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Abstract

This paper proposes rewriting modulo SMT, a new technique that combines the power
of SMT solving, rewriting modulo theories, and model checking. Rewriting modulo
SMT is ideally suited to model and analyze infinite-state open systems, i.e., systems
that interact with a non-deterministic environment. Such systems exhibit both internal
non-determinism, which is proper to the system, and external non-determinism, which
is due to the environment. In a reflective formalism, such as rewriting logic, rewriting
modulo SMT can be reduced to standard rewriting. Hence, rewriting modulo SMT nat-
urally extends rewriting-based reachability analysis techniques, which are available for
closed systems, to open systems. The proposed technique is illustrated with the formal
analysis of: (i) a real-time system that is beyond the scope of timed-automata meth-
ods and (ii) automatic detection of reachability violations in a synchronous language
developed to support autonomous spacecraft operations.

1. Introduction

Symbolic techniques can be used to represent possibly infinite sets of states by
means of symbolic constraints. These techniques have been developed and adapted to
many other verification methods such as SAT solving, Satisfiability Modulo Theories
(SMT), rewriting, and model checking. A key open research issue of current symbolic
techniques is extensibility. Techniques that combine different methods have been
proposed, e.g., decision procedures [33, 34], unifications algorithms [7, 11], theorem
provers with decision procedures [39, 1, 10], and SMT solvers in model checkers [3,
23, 32, 45, 47]. However, there is still a lack of general extensibility techniques for
symbolic analysis that simultaneously combine the power of SMT solving, rewriting-
and narrowing-based analysis, and model checking.

This paper proposes a new symbolic technique that seamlessly combines rewrit-
ing modulo theories, SMT solving, and model checking. For brevity, this technique
is called rewriting modulo SMT, although it could more precisely be called rewriting
modulo SMT+B, where B is an equational theory having a matching algorithm. It com-
plements another symbolic technique combining narrowing modulo theories and model
checking, namely narrowing-based reachability analysis [31, 8]. Neither of these two
techniques subsumes the other.
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Rewriting modulo SMT can be applied to increase the power of equational rea-
soning, e.g., [26, 22, 21], but its full power, including its model checking capabilities,
is better exploited when applied to concurrent open systems. Deterministic systems
can be naturally specified by equational theories, but specification of concurrent, non-
deterministic systems requires rewrite theories [29], i.e., triples R = (Σ, E,R) with
(Σ, E) an equational theory describing system states as elements of the initial alge-
bra TΣ/E , and R rewrite rules describing the system’s local concurrent transitions. An
open system is a concurrent system that interacts with an external, non-deterministic
environment. When such a system is specified by a rewrite theory R = (Σ, E,R), it
has two sources of non-determinism, one internal and the other external. Internal non-
determinism comes from the fact that in a given system state different instances of rules
in R may be enabled. The local transitions thus enabled may lead to completely differ-
ent states. What is peculiar about an open system is that it also has external, and often
infinitely-branching, non-determinism due to the environment. That is, the state of an
open system must include the state changes due to the environment. Technically, this
means that, while a system transition in a closed system can be described by a rewrite
rule t→t′ with vars(t′) ⊆ vars(t), a transition in an open system is instead modeled by
a rule of the form t(−→x ) → t′(−→x ,−→y ), where −→y are fresh new variables. Therefore, a
substitution for the variables −→x]−→y decomposes into two substitutions, one, say θ, for
the variables −→x under the control of the system and another, say ρ, for the variables −→y
under the control of the environment. In rewriting modulo SMT, such open systems
are described by conditional rewrite rules of the form t(−→x ) → t′(−→x ,−→y ) if φ, where φ
is a constraint solvable by an SMT solver. This constraint φ may still allow the envi-
ronment to choose an infinite number of substitutions ρ for −→y , but can exclude choices
that the environment will never make.

The non-trivial challenges of modeling and analyzing open systems can now be bet-
ter explained. They include: (1) the enormous and possibly infinitary non-determinism
due to the environment, which typically renders finite-state model checking impossi-
ble or unfeasible; (2) the impossibility of executing the rewrite theory R = (Σ, E,R)
in the standard sense, due to the non-deterministic choice of ρ; and (3) the, in gen-
eral, undecidable challenge of checking the rule’s condition φ, since without knowing
ρ, the condition φθ is non-ground, so that its E-satisfiability may be undecidable. As
further explained in the paper, challenges (1)–(3) are all met successfully by rewriting
modulo SMT because: (1) states are represented not as concrete states, i.e., ground
terms, but as symbolic constrained terms 〈t ;ϕ〉 with t a term with variables ranging in
the domains handled by the SMT solver and ϕ an SMT-solvable formula, so that the
choice of ρ is avoided; (2) rewriting modulo SMT can symbolically rewrite such pairs
〈t ;ϕ〉 (describing possibly infinite sets of concrete states) to other pairs 〈t′ ;ϕ′〉; and (3)
decidability of φθ (more precisely of ϕ∧φθ) can be settled by invoking an SMT solver.

Rewriting modulo SMT can be integrated with model-checking by exploiting the
fact that rewriting logic is reflective [15]. Hence, rewriting modulo SMT can be re-
duced to standard rewriting. In particular, all the techniques, algorithms, and tools
available for model checking of closed systems specified as rewrite theories, such as
Maude’s search-based reachability analysis [14], become directly available to perform
symbolic reachability analysis on systems that are now infinite-state.

The technique proposed in this paper is illustrated with the formal analysis of the
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CASH scheduling protocol [13] and formal executable semantics of the Plan Execution
Interchange Language (PLEXIL) [20]. The CASH protocol specifies a real-time sys-
tem whose formal analysis is beyond the scope of timed-automata [2]. The language
PLEXIL is a safety-critical synchronous language developed by NASA to support au-
tonomous spacecraft operations.

This manuscript is an extended and revised version of [43]. The extension and
revision include:

• Complete proofs of all results in sections 3 and 4.

• New short examples illustrating some technical definitions and results in Sec-
tion 3.

• A new case study in Section 7 on automatically detecting symbolic reachability
violations.

2. Preliminaries

Notation on terms, term algebras, and equational theories is used as in [6, 24].
An order-sorted signature Σ is a tuple Σ=(S ,≤, F) with a finite poset of sorts (S ,≤)

and set of function symbols F. The binary relation ≡≤ denotes the equivalence relation
generated by ≤ on S and its point-wise extension to strings in S ∗. The function symbols
in F can be subsort-overloaded and satisfy the condition that, for w,w′ ∈ S ∗ and s, s′ ∈
S , if f : w −→ s and f : w′ −→ s′ are in F, then w ≡≤ w′ implies s ≡≤ s′. A top sort
in Σ is a sort s ∈ S such that if s′ ∈ S and s ≡≤ s′, then s′ ≤ s. For any sort s ∈ S , the
expression [s] denotes the connected component of s, that is, [s] = [s]≡≤ .

Let X = {Xs}s∈S denote an S -indexed family of disjoint variable sets with each
Xs countably infinite. The set of terms of sort s and the set of ground terms of sort s
are denoted, respectively, by TΣ(X)s and TΣ,s; accordingly, TΣ(X) and TΣ denote the
corresponding order-sorted Σ-term algebras. All order-sorted signatures are assumed
preregular [24], i.e., each Σ-term t has a least sort ls(t) ∈ S s.t. t ∈ TΣ(X)ls(t). It is also
assumed that Σ has nonempty sorts, i.e., TΣ,s , ∅ for each s ∈ S . For S ′ ⊆ S , a term is
called S ′-linear if no variable with sort in S ′ occurs in it twice. The set of variables of
t is written vars(t).

A substitution is an S -indexed mapping θ : X −→ TΣ(X) that is different from
the identity only for a finite subset of X. The identity substitution is denoted by id
and θ|Y denotes the restriction of θ to a family of variables Y ⊆ X. The domain of
θ, denoted dom(θ), is the subfamily of X for which θ(x) , x, and ran(θ) denotes the
family of variables introduced by the terms θ(x), such that x ∈ dom(θ). Substitutions
extend homomorphically to terms in the natural way. A substitution θ is called ground
iff ran(θ) = ∅. The application of a substitution θ to a term t is denoted by tθ and the
composition (in diagramatic order) of two substitutions θ1 and θ2 is denoted by θ1θ2,
so that tθ1θ2 denotes (tθ1)θ2. A context C is a λ-term of the form C = λx1, . . . , xn.c
with c ∈ TΣ(X) and {x1, . . . , xn} ⊆ vars(c); it can be viewed as an n-ary function
C(t1, . . . , tn) = cθ, where θ(xi) = ti for 1 ≤ i ≤ n and θ(x) = x otherwise.

