Human performance in simulated reduced gravity environments

Lauren Harvill¹
Matthew Cowley²
Sudhakar Rajulu³

¹ Lockheed Martin
² Covidien (former Lockheed Martin)
³ NASA, Johnson Space Center

www.nasa.gov
Background

- Design of space suits is a balance of many trade-offs including:
 - Optimal human performance
 - Cost
 - Mass
 - Complexity
 - Prevention of injury
- Issues:
 - Need to understand human performance in non-earth gravity levels
Background

- Design of space suits for planetary EVAs is based on limited knowledge of reduced gravity environments
 - Lunar Missions observations
 - Studies during the Apollo program
 - Current reduced gravity analogs
Background

- Microgravity simulators
 - Lunar Landing Research Facility
 - Manned Spacecraft Simulator
 - Partial Gravity Simulator (POGO)
 - Reduced Gravity Aircraft (C-9)
 - Neutral Buoyancy Lab (NBL)
 - Active Response Gravity Offload System (ARGOS)
Goals and Objectives

- Goal: Consolidate previous over-ground ambulation data from testing using NASA’s most recent gravity simulators
 - Baseline over-ground at Earth gravity (9.8 m/s²)
 - C-9 reduced gravity plane at lunar gravity (1.6 m/s²)
 - Active Response Gravity Offload Simulator (ARGOS) at lunar gravity (1.6 m/s²)

- Objectives:
 - Characterize lunar gravity ambulation
 - Compare reduced gravity analogs
Methodology – Testing Environments

C-9 Reduced Gravity Plane

- Inflight time is 2-3 hours consisting of about 50 parabolas of predetermined gravity levels
- Small test window (30-40 seconds) of lunar to Martian gravity
- Equipment must be secured for landing loads of up to 9-g horizontal and 2-g vertical
Methodology – Testing Environments

C-9 Reduced Gravity Plane

- Limited real estate for equipment storage and capture volume
 - Cargo bay is approximately 14 m long, 2.5 m wide and 2 m high
Methodology – Testing Environments

C-9 Reduced Gravity Plane

- Subjects ambulated down fuselage at lunar gravity
- Four trials per subject of lunar unsuited ambulation, 2-5 passes during each parabola
- Self-prescribed walking speed (0.34-1.22 m/s)
 - Average 0.81 ± 0.20 m/s
- Custom-built force plate designed to be flush with floor padding
 - ~ 1 m in length
Methodology – Testing Environments

- Active Response Gravity Offload System (ARGOS)
 - Steel frame 12.5 m x 7.3 m x 7.6 m tall
 - Computer driven electric motors and in-line sensors
 - Maintains a constant offload force while the subject moves in all directions
Methodology – Testing Environments

- Active Response Gravity Offload System
 - Elevated ramp with six flush-mounted AMTI force plates
 - Overall platform 15 m in length
 - Over-ground ambulation
 - Earth gravity
 - Lunar gravity with gimbal
 - Ambulation speed set to 0.85 ± 0.05 m/s
 - Repeated trial until achieved desired speed
Methodology – Subjects

<table>
<thead>
<tr>
<th></th>
<th>Earth and ARGO (n = 9)</th>
<th>C-9 (IST-X) (n = 6)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Height (cm)</td>
<td>Body Mass (kg)</td>
</tr>
<tr>
<td>Average</td>
<td>178.1</td>
<td>181.4</td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>10.3</td>
<td></td>
</tr>
<tr>
<td>Max</td>
<td>190.5</td>
<td></td>
</tr>
<tr>
<td>Min</td>
<td>160</td>
<td>175.3</td>
</tr>
</tbody>
</table>
Methodology

- Custom Vicon BodyBuilder model and MATLAB processing code
- Collected variables
 - Torso, hip, knee, and ankle joint angles
 - Normalized ground reaction forces
 - Gait kinematics
 - Stance Time, Stride Length, Step Width, Cadence
Results

![Box plot showing normalized peak GRF for Earth, Lunar - C9, and Lunar - ARGOS environments. The plot compares the gravitational forces experienced in different simulated reduced gravity environments. The data indicates a significant difference in GRF between Earth and the lunar environments.]
Results

![Box plot showing stance time (% gait cycle) for Earth, Lunar - C9, and Lunar - ARGOS. The plot displays the distribution of stance time across different gravity environments.](image-url)
Results

```
<table>
<thead>
<tr>
<th>Step Width (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
</tr>
<tr>
<td>0.1</td>
</tr>
<tr>
<td>0.15</td>
</tr>
<tr>
<td>0.2</td>
</tr>
<tr>
<td>0.25</td>
</tr>
<tr>
<td>0.3</td>
</tr>
<tr>
<td>0.35</td>
</tr>
</tbody>
</table>
```

Earth Lunar - C9 Lunar - ARGOS
Results

![Box plot showing stride length comparisons between Earth, Lunar - C9, and Lunar - ARGOS. The box plot displays the distribution of stride lengths with median, quartiles, and outliers.]

- **Earth**
- **Lunar - C9**
- **Lunar - ARGOS**
Results

The diagram illustrates the cadence (steps/min) for different environments:

- **Earth**
- **Lunar - C9**
- **Lunar - ARGOS**

The box plots show the distribution of cadence across different gravity conditions.
Results

Hip Flexion/Extension (deg)

Knee Flexion/Extension (deg)

Ankle Dorsi/Plantar Flexion (deg)

Earth, 1-g

C9, lunar

ARGOS, lunar

Gait Cycle (%)
Results
Discussion

- Lunar gravity analogs:
 - Variation increased, both between subjects and within
 - Greatest variation seen in C-9 data
 - Increased swing time
- Various styles of gait adapted when learning to ambulate in a new gravity environment
- ARGOS more closely resembled Earth gravity ambulation than on the C-9 reduced gravity plane
Limitations

- Preconceived idea of lunar ambulation style
 - No one has experienced true lunar gravity since the Apollo era
 - Subjects with varying levels of experience on gravity simulators
- Limited walkway length for C-9 trials
Summary

- The C-9 is considered the gold-standard for gravity analogs
- There is a need to maintain integrity of conclusions from studies while also reducing costs
- There are different challenges with each analog
 - ARGOS: subject limited by a gimbal
 - C-9: minimal time to complete tasks, costly, small test volume
- Need to further benchmark the differences between the ARGOS system (and other analogs) and the C-9 reduced gravity plane
Contact Information

Sudhakar Rajulu, PhD
Anthropometry and Biomechanics Facility
NASA, JSC
Sudhakar.Rajulu-1@nasa.gov

Lauren Harvill
Anthropometry and Biomechanics Facility
Lockheed Martin
Lauren.Harvill@nasa.gov