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A NEW ARCHITECTURE FOR EXTENDING THE CAPABILITIES
OF THE COPERNICUS TRAJECTORY OPTIMIZATION PROGRAM

Jacob Williams∗

This paper describes a new plugin architecture developed for the Copernicus space-
craft trajectory optimization program. Details of the software architecture design
and development are described, as well as examples of how the capability can
be used to extend the tool in order to expand the type of trajectory optimization
problems that can be solved. The inclusion of plugins is a significant update to
Copernicus, allowing user-created algorithms to be incorporated into the tool for
the first time. The initial version of the new capability was released to the Coper-
nicus user community with version 4.1 in March 2015, and additional refinements
and improvements were included in the recent 4.2 release. It is proving quite use-
ful, enabling Copernicus to solve problems that it was not able to solve before.

INTRODUCTION

Copernicus is a generalized spacecraft trajectory design and optimization software application.1–3

Since the first release in 2006, Copernicus has become one of NASA’s premier tools for spacecraft
mission design. Development is ongoing, and a new major version release occurs every 2-3 years.
Version 4.2 was released by Johnson Space Center (JSC) in July 2015. Copernicus is used ex-
tensively for design studies of manned missions at JSC,4, 5 as well as for a wide range of projects
at other NASA centers. JSC makes Copernicus available free of charge to other NASA centers,
government contractors, and universities, under the terms of a US government purpose license.

Since the initial release of Copernicus, the “segment” has been the basic building block for de-
signing spacecraft missions.1 Segments include all the optimization variables, constraints, and ob-
jective functions in the optimization problem. The user constructs a mission by defining any number
of segments, which can represent different mission phases, different vehicles, or different stages of
the same vehicle. Impulsive and finite burn maneuvers can be modeled with different maneuver
control laws and propulsion systems. Copernicus includes a wide range of constraints for various
variable types (e.g., time, mass, state, and engine parameters), as well as an “inherit” capability
which is used to connect segments (e.g., by specifying that the initial time of one segment inher-
its the final time of another). A complicated mission can include many segments with complex
interconnections. Segments can be propagated both forward and backward in time, and can be
connected by inheritance, or initially discontinuous with continuity constraints imposed during the
optimization problem to ensure continuity.

The purpose of the segment architecture was to enable any type of spacecraft mission to be
designed, regardless of complexity. While it has proven very flexible, there are many limitations to
the existing system. For example, only like variables can be inherited (e.g., a time variable can only
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directly inherit the value of another time variable). Also, only a finite set of constraints are available
in the program (see Figure 1, which shows the state constraints GUI). The list of available state
constraints is quite long, but there is no ability for the user to add additional constraints, and the
grid-based GUI does not easily allow for anything other than constraints among like variables (for
example, constraining rp from one segment equal to rp from another segment). The same applies
for other types of constraints (time, mass, etc.).

Since Copernicus releases do not include the source code, end users have had few options for
extending the tool. Only the features compiled into the tool are available to the users. Adding a new
feature requires JSC to update the code (possibly including the GUI) and releasing a new version
of Copernicus. While the segment approach is very flexible, a problem requiring some specialized
constraint, for example, that is not present in Copernicus, is not solvable by Copernicus. Thus, a
frequent request from Copernicus users has always been to have some ability to extend the tool in
various ways. Examples include: (i) New types of constraints (for example, a constraint defined by a
user-specified equation), (ii) An inherit defined by a user-specified equation (e.g., specifying that the
x-position of one state is half-way between the x-position of two other states), (iii) Other methods
for segment propagation such as user-defined guidance and control laws, (iv) Path constraints, and
(v) Interfacing with another spacecraft trajectory software tool, passing information to and from
Copernicus, and including its outputs into the Copernicus optimization problem.

The main motivation of the current work was an analysis need by the NASA Orion and Space
Launch System (SLS) programs to produce optimized end-to-end (launch to Earth entry) trajec-
tories.6, 7 Copernicus, primarily an in-space tool which does not include specific launch vehicle
ascent models, is being used by JSC for Orion in-space trajectory design. Marshall Space Flight
Center (MSFC) uses the Program to Optimize Simulated Trajectories (POST) tool for SLS ascent
optimization. Having a capability for Copernicus to call an external tool (in this case, to generate an
ascent trajectory, and manage the overall end-to-end optimization problem) was the genesis of the
new plugin feature.