A Σ-equation is an unoriented pair t = u with t ∈ TΣ(X)st , u ∈ TΣ(X)su , and
st ≡≤ su. A conditional Σ-equation is a triple t = u if γ, with t = u a Σ-equation
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and γ a finite conjunction of Σ-equations; a Σ-equation is called unconditional if γ
is the empty conjunction. An equational theory is a tuple (Σ, E), with Σ an order-
sorted signature and E a finite collection of (possibly conditional) Σ-equations. It is
assumed that TΣ,s , ∅ for each s ∈ S . An equational theory E = (Σ, E) induces the
congruence relation =E on TΣ(X) defined for t, u ∈ TΣ(X) by t =E u iff E ` t = u
by the deduction rules for order-sorted equational logic in [30]. Similarly, =1

E
denotes

provable E-equality in one step of deduction. The E-subsumption ordering �E is the
binary relation on TΣ(X) defined for any t, u ∈ TΣ(X) by t �E u iff there is a substitution
θ : X −→ TΣ(X) such that t =E uθ. A set of equations E is called collapse-free for a
subset of sorts S ′ ⊆ S iff for any t = u ∈ E and for any substitution θ : X −→ TΣ(X)
neither tθ nor uθ map to a variable having some sort s ∈ S ′. The expressions TE(X) and
TE (also written TΣ/E(X) and TΣ/E) denote the quotient algebras induced by =E on the
term algebras TΣ(X) and TΣ, respectively; TΣ/E is called the initial algebra of (Σ, E).
A theory inclusion (Σ, E) ⊆ (Σ′, E′), with Σ ⊆ Σ′ and E ⊆ E′, is called protecting iff the
unique Σ-homomorphism TΣ/E −→ TΣ′/E′ |Σ to the Σ-reduct of the initial algebra TΣ′/E′

is a Σ-isomorphism, written TΣ/E ' TΣ′/E′ |Σ. A set of equations E is called regular iff
vars(t) = vars(u) for any equation (t = u if γ) ∈ E.

Appropriate requirements are needed to make an equational theory E admissible,
i.e., executable in rewriting languages such as Maude [14]. In this paper, it is as-
sumed that the equations of E can be decomposed into a disjoint union E ] B, with
B a collection of regular and linear structural axioms (such as associativity, and/or
commutativity, and/or identity) for which there exists a matching algorithm modulo B
producing a finite number of B-matching solutions, or failing otherwise. Furthermore,
it is assumed that the equations E can be oriented into a set of (possibly conditional)
strongly deterministic [35], sort-decreasing, operationally terminating, confluent, and
strictly B-coherent [19] conditional rewrite rules

−→
E modulo B. The conditional rewrite

system
−→
E is sort decreasing modulo B iff for each (t → u if γ) ∈

−→
E and substitution θ,

ls(tθ) ≥ ls(uθ) if (Σ, B,
−→
E ) ` γθ. The system

−→
E is operationally terminating modulo B

iff there is no infinite well-formed proof tree in (Σ, B,
−→
E ). Furthermore,

−→
E is confluent

modulo B iff for all t, t1, t2 ∈ TΣ(X), if t →∗E/B t1 and t →∗E/B t2, then there is u ∈ TΣ(X)
such that t1 →∗E/B u and t2 →∗E/B u. The term t ↓E/B∈ TΣ(X) denotes the E-canonical
form of t modulo B so that t →∗E/B t↓E/B and t↓E/B cannot be further reduced by→E/B.
Under the above assumptions t↓E/B is unique up to B-equality.

A Σ-rule is a triple l → r if φ, with l, r ∈ TΣ(X)s, for some sort s ∈ S , and
φ =
∧

i∈I ti = ui a finite conjunction of Σ-equations. A rewrite theory is a tuple R =

(Σ, E,R) with (Σ, E) an order-sorted equational theory and R a finite set of Σ-rules. The
rewrite theory R induces a rewrite relation→R on TΣ(X) defined for every t, u ∈ TΣ(X)
by t →R u iff there is a rule (l → r if φ) ∈ R and a substitution θ : X −→ TΣ(X)
satisfying t =E lθ, u =E rθ, and E ` φθ. The relation →R is undecidable in general,
unless conditions such as coherence [46] are given. A key point of this paper is to
make such a relation decidable when E decomposes as E0 ] B1, where E0 is a built-in
theory for which formula satisfiability is decidable and B1 has a matching algorithm.
A topmost rewrite theory is a rewrite theory R = (Σ, E,R), such that for some top sort
State, no operator in Σ has State as argument sort and each rule l→ r if φ ∈ R satisfies
l, r ∈ TΣ(X)State and l < X.
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3. Rewriting Modulo a Built-in Subtheory

This section introduces the concept of rewriting modulo a built-in equational sub-
theory and presents its main properties.

Definition 1 (Signature with Built-ins). An order-sorted signature Σ = (S ,≤, F) is a
signature with built-in subsignature Σ0 ⊆ Σ iff Σ0 = (S 0, F0) is many-sorted, S 0 is a set
of minimal elements in (S ,≤), and if f : w −→ s ∈ F1, then s < S 0 and f has no other
typing in F0, where F1 = F\F0.

The notion of built-in subsignature in an order-sorted signature Σ is modeled by a
many-sorted signature Σ0 defining the built-in terms TΣ0 (X0). The restriction imposed
on the sorts and the function symbols in Σ w.r.t. Σ0 provides a clear syntactic distinction
between built-in terms (the only ones with built-in sorts) and all other terms.

Example 1. Consider the following order-sorted signature in the syntax of Maude:

sorts Nat AttributeName Attribute AttrSet .
op 0 : -> Nat .
op s_ : Nat -> Nat .
ops maxBudget timeToDeadline : -> AttributeName .
op _|->_ : AttributeName Nat -> Attribute .
op mt : -> AttrSet .
op _,_ : AttrSet AttrSet -> AttrSet [assoc comm id: mt] .

This signature models a multiset of named attributes similar to the ones that are cur-
rently employed in algebraic object-like specifications. Sort Nat specifies natural num-
bers in Peano notation and sort AttributeName attribute names. A named attribute in
Attribute is term AN |-> N with AN an attribute name and N a natural number. Sort
AttrSet specifies multisets of named attributes with multiset union denoted by ‘,’ and
with identity ‘id’. The following is a term in AttrSet denoting that maxbudget is 2
and timeToDeadline is 1:

maxbudget |-> s(s(0)), timeToDeadline |-> s(0)
In this case, the many-sorted signature Σ0 = ({Nat}, {0, s}) is a built-in subsignature of
the order-sorted signature. Finally, F1 includes all function symbols in the signature
except for those in the set {0, s}.

If Σ ⊇ Σ0 is a signature with built-ins, then an abstraction of built-ins for t is a
context λx1 · · · xn.t◦ such that t◦ ∈ TΣ1 (X) and {x1, . . . , xn} = vars(t◦) ∩ X0, where
Σ1 = (S ,≤, F1) and X0 = {Xs}s∈S 0 . Lemma 1 shows that such an abstraction can be
chosen so as to provide a canonical decomposition of t with useful properties.

Lemma 1. Let Σ be a signature with built-in subsignature Σ0 = (S 0, F0). For each
t ∈ TΣ(X), there exist an abstraction of built-ins λx1 · · · xn.t◦ for t and a substitution
θ◦ : X0 −→ TΣ0 (X0) such that (i) t = t◦θ◦ and (ii) dom(θ◦) = {x1, . . . , xn} are pairwise
distinct and disjoint from vars(t); moreover, (iii) t◦ can always be selected to be S 0-
linear and with {x1, . . . , xn} disjoint from an arbitrarily chosen finite subset Y of X0.

