). From the pressure
digtribution at station 10,80 (figs. 1li(a}, 22(a), and
15(a)), it is apperent that this band was always at a polnt
wvhere the pressure coefficient suddenly dropped froz a =uch
a2igher negative value to a point below the critieal vonlue
and then deereased over the rest of the chord about cthe
spiie as at low speeds. This band of rough flow is r.erent-
1y caused by a compression shock, which does not cnuse sep-—
aration, as there is smooth flow and a complete Dressure
recovery aft of the shock. This pressure recovery vor iach
nunbers well above the critical and even above thet a2t which
a shoek was well developed partially accounts for the delay
of compressibility effects on the characteristics of tais
model. When the angle of attackx or MNach number was further
incroaged above the value a2t which the band of rousih rlow
appeared, the flow aft of this band also becams rougs aand
appeared to be stalled, and the pressure recovery uvos not
comnlete.

PTail

Pigure 27 shows the variation of stabilizer affective-—
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ness with Mach number and 1ift coefficient, and figure 28
shows the variation of pitching-moment coefficient with ele~
vator angle, Mach number, and lift coefficient. Increasing
the Mach number had only a slight effect orn the increment of
pitching-noment cosfficient resulting from a given increment
of elevator angle, except at high speeds and hizh 1ift coef-
ficlents. 1I% decreassd 25 percent at 0.6 1ift coefficient
as the Mach number was inereased from 0.64 to 0.68, The in-
crease in static longitudinal stability renders the airplane
nore difficult to control, even though the elevator retains
tts ability to change the pitching moment at high smneeds.

The variation of elevator hinge-moment cosfficlent with
elevator angle is shown 1n figures 29 to 34, The slopo of
the hinge-moment curves increased from about —-0.004 =2t 0,29
ilach number %to about -0.003 at 0.73 Mach number. Verring
the angle of attack had essentially no effect on the lhinge-—
noment coefficients until high epeeds end high 1lift coeffi-
cients were reached, Difficulty was encountered in uepsur—
iag the hinge moments at Mach numbers above 0.70 due to the
violent buffeting of the khorizontal tail by the winrs wale
at angles of attack of 3% or more.

The chordwise pressure distridbution over the horizontel
to.1l is presented In figures 35 to 58 for stations 10.00 and
20,325, The peak-pressure coefficients were much less negs—
tive than the corresponding peak-pressure coefficients on
the wing, indicating = higher critical ilach numbsr for the
tall. The chord.ise varjation of preasure cosfficient main—
tained approxinately the same pattern at high and lov iiach
aumbers but changed with angle of attack, A smsall negative
pressure peak near the nose of the upper surface at station
26,325 formed at the high angles of attack; this peak was
also observed at 5% angle of attack and C.73 Mach number =2t
station 10,00,

The tuft photographs for the horizontel tail (figs. 59
to 61) show no changs with Mach number or angle of atiack
except when the tail is in the wake of the wing. at high
speeds. As stated before, this occeourred at adout 0.70 MHach
number and 3% angle of attack, When the tail was in the
ving wake, it shook viclently - moving up and dovn as much
as an inch at the tips — and the tufts (fig. 61) indicrted
that the flow over the upper and lower surfacss wera e:-—
trexsely rough. It would seem that the tall was not stalled,
since the pitching—moment curves show no decrease 1a sta—
hility for these conditions.
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Limiting Conditions

Figure 62 shows a summary of the limiting ilach nunmbers
for the P=47D airplane as indicated by the tests of tle
0.3~gcale model. Alsc shown in this figure are the 1ift
cccfficients required for level flight with 2 wing loading
of 45 pounds per square foot. OCurves (a), (b), and (c)
indicete that local velocities above the speed ol sound
ware present on the P—4%D airplane rodel at 1ift coeffi«-
cients that correspond to level flight for 211 lHach numbers
nt an altitude of 40,000 feat, and for HMach numbers =zbove
0.57 at sea level, and 0.60 at 30,000 feet, It will De
noted that the Mach number at which the critical pressure
coefficient on the wing was reached (curves (b) ané (c))
wos exceeded by about 0.0B8 before the peak-pressvre coeffi-
cicnts on the wing started decreasing (curve (&)), aanl by
voout 0.15 before the sharp inecrease of static longitudinal
stability was encountered {curve (h})). This is an ususunally
loarge difference. The changes in the general charncteric-
ties of the model occurred in the fellowing ordsr: (1) the
¢reg rise (curve (£)), (2) the increase of longitudinal
£t0bility {curve (h)), and (3) the decrease in the slome of
tlhe 1ift curve {curve (g)). The Mach number at wiich the
tufts first indicated that a shock wave had formed (curve
(e)) was between the Mach number at which the peak-pressure
coefficient on the wing decreased (curve (d4)) and that at
vnich the general asrodynamic characteristics chauged
(curves {(f), {(g), and (h)).