REQUIREMENTS AND APPROACH

To address the existing limitations in the program, and to enable incorporation of external algo-
rithms and tools, it was decided that a new capability needed to be added to Copernicus. Rather than
modifying or replacing the existing segment architecture, a new “plugin” mission attribute would be

Figure 1: Copernicus GUI State Functions Grid. This screenshot shows how constraints are speci-
fied in the Copernicus GUI. In this case, the constraints are applied at t0 of segment 1, and include
a value equality constraint and an inequality constraint with segment 2.
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added. The new capability would be an add-on to the tool, and existing users would not be required
to use it to solve the problems that Copernicus is currently already capable of solving. Plugins
would be user-created objects, separate from segments, that could be included in the mission and
the optimization problem in various ways. When developing the plugin concept, several key goals
and requirements were arrived at, including:

• The architecture should support different types of plugins, for different levels of complex-
ity. A simple plugin that can be created quickly is allowed to sacrifice some computational
efficiency. A more complex plugin may require a more complicated setup but be more com-
putationally efficient.

• Basic plugins should be able to be created and used by non-expert programmers, without
having to understand the inner workings of Copernicus.

• Plugins should not depend on a particular programming language or external third-party tool
or application.

• The architecture should be object-oriented and extensible, so that new capability can be added
to it at a later date, such as new plugin types, or new type of information that can be exchanged
between Copernicus and plugins.

The author began part-time development of the plugin feature in January 2014. Undoubtedly, there
are many different ways that it could have been done, though the solution arrived at (described in
the remainder of this paper), was able to meet all of these requirements, as well as providing a
foundation for future upgrades.

PLUGIN OVERVIEW

The new plugin architecture that was developed encompasses three types of plugins: script, DLL,
and parser (refer to Figure 2 and Table 1). They are divided into two classes (“internal” and “exter-
nal”), as shown in Figure 3. The fundamental concept of each plugin type is that Copernicus passes
data (input variables) to the plugin and receives data back (output variables and trajectories) from
it. The plugin simply computes the outputs as functions of the inputs. Script plugins pass this data
using JavaScript Object Notation (JSON) files, while DLL plugins pass JSON structures (described
in the following section). The plugin itself is a “black box” whose internal workings do not concern
Copernicus, as long as the output data is properly formatted. Parser plugins (currently, the only
instance of an internal plugin) are a bit different, and the data exchange is internal to Copernicus.

Table 1: Plugin Types and Data Exchange

Plugin Type Config File Plugin File Input Output
Parser JSON file None None None

Script JSON file
Any executable

file or script
JSON file JSON file

DLL JSON file
Compiled DLL
(shared library)

json value
pointer

json value
pointer

3



DRAFT
.json
Output

.json
Input

.json
Config

Script
Plugin

1.2Generate 3.2Read

5.2Read 4.2Generate

Read2once2when2plugin2is2loaded

2.2Execute

Copernicus

(a) Script Plugin Flow Chart. The plugin is a “black box” that is called by Copernicus. The plugin can be
any file that can be executed by a system call (such as a Python script or an executable). It reads the input
file and generates the output file, which is then read by Copernicus.

Copernicus

DLLInput Pointer

Output Pointer Plugin

.json
Config

(b) DLL Plugin Flow Chart. A DLL plugin consists of a config file and a DLL file. The DLL is loaded by
Copernicus and all data is exchanged using pointers, rather than files.

Copernicus
.json
Config

(c) Parser Plugin Flow Chart. A parser plugin consists only of a config file, and does not generate or use
any additional files. This type of plugin can be used to define simple equations which are then evaluated
internally within Copernicus.