Proof. By induction on the structure of t. �
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In the rest of the paper, for any t ∈ TΣ(X) and Y ⊆ X0 finite, the expression
abstractΣ1 (t,Y) denotes the choice of a triple 〈λx1 · · · xn.t◦ ; θ◦ ; φ◦〉 such that the con-
text λx1 · · · xn.t◦ and the substitution θ◦ satisfy the properties (i)–(iii) in Lemma 1 and
φ◦ =

∧n
i=1 (xi = θ◦(xi)).

Example 2. Let t be the term

maxbudget |-> s(s(N1:Nat)), timeToDeadline |-> s(N2:Nat), AttS:AttrSet

in the signature of Example 1, where N1,N2 are variables of sort Nat and AttS is a
variable of sort AttrSet. Consider the term t◦

maxbudget |-> N3:Nat, timeToDeadline |-> N4:Nat, AttS:AttrSet

and the substitution θ◦ defined by θ◦(N3) = s(s(N1)), θ◦(N4) = s(N2), and θ◦(x) = x
otherwise. Then the context λN3, N4.t◦ is an abstraction of built-ins for t and θ◦ satisfies
properties (i)–(iii) in Lemma 1. Moreover, for any set Y not containing variables N3
or N4, t◦ and θ◦ satisfy abstractΣ1 (t,Y) = 〈λx1 · · · xn.t◦ ; θ◦ ; φ◦〉 with φ◦ denoting the
constraint

N3 = s(s(N1)) ∧ N4 = s(N2).

Under certain restrictions on axioms, matching a Σ-term t to a Σ-term u can be
decomposed modularly into Σ1-matching of the corresponding λ-abstraction and Σ0-
matching of the built-in subterms. This is described in Lemma 2, with the help of
Corollary 1.

Corollary 1. Let Σ = (S ,≤, F) be a signature with built-in subsignature Σ0 = (S 0, F0).
Let B0 be a set of Σ0-axioms and B1 a set of Σ1-axioms. For B0 and B1 regular, linear,
collapse free for any sort in S 0, and sort-preserving, and t ∈ TΣ(X0):

(a) if t ∈ TΣ0 (X0) and t =1
B1

t′, then t = t′;

(b) if t ∈ TΣ1 (X0) and t =1
B0

t′, then t = t′;

(c) if t ∈ TΣ1 (X0) and t =1
B1

t′, then vars(t) = vars(t′) and t is linear iff t′ is so;

Proof.

(a) Axioms B1 do not mention any function symbol in F0. Therefore, the equation in
B0 can only apply to variables in X0. But B1 is collapse-free for any sort in S 0.
Therefore, no B1 equation can be applied to t, forcing t = t′.

(b) Same argument as (a).

(c) Consequence of B1 being regular and linear.

�

Lemma 2. Let Σ = (S ,≤, F) be a signature with built-in subsignature Σ0 = (S 0, F0).
Let B0 be a set of Σ0-axioms and B1 a set of Σ1-axioms. For B0 and B1 regular, linear,
collapse free for any sort in S 0, and sort-preserving, if t ∈ TΣ1 (X0) is linear with
vars(t) = {x1, . . . , xn}, then for each θ : X0 −→ TΣ0 (X0):
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(a) if tθ =1
B0

t′, then there exist x ∈ {x1, . . . , xn} and w ∈ TΣ0 (X0) such that θ(x) =1
B0

w
and t′ = tθ′, with θ′(x) = w and θ′(y) = θ(y) otherwise;

(b) if tθ =1
B1

t′, then there exists v ∈ TΣ1 (X0) such that t =1
B1

v and t′ = vθ; and

(c) if tθ =B0]B1 t′, then there exist v ∈ TΣ1 (X0) and θ′ : X0 −→ TΣ0 (X0) such that
t′ = vθ′, t =B1 v, and θ =B0 θ

′ (i.e., θ(x) =B0 θ
′(x) for each x ∈ X0).

Proof. (a) It follows from Corollary 1 part (b) that B0 can only be applied on some
built-in subterm θ(x) of tθ, for some x ∈ dom(θ). That is, there is w ∈ TΣ0 (X0) such
that θ(x) =1

B0
w and, since t is linear, t′ = tθ′, where θ′(x) = w and θ′(x) = θ(x)

otherwise.

(b) It follows from Corollary 1 part (c) that equational deduction with B1 can only
permute the built-in variables in t and it does not equate built-in subterms such as
the ones in ran(θ). Hence, by Corollary 1 part (c), there exists a linear v ∈ TΣ1 (X0)
such that t =1

B1
v and t′ = vθ.

(c) Follows by induction on the proof’s length in B0 ] B1.

�

Definition 2 (Rewriting Modulo a Built-in Subtheory). A rewrite theory modulo the
built-in subtheory E0 is a topmost rewrite theory R = (Σ, E,R) with:

(a) Σ=(S ,≤, F) a signature with built-in subsignature Σ0=(S 0, F0) and top sort State∈S ;

(b) E = E0 ] B0 ] B1, where E0 is a set of Σ0-equations, B0 (resp., B1) are Σ0-axioms
(resp., Σ1-axioms) satisfying the conditions in Lemma 2, E0 = (Σ0, E0 ] B0) and
E = (Σ, E) are admissible, and the theory inclusion E0 ⊆ E is protecting;

(c) R is a set of rewrite rules of the form l(−→x1,
−→y ) → r(−→x2,

−→y ) if φ(−→x3) such that
l, r ∈ TΣ(X)State, l is (S \ S 0)-linear, −→xi :−→si with −→si ∈ S ∗0, for i ∈ {1, 2, 3}, −→y :−→s with
−→s ∈ (S \S 0)∗, and φ ∈ QFΣ0

(X0), where QFΣ0
(X0) denotes the set of quantifier-free

Σ0-formulas with variables in X0.

Note that no assumption is made on the relationship between the built-in variables
−→x1 in the left-hand side, −→x2 in the right-hand side, and −→x3 in the condition φ of a rewrite
rule. This freedom is key for specifying open systems with a rewrite theory because,
for instance, −→x2 can have more variables than −→x1. On the other hand, due to the presence
of conditions φ in the rules of R that are general quantifier-free formulas, as opposed
to a conjunction of atoms, properly speaking R is more general than a standard rewrite
theory as defined in Section 2.

The binary rewrite relation induced by a rewrite theory R modulo E0 on TΣ,State is
called the ground rewrite relation of R.

Definition 3 (Ground Rewrite Relation). Let R = (Σ, E,R) be a rewrite theory modulo
E0. The relation→R induced by R on TΣ,State is defined for t, u ∈ TΣ,State by t →R u iff
there is a rule l → r if φ in R and a ground substitution σ : X −→ TΣ such that (a)
t =E lσ, u =E rσ, and (b) TE0 |= φσ.
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The ground rewrite relation→R is the topmost rewrite relation induced by R mod-
ulo E on TΣ,State. This relation is defined even when a rule in R has extra variables in its
right-hand side: the rule is then non-deterministic and such extra variables can be arbi-
trarily instantiated, provided that the corresponding instantiation of φ holds. Also, note
that non-built-in variables can occur in l, but φσ is a variable-free formula in QFΣ0

(∅),
so that either TE0 |= φσ or TE0 6|= φσ.

A rewrite theory R modulo E0 always has a canonical representation in which all
left-hand sides of rules are S 0-linear Σ1-terms.

Definition 4 (Normal Form of a Rewrite Theory Modulo E0). Let R = (Σ, E,R) be a
rewrite theory modulo E0. Its normal form R◦ = (Σ, E,R◦) has rules:

R◦ = {l◦ → r if φ ∧ φ◦ | (∃l→ r if φ ∈ R)〈λ−→x .l◦ ; θ◦ ; φ◦〉 = abstractΣ(l, vars({l, r, φ}))}.

Lemma 3 (Invariance of Ground Rewriting under Normalization). Let R = (Σ, E,R)
be a rewrite theory modulo E0. Then→R =→R◦ .

Proof. It is shown that→R ⊆ →R◦ and→R◦ ⊆ →R.