The diving tendency, encountered with any furtiaer
increase of speed (curve (k}) is, to the pilot, the most
imnnortant of the limiting conditions indicated by the curves
In figure 62. This tendeuney appears at level-flight 11f¢
confficients and with the *levators fixed at Hech nunbers
ranging from 0.78 at 20,000 feet altitude (554 mpia) to 0.72
at 40,000 feet altitude (478 mph). The use of dive-—recovery
£laps on the wing for additional longitudinal coatrol =zt
high Faeh numbers is discussed in reference 1.

Figure 63 shows the gliding velocity, Hach nunmbdar, and
elevator angle required for balance with zero elevetor—tad
¢oflection for the P-47D airplane as caleculated from the
2io0del test results and from an extrapolation of the drag
dote (fig. 5). All glides wsre calculated on the assuup—
tioas of a stariting speed of 250 miles per hour, eca initial
altitude of 40,000 feet, zero propeller thrust, and a wing
loading of 45 pounds per square foot. It is of intarost
to aote that for 211 three angles of glide, the maximum




iiach number attained wase above that at which the drasz coeffi-

cient started its rapid increase. In the vertical dive, the
predicted maximum Mach number is 0.85 at 26,000 feet a2lti- ‘
tude, while the predicted maximum speed is 617 miles per Bl
hour at sea level., The predicted elevator angle, recuired

for balence, in the 150 and 300 dives varies only abount 603

this is not considered excessive., In the vertical dive, the

lack of elevator characteristlies for liach numbers above 0.78
prohiblted the prediction of the elevator an gle for balance

over mogt of the dive. Calculations based on the hijh—speed

data should be treated with reserve, owing to the extrepola-

tion of the drag coefficients.

COYCLUDING RTHARXS

1, The P—47D airplane should not encounter = diving
tendency below an altitude of 20,000 feet and a liach number
of 0.78,

2. The critizal Mach number is exceeded by ~bvout 0,08
before the pesk-pressure coefficient on the wing starts to
bacome less negative,.

%, The critical lHach number is exceeded dy rbdout 0.15
vefore the sharp increase in statlic longitudinel stadllity
ie encountered. This margin is unusually large.

4, The uvnuswvally large difference between the ceritical
Ureh nuaber and the Hach number at which the aerodranmice
characteristice ce¢hange markedly is apparently due to the
foet that separation did anet immediately follow formation
of the shock., As the Mach number or angle of attrci: further
increased, the shock beceme more severe and separation
occurred,

5. On the basis of extrapolation of tegst dntr ~acd the
assunction of zaro propeller thrust, the maximun i~ch nun-
ber nttainable in & vertiecal dive is O,8F at 26,000 feet
eltitude, and the terminal velocity is 617 amiles mer hour
ot sen level.

Aries Aeronautical Laboratory,
Hational Advisory Comnmittee for Aeronautics,
lloffett Field, Calif, .
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(b) Model on S5-percent-thick struts.

Figure 3.- The P-47D airplane model in the imes 16-foot
wind tunnel.
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NACA ACR No. 5D20

‘+.5°; oL, +.21

. +59%; Cp, +.65

Figure 24.- Tuft studies of flow over the upper surface of
the P-47D airplane model wing. Mach number, .391.




NACA ACR No. 5D230 | Fig. 25

du, +.5% 0L, +.34

oy, +59y 0p, +.71

Figure 235.- Tuft studies of flow over the er surface of
the P-47D airplane model wing. h number, .591.
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Fig. 26

qu’ "3.50; OL. -.03

du. +-5°; GL, +035

Figure 26.- Tuft

oy, +5°; Op, +.58

gtudies of flow over the upper surface of

the P-47D airplane model wing. Mach number, .731.
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NACA ACR No. 5D20 _ . Fig. 59

Lower surface, oy = =-2.59 ' Upper surface, oy = =3.5°

Lower surface, oy = +.5° Upper surface, ay = +.5°

Lower surface, day = +5° Upper surface, oy = +50

Figure 59.- Tuft studies of flow over the horizontal tail of
the P-47D airplane model. Mach number, .291.




NACA AOR No. 5D20 Fig. 60

Lower surface, ay = -3.5° Upper eurface, oy = -3.5°

Lower surface, qy = +.5°

Lower surface, oy = +5° Upper surface, o, = +50

: Figure 60.- Tuft studies of flow over the horizontal tail of
the P-47D airplane model. Mach number, N )W




NACA ACR No. 5D30 Fig. 61

Lower surface, q, = -2,59 Upper surface, o, = -2,5°

Lower surface, o, = +.50 Upper surface, a, = +.5°

Lower surface, oy = +5° Upper surface, oy = +5°

rlgure 81.~ Tuft studies of flow over the horizontal tail of
the P-47D airplane model. Mach number, ,731.
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