Figure 2: Plugin Types. There are currently three types of plugin available: script, DLL, and parser.
For each, the config file is used when the plugin is loaded to define the interface.
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Plugin

Internal External

Script DLLParser

Figure 3: Plugin Class Hierarchy. Three types of plugins are available (parser, script and DLL).
A parser is an instance of an “internal” plugin that does not require any external interaction once
loaded. The other two are “external” plugins (which call either an external script or a DLL). There
are potentially other types of both classes that could be added in the future.

All plugins require a JSON configuration file that is loaded by Copernicus. In this file, the user
defines the input and output variables, and other information about the plugin required by Coperni-
cus to use it. There can be any number of input and output variables, and the plugin can also export
any number of trajectories (time tagged vectors of spacecraft state and mass). Variable names are
assigned by the user, and their values can be associated with Copernicus segment variables (e.g,
via the inheritance mechanism). An example plugin config file is shown in Figure 4. The details
of this file are described fully in the Copernicus documentation.3 Briefly, the format defines a way
to specify the input variables, the output variables, and the exported trajectories. The cop var flag
provides Copernicus with the data type for plugin variables that can be associated with Copernicus
variables (in this example, both the input and output variables are ∆t variables). The format also
allows for defining states using any Copernicus-supported reference frames and units.

When the config file is loaded into Copernicus, the file is parsed and the plugin data structures are
initialized to prepare for calling the plugin. When a plugin call is required (say, during optimization),
Copernicus first populates the input variable values. For script and DLL plugins, the input JSON
data is then generated by Copernicus and passed to the plugin (script plugins via a JSON file, and
DLL via a pointer to a JSON structure). After a script or DLL plugin runs, the corresponding JSON
output (generated by the plugin) is read by Copernicus. The output variable values are then updated,
along with any segment variables receiving data from them. A caching system is also implemented,
so that if the input variables have not changed since the last time the plugin was run, the plugin is
not actually called, and the output variables retain the values they had from the previous call (the
plugin is assumed to be a consistent function generator that executes the same computations for the
same values of the inputs8).

JSON

JSON10 is a lightweight human-readable language-independent data interchange format. This
format was selected to be used for the communication between Copernicus and the plugins. An
example JSON file is shown in Figure 5a (this is a simple script plugin output file). JSON files use
a {"name": value} syntax with six valid JSON value data types: number, string, boolean, array,
object, and null. Objects are delimited using curly brackets and arrays are delimited using square
brackets. Whitespace is not significant in a JSON file (except for within strings). Some special
characters in a string require an escape sequence. A comma is used to separate each variable and
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1 {
2 "info": {
3 "name": "Example",
4 "description": "Example plugin dll",
5 "type": "dll",
6 "dll": "../ support_files/plugins/dll_example/example.dll"
7 },
8 "inputs": [
9 { "label": "dt1",

10 "cop_var": "DT",
11 "units": "day",
12 "assume_choice": 1,
13 "inherit_seg": 1 }
14 ],
15 "outputs": [
16 { "label": "dt2",
17 "units": "day",
18 "cop_var": "DT",
19 "assume_choice": 1,
20 "inherit_seg": 2 }
21 ],
22 "trajectories": {
23 "label": "orbit1",
24 "traj": [
25 { "label": "et", "cop_var": "ET" },
26 { "label": "rv",
27 "cop_var": "STATE",
28 "frame": { "frame_type": "J2000",
29 "main_body": "EARTH" },
30 "time_units": "s",
31 "distance_units": "km",
32 "params": [
33 { "label": "Rx", "cop_var": "Rx" },
34 { "label": "Ry", "cop_var": "Ry" },
35 { "label": "Rz", "cop_var": "Rz" },
36 { "label": "Vx", "cop_var": "Vx" },
37 { "label": "Vy", "cop_var": "Vy" },
38 { "label": "Vz", "cop_var": "Vz" }
39 ]
40 }
41 ]
42 }
43 }