(⊆) Let t, u ∈ TΣ,State. If t →R u, then there is a rule (l → r if φ) ∈ R and a ground
substitution σ : X −→ TΣ such that t =E lσ, u =E rσ, and TE0 |= φσ. It suffices
to prove t →R◦ u with witnesses (l◦ → r if φ ∧ φ◦) ∈ R◦ and ρ = θ◦σ. Note
that t =E lσ = l◦θ◦σ = l◦ρ. For TE0 |= (φ ∧ φ◦)ρ first note that TE0 |= φρ since
φρ = φθ◦σ = φσ (because vars(φ)∩ dom(θ◦) = ∅) and TE0 |= φσ by assumption.
For TE0 |= φ◦ρ notice that θ◦θ◦ = θ◦ because ran(θ◦) ∩ dom(θ◦) = ∅, and then:

φ◦ρ =

 n∧
i=1

xi = θ◦(xi)

 ρ =

n∧
i=1

xiρ = θ◦(xi)ρ =

n∧
i=1

θ◦(xi)σ = θ◦(xi)θ◦σ

=

n∧
i=1

θ◦(xi)σ = θ◦(xi)σ = >.

Hence, t →R◦ u.

(⊇) Let t, u ∈ TΣ,State. If t →◦
R

u, then there is a rule (l→ r if φ) ∈ R and a ground sub-
stitution σ : X −→ TΣ such that t =E l◦σ, u =E rσ, and TE0 |= (φ ∧ φ◦)σ. It suf-
fices to prove t →R u with witness (l→ r if φ) ∈ R. Let 〈λx1 · · · xn.l◦ ; θ◦ ; φ◦〉 be
the abstraction of built-ins for l. Substitution σ can be decomposed into substi-
tutions θ : X0 −→ TΣ0 (X0) and ρ : X −→ TΣ, with θ(x) = σ(x) if x ∈ {x1, . . . , xn}

and θ(x) = x otherwise, such that σ = θρ. From TE0 |= (φ ∧ φ◦)σ it follows that
TE0 |= φσ, i.e., TE0 |= φρ because vars(φ) ∩ dom(θ) = ∅. Also, it follows that
TE0 |=

∧n
i=1 θ(xi)ρ = θ◦(xi)ρ, which implies that:

t =E l◦σ = l◦θρ =E0]B0 l◦θ◦ρ = lρ.

Hence, t →R u.

�
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By the properties of the axioms in a rewrite theory modulo built-ins R = (Σ, E0 ]

B0 ] B1) (see Definition 2), B1-matching a term t ∈ TΣ(X0) to a left-hand side l◦ of a
rule in R◦ provides a complete unifiability algorithm for ground B1-unification of t and
l◦.

Lemma 4 (Matching Lemma). Let R = (Σ, E0]B0]B1,R) be a rewrite theory modulo
E0. For t ∈ TΣ(X0)State and l◦ a left-hand side of a rule in R◦ with vars(t)∩ vars(l◦) = ∅,

t �B1 l◦ iff GUB1 (t = l◦) , ∅

where GUB1 (t = l◦) = {σ : X −→ TΣ | tσ =B1 l◦σ}.

Proof.

(=⇒) If t �B1 l◦, then t =B1 l◦θ for some θ : X −→ TΣ(X). Let ρ : X −→ TΣ

be any ground substitution, which exists because Σ has nonempty sorts. Then
θρ ∈ GUB1 (t = l◦).

(⇐=) Let σ ∈ GUB1 (t = l◦) with l → r if φ ∈ R. Let vars(l◦) ∩ X0 = {x1, . . . , xn} and
X1 = X \ X0. Note that there are substitutions

α : vars(l◦) ∩ X1 −→ TΣ1 (X0)
ρ : X \ dom(α) −→ TΣ

satisfying σ = αρ and such that (l◦α) ∈ TΣ1 (X0) is linear and

ran(l◦α) ∩ (vars(t, l◦)) = ∅.

Let ran(α) = {y1, . . . , ym}. Therefore, by Lemma 2, there exists u ∈ TΣ1 (X0)
such that u =B1 l◦α, u is linear, and vars(u) = vars(l◦α) = x1, . . . , xn, y1, . . . , ym,
and uρ = t. Moreover, t can be written as u(t1, . . . , tn, tn+1, . . . , tn+m) with ti ∈
TΣ0 (X0). Define θ : X0 −→ TΣ0 (X0) by θ(x) = ti if x ∈ {x1, . . . , xn}, θ(x) = ti+n if
x ∈ {y1, . . . , ym}, and θ(x) = x otherwise. Then we have:

t = u(t1, . . . , tn, tn+1, . . . , tm+n)
= u(x1, . . . , xn, y1, . . . , ym)θ
=B1 l◦αθ.

Therefore, t �B1 l◦.

�

4. Symbolic Rewriting Modulo a Built-in Subtheory

This section explains how a rewrite theory R modulo E0 defines a symbolic rewrite
relation on terms in TΣ0 (X0)State constrained by formulas in QFΣ0

(X0). The key idea is
that, when E0 is a decidable theory, transitions on the symbolic terms can be performed
by rewriting modulo B1, and satisfiability of the formulas can be handled by an SMT
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decision procedure. This approach provides an efficiently executable symbolic method
called rewriting modulo SMT that is sound and complete with respect to the ground
rewrite relation of Definition 3 and yields a complete symbolic reachability analysis
method.

Definition 5 (Constrained Terms and their Denotation). Let R = (Σ, E,R) be a rewrite
theory modulo E0. A constrained term is a pair 〈t ;ϕ〉 in TΣ(X0)State × QFΣ0

(X0). Its
denotation ~t�ϕ is defined as ~t�ϕ = {t′∈TΣ,State | (∃σ : X0−→TΣ0 ) t′=tσ ∧ TE0 |= ϕσ}.

The domain of σ in Definition 5 ranges over all built-in variables X0 and conse-
quently ~t�ϕ ⊆ TΣ,State for any t ∈ TΣ(X0)State, even if vars(t) * vars(ϕ). Intuitively,
~t�ϕ denotes the set of all ground states that are instances of t and satisfy ϕ.

Before introducing the symbolic rewrite relation on constrained terms induced by a
rewrite theory Rmodulo E0, auxiliary notation for variable renaming is required. In the
rest of the paper, the expression fresh-vars(Y), for Y ⊆ X finite, represents the choice
of a variable renaming ζ : X −→ X satisfying Y ∩ ran(ζ) = ∅.

Definition 6 (Symbolic Rewrite Relation). Let R = (Σ, E,R) be a rewrite theory mod-
ulo built-ins E0. The symbolic rewrite relation  R induced by R on TΣ(X0)State ×

QFΣ0
(X0) is defined for t, u ∈ TΣ(X0)State and ϕ, ϕ′ ∈ QFΣ0

(X0) by 〈t ;ϕ〉  R 〈u ;ϕ′〉
iff there is a rule l → r if φ in R and a substitution θ : X −→ TΣ(X) such that (a)
t =E lζθ and u = rζθ, (b) E0 ` (ϕ′ ⇔ ϕ ∧ φζθ), and (c) ϕ′ is TE0 -satisfiable, where
ζ = fresh-vars(vars(t, ϕ)).

The symbolic relation  R on constrained terms is defined as a topmost rewrite
relation induced by R modulo E on TΣ(X0) with extra bookkeeping of constraints. Note
that ϕ′ in 〈t ;ϕ〉  R 〈u ;ϕ′〉, when witnessed by l → r if φ and θ, is semantically
equivalent to ϕ∧φζθ, in contrast to being syntactically equal. This extra freedom allows
for simplification of constraints if desired. Also, such a constraint ϕ′ is satisfiable in
TE0 , implying that ϕ and φθ are both satisfiable in TE0 , and therefore ~t�ϕ , ∅,~u�ϕ′ .
Note that, up to the choice of the semantically equivalent ϕ′ for which a fixed strategy is
assumed, the symbolic relation R is “deterministic”, in the sense of being determined
by the rule and the substitution ζθ, because the renaming of variables in the rules is
fixed by fresh-vars. This is key when executing R, as explained in Section 5.

The important question to ask is whether this symbolic relation soundly and com-
pletely simulates its ground counterpart. The rest of this section affirmatively answers
this question in the case of normalized rewrite theories modulo built-ins. Thanks to
Lemma 3, the conclusion is therefore that R◦ soundly and completely simulates→R
for any rewrite theory R modulo built-ins E0.

The soundness of R◦ w.r.t. →R◦ is stated in Theorem 1.

Theorem 1 (Soundness). Let R = (Σ, E,R) be a rewrite theory modulo built-ins E0,
t, u ∈ TΣ(X0)State, and ϕ, ϕ′ ∈ QFΣ0

(X0). If 〈t ;ϕ〉  R◦ 〈u ;ϕ′〉, then tρ →R◦ uρ for all
ρ : X0 −→ TΣ0 satisfying TE0 |= ϕ′ρ.

Proof. Let ρ : X0 −→ TΣ0 satisfy TE0 |= ϕ′ρ. The goal is to show that tρ →R◦ uρ.
Let l◦ → r if φ ∈ R◦ and θ : X0 −→ TΣ0 (X0) witness 〈t ;ϕ〉  R◦ 〈u ;ϕ′〉. Then
t =E l◦ζθ, u =E rζθ, E0 ` (ϕ′ ⇔ ϕ ∧ φζθ), and ϕ′ is TE0 -satisfiable. Without loss

10



of generality assume dom(θ) = vars(l◦ζ) and θ|vars(t,ϕ) = id, and let σ = ζθρ. Then
note that tρ =E (l◦ζθ)ρ = l◦ζθρ = l◦σ and uρ =E (rζθ)ρ = rζθρ = rσ. Moreover,
TE0 |= (ϕ′ ⇔ ϕ ∧ φζθ) and TE0 |= ϕ′ρ imply TE0 |= φζθρ, i.e., TE0 |= φσ. Therefore,
tρ→R◦ uρ, as desired. �

The completeness of R◦ w.r.t. →R◦ is stated in Theorem 2. Intuitively, complete-
ness states that a symbolic relation yields an over-approximation of its ground rewriting
counterpart.

Theorem 2 (Completeness). Let R = (Σ, E,R) be a rewrite theory modulo built-ins
E0, t ∈ TΣ(X0)State, u′ ∈ TΣ,State, and ϕ ∈ QFΣ0

(X0). For any ρ : X0 −→ TΣ0 such
that tρ ∈ ~t�ϕ and tρ →R◦ u′, there exist u ∈ TΣ(X0)State and ϕ′ ∈ QFΣ0

(X0) such that
〈t ;ϕ〉 R◦ 〈u ;ϕ′〉 and u′ ∈ ~u�ϕ′ .

Proof. By the assumptions there is a rule (l◦ → r if φ) ∈ R◦ and a ground substitution
σ : X −→ TΣ satisfying tρ =E l◦σ, u′ =E rσ, and TE0 |= φσ. Without loss of
generality assume vars(t, ϕ) ∩ vars(l◦, r, φ)) = ∅; otherwise l, r, φ can be renamed by
means of fresh-vars. Furthermore, since vars(t, ϕ) ∩ vars(l◦, φ)) = ∅, σ = ρ can be
assumed. The goal is to show the existence of u ∈ TΣ(X)State and ϕ′ ∈ QFΣ0

(X0) such
that (i) 〈t ;ϕ〉  R◦ 〈u ;ϕ′〉 and (ii) u′ ∈ ~u�ϕ′ . Since l◦ is linear and built-in subterms
are variables, by Lemma 2 there exists α : X −→ TΣ satisfying tα =B1 l◦α. Hence
GUB1 (t = l◦) , ∅ and, by Lemma 4, there exists θ′ : X −→ TΣ(X) satisfying t =B1 l◦θ′

and a fortiori t =E0]B0]B1 l◦θ′. Let θ : X −→ TΣ(X) be defined by θ(x) = θ′(x) if
x ∈ vars(l) and θ(x) = ρ(x) otherwise. Note that θ|vars(l)ρ =E0]B0 ρ|vars(l). Define u = rθ
and ϕ′ = ϕ ∧ φθ, and then for (i) and (ii) above:

(i) It suffices to prove thatTE0 |= ϕ′ρ, i.e., TE0 |= (ϕ∧φθ)ρ. By assumptionTE0 |= ϕρ
and TE0 |= φρ. Notice that:

φθρ = (φθ|vars(l))ρ =E0]B0 (φρ)ρ = φρ.

Hence TE0 |= φθρ.

(ii) By assumption u′ =E0]B0]B1 rρ; also:

rρ =E0]B0]B1 rθ|vars(l)ρ = rθρ = uρ.

Hence u′ =E0]B0]B1 uρ ∈ ~u�ϕ′ by part (i).

�

Although the above soundness and completeness theorems, plus Lemma 3, show
that →R is characterized symbolically by R◦ , for any rewrite theory R modulo E0,
the relation  R◦ is in general undecidable because of Condition (c) in Definition 6.
However,  R◦ becomes decidable for built-in theories E0 that can be extended to a
decidable theory E+

0 (typically by adding some inductive consequences and the order
on natural numbers) such that

(∀φ ∈ QFΣ0
(X0)) φ is E+

0 -satisfiable ⇐⇒ (∃σ : X0 −→ TΣ0 ) TE0 |= φσ. (1)
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Many decidable theories E+
0 of interest are supported by SMT solvers satisfying this

requirement. For example, E0 can be the equational theory of natural number addition
and E+

0 Pressburger arithmetic. That is, TE0 is the standard model of both E0 and E+
0 ,

and E+
0 -satisfiability coincides with satisfiability in such a standard model. Under such

conditions, satisfiability of ϕ ∧ φζθ (and therefore of ϕ′) in a step 〈t ;ϕ〉  R◦ 〈u ;ϕ′〉
becomes decidable by invoking an SMT-solver for E0, so that  R◦ can be naturally
described as symbolic rewriting modulo SMT (and modulo B1).

The symbolic reachability problems considered for a rewrite theory R modulo E0
in this paper, are existential formulas of the form (∃−→z ) t →∗ u∧ϕ, with −→z the variables
appearing in t, u, and ϕ, t, u ∈ TΣ(X0)State, and ϕ ∈ QFΣ0

(X0). By abstracting the Σ0-
subterms of u, the ground solutions of such a reachability problem are those witnessing
the model-theoretic satisfaction relation

TR |= (∃−→x ] −→y ) t(−→x )→∗ u◦(−→y ) ∧ ϕ1(−→x ) ∧ ϕ2(−→x ,−→y ), (2)

where TR = (TΣ/E ,→
∗
R

) is the initial reachability model of R [12], t ∈ TΣ(X0) and
u◦ ∈ TΣ1 (X) are S 0-linear, vars(t) ⊆ −→x ⊆ X0, and −→y ⊆ X. Thanks to the soundness and
completeness results, Theorem 1, and Theorem 2, the solvability of Condition (b) for
→R can be achieved by reachability analysis with R◦ , as stated in Theorem 3.

Theorem 3 (Symbolic Reachability Analysis). Let R = (Σ, E,R) be a rewrite theory
modulo built-ins E0. The model-theoretic satisfaction relation in (2) has a solution
iff there exist a term v ∈ TΣ(X)State, a constraint ϕ′ ∈ QFΣ0

(X0), and a substitution
θ : X −→ TΣ(X), with dom(θ) ⊆ −→y , such that (a) 〈t ;ϕ1〉  

∗
R◦
〈v ;ϕ′〉, (b) v =B1 u◦θ,

and (c) ϕ′ ∧ ϕ2θ is TE0 -satisfiable.

Proof. By theorems 1 and 2, and induction on the length of the rewrite derivation. �

In Theorem 3, since dom(θ) ⊆ −→y , and −→x and −→y are disjoint, the variables of −→x in
ϕ2θ are left unchanged. Therefore, ϕ2θ links the requirements for the variables −→x in
the initial state and −→y in the final state according to both ϕ1 and ϕ2. Also note that the
inclusion of formula ϕ1 as a conjunct in the formula in Condition (c) of Theorem 3 is
superfluous because 〈t ;ϕ1〉  R◦ 〈v ;ϕ′〉 implies that ϕ1 is a semantic consequence of
ϕ′.

5. Reflective Implementation of R◦

This section discusses the design and implementation of a prototype that offers
support for symbolic rewriting modulo SMT in the Maude system. The prototype relies
on Maude’s meta-level features, that implement rewriting logic’s reflective capabilities,
and on SMT solving for E+

0 integrated in Maude as CVC3’s decision procedures. The
extension of Maude with CVC3 is available from the Matching Logic Project [44]. In
the rest of this section, R = (Σ, E0 ]B0 ]B1,R) is a rewrite theory modulo built-ins E0,
where E0 satisfies Condition (1) in Section 4. The theory mapping R 7→ u(R) makes
the rules unconditional by removing the constraints φ in the conditions of the rules in
R.
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In Maude, reflection is efficiently supported by its META-LEVEL module [14],
which provides key functionality for rewriting logic’s universal theory U [15]. In
particular, rewrite theories R are meta-represented in U as terms R of sort Module,
and a term t in R is meta-represented in U as a term t of sort Term. The key idea of
the reflective implementation is to reduce symbolic rewriting with  R◦ to standard
rewriting in an associated reflective rewrite theory that extends the universal theoryU.
This reduction is specially important for formal analysis purposes, because it makes
available to R◦ some formal analysis features provided by Maude for rewrite theo-
ries such as reachability analysis by search. This is illustrated by the case studies in
sections 6 and 7.

The prototype defines a parametrized functional module SAT(Σ0, E0]B0) of quantifier-
free formulas with Σ0-equations as atoms. In particular, this module extends (Σ0, E0 ]

B0) with new sorts Atom and QFFormula, and new constants var(X0) representing the
variables X0. It has, among other functions, a function sat : QFFormula −→ Bool such
that for φ, sat(φ) = > if φ is E+

0 -satisfiable, and sat(φ) = ⊥ otherwise.
The process of computing the one-step rewrites of a given constrained term 〈t ;ϕ〉

under R◦ is decomposed into two conceptual steps using Maude’s metalevel. First,
all possible triples 〈u ; θ ; φ〉 such that t →u(R◦) u is witnessed by a matching substitution
θ and a rule with constraint φ are computed1. Second, these triples are filtered out by
keeping only those for which the quantifier-free formula ϕ ∧ φθ is E+

0 -satisfiable.
The first step in the process is mechanized by function next, available from the

parametrized module NEXT(R, State,QFFormula) where R, State, and QFFormula
are the metalevel representations, respectively, of the rewrite theory module R, the state
sort State, and the quantifier-free formula sort QFFormula. Function next uses Maude’s
meta-match function and the auxiliary function new-vars for computing fresh variables
(see Section 4). In particular, the call next(((S ,≤, F ] var(X0)), E0 ] B0 ] B1,R◦), t, ϕ)
computes all possible triples 〈u ; θ′ ; φ′〉 such that t R◦ u is witnessed by a substitution
θ′ and a rule with constraint φ′. More precisely, such a call first computes a renaming
ζ = fresh-vars(vars(t, ϕ)) and then, for each rule(l◦ → r if φ), it uses the function meta-
match to obtain a substitution θ ∈ meta-match(((S ,≤, F ] var(X0)), B0 ] B1), t↓E0/B0]B1 , l◦ζ),
and returns 〈u ; θ′ ; φ′〉 with u = rζθ, θ′ = ζθ, and φ′ = φζθ. Note that by having a
deterministic choice of fresh variables (including those in the constraint), function next
is actually a deterministic function.

Using the above-mentioned infrastructure, the parametrized module NEXT imple-
ments the symbolic rewrite relation  R◦ as a standard rewrite relation, extending
META-LEVEL, by means of the following conditional rewrite rule:

ceq 〈X:State ;ϕ:QFFormula〉 → 〈Y:State ;ϕ′:QFFormula〉

if 〈Y ; θ ; φ〉 S := next(R•, X, ϕ) ∧ sat(ϕ ∧ φ) = > ∧ ϕ′ := ϕ ∧ φ

where R• = ((S ,≤, F ] var(X0)), B,R◦). Therefore, a call to an external SMT solver is
just an invocation of the function sat in SAT(Σ0, E0 ] B0) in order to achieve the above

1Note that in u(R◦) variables in X0 are interpreted as constants. Therefore, the number of matching
substitutions θ thus obtained is finite.
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functionality more efficiently and in a built-in way.
Given that the symbolic rewrite relation R◦ is encoded as a standard rewrite re-

lation, symbolic search can be directly implemented in Maude by its search command.
In particular, for terms t, u◦, constraints ϕ1, ϕ2, F a variable of sort QFFormula, the
following invocation solves the inductive reachability problem in Condition (2):

search 〈t ;ϕ1〉 →
∗ 〈u◦ ; F〉 such that sat(F ∧ ϕ2).

6. Analysis of the CASH algorithm

This section presents an example, developed jointly with Kyungmin Bae, of a real-
time system that can be symbolically analyzed in the prototype tool described in Sec-
tion 5. The analysis applies model checking based on rewriting modulo SMT. Some
details are omitted. Full details and the prototype tool can be found in [9].

The example involves the symbolic analysis of the CASH scheduling algorithm [13],
which attempts to maximize system performance while guaranteeing that critical tasks
are executed in a timely manner. This is achieved by maintaining a queue of un-
used execution budgets that can be reused by other jobs to maximize processor uti-
lization. CASH poses non-trivial modeling and analysis challenges because it contains
an unbounded queue. Unbounded data types cannot be modeled in timed-automata for-
malisms, such as those of UPPAAL [27] or Kronos [48], which assume a finite discrete
state.

The CASH algorithm was specified and analyzed in Real-Time Maude by explicit-
state model checking in an earlier paper by Ölveczky and Caccamo [36], which showed
that, under certain variations on both the assumptions and the design of the protocol,
it could miss deadlines. Explicit-state model checking has intrinsic limitations which
the new analysis by rewriting modulo SMT presented below overcomes. The CASH
algorithm is parametrized by: (i) the number N of servers in the system, and (ii) the
values of a maximum budget bi and period pi, for each server 1 ≤ i ≤ N. Even if
N is fixed, there are infinitely many initial states for N servers, since the maximum
budgets bi and periods pi range over the natural numbers. Therefore, explicit state
model checking cannot perform a full analysis. If a counterexample for N servers
exists, it may be found by explicit-state model checking for some chosen initial states,
as done in [37], but it could be missed if the wrong initial states are chosen.

Rewriting modulo SMT is useful for symbolically analyzing infinite-state systems
like CASH. Infinite sets of states are symbolically described by terms which may in-
volve user-definable data structures such as queues, but whose only variables range
over decidable types for which an SMT solving procedure is available. For the CASH
algorithm, the built-in data types used are the Booleans (sort iBool) and the integers
(sort iInt). Integer built-in terms are used to model discrete time. Boolean built-in
terms are used to impose constraints on integers.

A symbolic state is a pair {iB,Cnf} of sort Sys consisting of a Boolean constraint
iB, with and denoted ˆ, and a multiset configuration of objects Cnf, with multiset
union denoted by juxtaposition, where each object is a record like-structure with an
object identifier, a class name, and a set of attribute-value pairs. In each object config-
uration there is a global object (of class global) that models the time of the system
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(with attribute name time), the priority queue (with attribute name cq), the availabil-
ity (with attribute name available), and a deadline missed flag (with attribute name
deadline-miss). A configuration can also contain any number of server objects (of
class server). Each server object models the maximum budget (the maximum time
within which a given job will be finished, with attribute name maxBudget), period
(with attribute name period), internal state (with attribute name state), time exe-
cuted (with attribute name timeExecuted), budget time used (with attribute name
usedOfBudget), and time to deadline (with attribute name timeToDeadline). The
symbolic transitions of CASH are specified by 14 conditional rewrite rules whose con-
ditions specify constraints solvable by the SMT decision procedure. For example, rule
[deadlineMiss] below models the detection of a deadline miss for a server with
non-zero maximum budget.

vars AtSG AtS : AttributeSet . var iB : iBool . var Cnf : Configuration .
vars iT iT’ iNZT : iInt . var St : ServerState . vars G S : Oid . var B : Bool .

crl [deadlineMiss] :
{ iB, < G : global | dead-miss |-> B, AtSG >

< S : server | state |-> St, usedOfBudget |-> iT, timeToDeadline |-> iT’,
maxBudget |-> iNZT, AtS > Cnf }

=> {iB ^ iT >= c(0) ^ iNZT > c(0) ^ iT’ > c(0) ^ iNZT > iT + iT’,
< G : global | dead-miss |-> true, AtSG >
< S : server | state |-> St, usedOfBudget |-> iT, timeToDeadline |-> iT’,

maxBudget |-> iNZT, AtS > Cnf }
if St =/= idle /\ check-sat(iB ^ iT >= c(0) ^ iNZT > c(0) ^ iT’ > c(0) ^ iNZT > iT + iT’) .

That is, the protocol misses a deadline for server S whenever the value of attribute
maxBudget exceeds the addition of values for usedOfBudget and timeToDeadline
(i.e., iNZT > iT + iT’) , so that the allocated execution time cannot be exhausted
before the server’s deadline.

The goal is to verify symbolically the existence of missed deadlines of the CASH
algorithm for the infinite set of initial configurations containing two server objects s0
and s1 with maximum budgets b0 and b1 and periods p0 and p1 as unspecified natural
numbers, and such that each server’s maximum budget is strictly smaller than its period
(i.e., 0 ≤ b0 < p0 ∧ 0 ≤ b1 < p1). This infinite set of initial states is specified
symbolically by the equational definition (not shown) of term symbinit. Maude’s
search command can then be used to symbolically check if there is a reachable state
for any ground instance of symbinit that misses the deadline:

search in SYMBOLIC-FAILURE : symbinit =>*
{ iB:iBool, Cnf:Configuration < g : global | AtS:AttributeSet, deadline-miss |-> true > } .

Solution 1 (state 233)
states: 234 rewrites: 60517 in 2865ms cpu (2865ms real) (21118 rewrites/second)
iB:iBool --> ((i(0) <= c(0) ^ i(1) <= c(0)) v i(0) <= c(0) + i(1) ^ ...
Cnf:Configuration -->
< s1 : server | maxBudget |-> i(0), period |-> i(1), state |-> waiting, usedOfBudget |-> c(0),

timeToDeadline |-> ((i(1) -- c(1)) -- c(1)), timeExecuted |-> c(0) >
< s2 : server | maxBudget |-> i(2), period |-> i(3), state |-> executing, usedOfBudget |-> c(2),

timeToDeadline |-> ((i(3) -- c(1)) -- c(1)), timeExecuted |-> c(2) >
AtS:AttributeSet --> time |-> c(2), cq |-> emptyQueue, available |-> false

A counterexample is found at (modeling) time two, after exploring 233 symbolic
states in less than 3 seconds. By using a satisfiability witness of the constraint iB
computed by the search command, a concrete counterexample is found by exploring
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only 54 ground states. This result compares favorably, in both time and computa-
tional resources, with the ground counterexample found by explicit-state model check-
ing in [36], where more that 52,000 concrete states were explored before finding a
counterexample.

7. Symbolic Reachability Analysis for PLEXIL Modulo Integer Constraints

Synchronous languages were introduced in the 1980s to program reactive sys-
tems, i.e., open systems whose behavior is determined by their continuous reaction
to the environment where they are deployed. The Plan Execution Interchange Lan-
guage (PLEXIL) [20] is a synchronous language developed by NASA to support
autonomous spacecraft operations. Given the safety-critical nature of spacecraft op-
erations, PLEXIL’s operational semantics has been formally defined [17] and several
properties of the language, such as determinism and compositionality, have been me-
chanically verified [16] in the Prototype Verification System (PVS) [38]. A rewriting
logic semantics of PLEXIL [18] has been developed in Maude and has been used,
within a formal interactive verification environment [41], to validate the intended se-
mantics of the language against a wide variety of plan examples.

PLEXIL programs define reactive systems that interact with an external environ-
ment of sensors and actuators. Such programs are deterministic by assuming a given
concrete value for each of the sensors that the reactive system interacts with. Therefore,
to execute by standard rewriting the rewriting logic semantics in [18] (and perform vari-
ous kinds of reachability analysis verification in Maude using such rewriting), concrete
values of the data in sensors had to be assumed for the reactive interactions. Since, in
general, the possible tuples of such values can be infinite or (assuming finite arithmetic
precision) extremely large, the concrete executions and formal analyses allowed by
the concrete rewriting semantics had to be necessarily incomplete. This is analogous
to the incompleteness of simulating and analyzing the CASH algorithm example in
Real-Time Maude, versus the complete analysis by rewriting modulo SMT presented
in Section 6. Using rewriting modulo SMT, a complete rewriting logic semantics that
can symbolically cover all possible values in an external environment has been defined
for PLEXIL in [40].

This section presents a case study overview on the symbolic analysis of reachability
properties for a large subset of the PLEXIL language based on rewriting modulo SMT,
which extends and complements the rewriting logic semantics of the language. Such an
analysis is able to automatically detect reachability violations on input plans where the
values of external variables can be left unspecified, a task that is impossible to achieve
with the ground rewriting logic semantics of the language.

7.1. PLEXIL Overview

This section presents an overview of PLEXIL; the reader is referred to [20] for a
detailed description of the language.

A PLEXIL program, called a plan, is a tree of nodes representing a hierarchical
decomposition of tasks. Interior nodes, called list nodes, provide control structure
and naming scope for local variables. The primitive actions of a plan are specified
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in the leaf nodes. Leaf nodes can be assignment nodes, which assign values to local
variables, command nodes, which call external commands, or empty nodes, which do
nothing. PLEXIL plans interact with a functional layer that provides the interface
with the external environment. This functional layer executes the external commands
and communicates the status and result of their execution to the plan through external
variables.

Nodes have an execution state, which can be inactive, waiting, executing, iterationend,
failing, finishing, or finished, and an execution outcome, which can be unknown, skipped,
success, or failure. They can declare local variables that are accessible to the node in
which they are declared and all its descendants. In contrast to local variables, the ex-
ecution state and outcome of a node are visible to all nodes in the plan. Assignment
nodes also have a priority, which is used to solve race conditions. The internal state
of a node consists of the current values of its execution state, execution outcome, and
local variables.

Each node is equipped with a set of gate conditions and check conditions that gov-
ern the execution of a plan. Gate conditions provide control flow mechanisms that react
to external events. In particular, the start condition specifies when a node starts its exe-
cution, the end condition specifies when a node ends its execution, the repeat condition
specifies when a node can repeat its execution, and the skip condition specifies when
the execution of a node can be skipped. Check conditions are used to signal abnor-
mal execution states of a node and they can be either pre-condition, post-condition, or
invariant conditions. The language includes Boolean, integer and floating-point arith-
metic, and string expressions. It also includes lookup expressions that read the value
of external variables provided to the plan through the executive. Expressions appear
in conditions, assignments, and arguments of commands. Each of the basic types is
extended by a special value unknown that can result, for example, when a lookup fails.

The execution of a plan in PLEXIL is driven by external events from the environ-
ment that trigger changes in the gate conditions. All nodes affected by a change in a
gate condition synchronously respond to the event by modifying their internal state.
These internal modifications may trigger more changes in gate conditions that in turn
are synchronously processed until quiescence is reached for all nodes involved. Exter-
nal events are considered in the order in which they are received. An external event
and all its cascading effects are processed before the next event is considered. This
behavior is known as run-to-completion semantics.

The atomic relation describes the execution of an individual node in terms of state
transitions triggered by changes in the environment. The micro relation describes the
synchronous reduction of the atomic relation with respect to the maximal redexes strat-
egy, i.e., the synchronous application of the atomic relation to the maximal set of nodes
of a plan. The remaining three relations are the quiescence relation, the macro relation,
and the execution relation that describe, respectively, the reduction of the micro rela-
tion until normalization, the interaction of a plan with the external environment upon
one external event, and the n-iteration of the macro relation corresponding to n time
steps. Figure 1 depicts the transition diagram defining PLEXIL’s atomic transitions for
lists in state executing.

Since local variables declared in a node are shared by its children nodes, it may be
possible that two nodes attempt to synchronously write the same variable. The priority
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Figure 1: Atomic transitions for list nodes in state executing.

AssignWithConflict: {
Integer x = 0;
Invariant: x >= 0;
NodeList:
NonNeg: {
Start: Lookup(S) >= 0;
Assignment: x := 1;

}
NonPos: {
Start: Lookup(S) <= 0;
Assignment: x := 2;

}
}

Figure 2: A parallel assignment with a potential race condition.

mechanism included in the semantics of PLEXIL can be used by programmers to deal
with this problem. Unfortunately, priorities are optional and, in practice, race condi-
tions may occur during the execution of a PLEXIL program. For instance, consider the
plan AssignWithConflig in Figure 2. This plan has one list node and two assignment
nodes, NonNeg and NonPos. It declares a local integer memory x and interacts with
the external environment via the integer variable S. Note that depending on the value
of S, the assignment nodes NonNeg and NonPos may or may not start execution, and a
race condition can happen on x when the value of S is 0. With the symbolic semantics
presented in this section, the race condition on x can be automatically detected.

7.2. Symbolic Detection of Race Conditions

Detection of race conditions on local memories and violation of node invariants
are important in PLEXIL. As such, predicates for checking them are already available
from the symbolic semantics. In particular, states predicates inv and race-free,
which take an argument of sort NeQualified (i.e., the sort of node identifiers) are
offered to the user.

The intended semantics of the state predicates is with respect to the initial semantics
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of PLEXIL. For example, consider the following definition of inv in the syntax of
Maude model checker:

eq ({ iB:Bool,
< O:NeQualified : C:Cid | inv |-> iB’:iBool, AtS:AttributeSet >
Cnf:Configuration }) |= inv(O:NeQualified)

= check-unsat(iB:iBool and
not(eval(< O:NeQualified : C:Cid |

inv|-> iB’:iBool, AtS:AttributeSet > Cnf,
iB’:iBool))) .

The invariant condition of node O represented by the Boolean expression iB’ yields an
invariant violation for O whenever the conjunction of the state’s constraint iB and the
negation of iB’ is unsatisfiable. This precisely means that there is a ground counter-
example state for the invariance of the node.

Boolean and integer expressions can be evaluated ‘symbolically’ by means of func-
tion eval, while function check-unsat implements the call to CVC3 :

op eval : Configuration iBool -> iBool .
op eval : Configuration iInt -> iInt .
op check-unsat : iBool -> Bool .

The evaluation of an expression by eval is given w.r.t. an object configuration and it
is equationally defined recursively on the complexity of expressions.

Recall the plan AssignWithConflict in Figure 2, which has a potential race con-
dition for the local memory x. Assume that SPLX represents the symbolic rewriting
logic semantics of PLEXIL, and let init be a configuration of objects representing an
initial configuration for AssignWithConflict. Consider the following safety verifi-
cation requirements:

TSPLX, {c(true), init} |= �race-free(x.AssignWithConflict), (3)

TSPLX, {i(0) >= c(1), init} |= �race-free(x.AssignWithConflict), (4)

TSPLX, {i(0) >= c(1), init} |= �inv(AssignWithConflict). (5)

The external variable S in AssignWithConflict is represented by the Boolean term
i(0). Property (3) states that there is no race condition on memory x if i(0) has no
initial constraints. Property (4) states that there is no race condition on memory x if
i(0) is assumed to be at least 1. Property (5) states that the invariant condition of
node AssignWithConflict holds if i(0) is assumed to be at least 1. Note that these
properties are symbolic reachability requirements because of the nature of the external
variable S. Also, the constrained terms defining the initial states in these properties
represent, in each case, infinitely many initial states.

By directly using Maude’s LTL Model Checker, property (3) can be disproved, and
properties (4) and (5) can be proved automatically.

==========================================
reduce in ASSIGNWITHCONFLICT :

verify-lite({c(true), init}, [] race-free(x . AssignWithConflict)) .
rewrites: 2590 in 525ms cpu (1629ms real) (4929 rewrites/second)
result Bool: false
==========================================
reduce in ASSIGNWITHCONFLICT :

verify-lite( { i(0) >= c(1), init}, [] race-free(x . AssignWithConflict)) .
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rewrites: 2846 in 575ms cpu (614ms real) (4947 rewrites/second)
result Bool: true
==========================================
reduce in ASSIGNWITHCONFLICT :

verify-lite( {i(0) >= c(1), init}, [] inv(AssignWithConflict) .
rewrites: 3191 in 576ms cpu (702ms real) (5534 rewrites/second)
result Bool: true

Function verify-lite is a wrapper to Maude’s LTL Model Checker function
modelCheck. This mapping outputs either true or false, depending on the output of
the model checker function, omitting a counterexample if any.

8. Related Work and Concluding Remarks

The idea of combining term rewriting/narrowing techniques and constrained data
structures is an active area of research, specially since the advent of modern theorem
provers with highly efficient decision procedures in the form of SMT solvers. The
overall aim of these techniques is to advance applicability of methods in symbolic
verification where the constraints are expressed in some logic that has an efficient de-
cision procedure. In particular, the work presented here has strong similarities with the
narrowing-based symbolic analysis of rewrite theories initiated in [31] and extended
in [8]. The main difference is the replacement of narrowing by SMT solving and the
decidability advantages of SMT for constraint solving.

M. Ayala-Rincón [5] investigates, in the setting of many-sorted equational logic,
the expressiveness of conditional equational systems whose conditions may use built-
in predicates. This class of equational theories is important because the combination
of equational and built-in premises yield a type of clauses which is more expressive
than purely conditional equations. Rewriting notions like confluence, termination, and
critical pairs are also investigated. S. Falke and D. Kapur [21] studied the problem
of termination of rewriting with constrained built-ins. In particular, they extended the
dependency pairs framework to handle termination of equational specifications with se-
mantic data structures and evaluation strategies in the Maude functional sublanguage.
The same authors used the idea of combining rewriting induction and linear arithmetic
over constrained terms [22]. Their aim is to obtain equational decision procedures that
can handle semantic data types represented by the constrained built-ins. H. Kirchner
and C. Ringeissen proposed the notion of constrained rewriting and have used it by
combining symbolic constraint solvers [25]. The main difference between their work
and rewriting modulo SMT presented in this paper is that the former uses narrowing for
symbolic execution, both at the symbolic ‘pattern matching’ and the constraint solving
levels. In contrast, rewriting modulo SMT solves the symbolic pattern matching task
by rewriting while constraint solving is delegated to an SMT decision procedure. More
recently, C. Kop and N. Nishida [26] have proposed a way to unify the ideas regarding
equational rewriting with logical constraints. More generally, while the approaches
in [5, 21, 22, 25, 26] address symbolic reasoning for equational theorem proving pur-
poses, none of them addresses the kind of non-deterministic rewrite rules, which are
needed for open system modeling. More recently, A. Arusoaie et al. [4] have proposed
a language-independent symbolic execution framework, within the K framework [28],
for languages endowed with a formal operational semantics based on term rewriting.
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There, the built-in subtheories are the datatypes of a programming language and sym-
bolic analysis is performed on constrained terms (called “patterns”); unification is also
implemented by matching for a restricted class of rewrite rules and uses SMT solvers
to check constraints.

This paper has presented rewrite theories modulo built-ins and has shown how
they can be used for symbolically modeling and analyzing concurrent open systems,
where non-deterministic values from the environment can be represented by built-in
terms [40, 42]. In particular, the main contributions of this paper can be summarized
as follows: (1) it presents rewriting modulo SMT as a new symbolic technique com-
bining the powers of rewriting, SMT solving, and model checking; (2) this combined
power can be applied to model and analyze systems outside the scope of each individ-
ual technique; (3) in particular, it is ideally suited to model and analyze the challenging
case of open systems; and (4) because of its reflective reduction to standard rewriting,
current algorithms and tools for model checking closed systems can be reused in this
new symbolic setting without requiring any changes to their implementation.

Under reasonable assumptions, including decidability of E+
0 , a rewrite theory mod-

ulo is executable by term rewriting modulo SMT. This feature makes it possible to use,
for symbolic analysis, state-of-the-art tools already available for Maude, such as its
space search commands, with no change whatsoever required to use such tools. We
have proved that the symbolic rewrite relation is sound and complete with respect to its
ground counterpart, have presented an overview of the prototype that offers support for
rewriting modulo SMT in Maude, and have presented two case studies on the symbolic
analysis of the CASH scheduling algorithm and the PLEXIL synchronous language
illustrating the use of these techniques.

Future work on a mature implementation and on extending the idea of rewriting
modulo SMT with other symbolic constraint solving techniques such as narrowing
modulo should be pursued. Also, the extension to other symbolic LTL model check-
ing properties, together with state space reduction techniques, should be investigated.
Further applications to Real-Time Maude, PLEXIL, and other languages should also
be pursued.
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