Figure 4: Example DLL Plugin Config File. The config file is created by the user, and defines
the interface to the plugin. The simple example shown here has one input variable and one output
variable. The input variable inherits the ∆t from segment 1, and the output variable pushes a ∆t to
segment 2. It also exports a trajectory time history (using ephemeris time, and the Cartesian state
specified in a J2000-Earth frame). The “info.type” variable specifies the plugin type (“parser”,
“script”, or “dll”). For script plugins, an “info.script” variable specifies the location of the
plugin, while for DLL plugins the “info.dll” variable (shown here) is used instead.
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1 {
2 "status": {
3 "flag": 0,
4 "message": "converged"
5 },
6 "outputs": [
7 { "label": "x", "value": 0.0 },
8 { "label": "y", "value": 0.0 }
9 ],

10 "trajectories": { }
11 }

(a) This example script plugin output JSON file includes the “status”, “outputs”, and “trajectories” structures
(which is empty in this case). Note that whitespace and line breaks are not significant in JSON files.
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(b) The JSON data can be represented as a tree structure using a Fortran linked list.9 Each node (which
can be an object, array, integer, real, string, logical, or null value) contains five pointers (parent, child,
previous, next, and tail). Here, represents an associated pointer, and represents a null pointer.

Figure 5: JSON Example. JSON (either as a file or as a data structure) is used for all data exchange
between Copernicus and plugins.

7



DRAFT

each element of an array. A JSON file can contain any number of variables. In the example shown
in Figure 5, the file contains three variables: status (an object containing the two variables flag
and message), outputs (an array of two elements, each element containing the variables label and
value), and trajectories (an empty object).

JSON APIs exist for many different programming languages.11 Copernicus is programmed in
Fortran, so a Fortran API was necessary for this project. Since a feature-complete production-ready
modern Fortran JSON solution did not exist, a new opensource project (called JSON-Fortran) was
initiated to provide one.9 Based on an older Fortran 95 project, the new library incorporates modern
features from the Fortran 2003/2008 standards.12 Figure 5b shows the JSON-Fortran representa-
tion of JSON output data, which is a tree structure using a Fortran linked list.13, 14 Each node
contains five pointers (parent, child, previous, next, and tail). Copernicus incorporates the
JSON-Fortran library to provide JSON file I/O as well as manipulation of the linked-list JSON data
structures. A plugin written in Fortran can also use the library. For other implementations, such as
Python, the details of how the data is represented internally is not necessary required. For example,
the same JSON data could be constructed using a Python dictionary, and then converted to JSON
using a call to json.dumps.15 The wide range of programming languages supporting JSON means
that a plugin can be written in any of them, without having to write a new parser in order to accom-
plish the data exchange. The flexibility of the JSON format also means that future additions to the
types of data that can be exchanged between Copernicus and plugins can be easily incorporated into
the data structures if needed.

SEGMENT AND PLUGIN VARIABLES

The plugin architecture was designed to serve as an augmentation to the existing segment ar-
chitecture. The power and utility of plugins comes from the ability to interface plugin variables
and segment variables (say, to use a plugin to impose a constraint in the optimization problem, or
propagate a trajectory which is then subsequently inherited by a Copernicus segment).

Figure 6 shows a schematic of the relationship between Copernicus segment variables (such as
the segment initial time or mass), and plugin variables (both input and output variables). While
Copernicus considers a plugin as a black box completely separate from all segments, data can be
exchanged between plugins and segments. Plugin input variables can inherit the value of segment
variables, and plugin output variables can push their value back to segment variables. The main
Copernicus optimization problem can include plugin input variables as optimization variables, and
plugin output variables as constraints or objective functions. Plugin input variables can also be
updated by plugin output variables after the plugin is run (for example, if the plugin is solving its
own optimization problem and some or all of the input variables are the optimization variables for
this problem). A cache scheme is also included, so that if the same inputs are passed to a plugin
multiple times, then the previously-computed outputs are returned without having the call the plugin
again (this can make a big difference if calling the plugin if very computationally expensive).

With the inclusion of plugins in the tool, a Copernicus mission can now be composed of any
number of segments and any number of plugins. The order in which the segments and plugins
are propagated is significant, and must be determined by their variable interconnectivity. See the
example shown in Figure 7. For example, if plugin P1 is inheriting data from segment S2 ,

then Copernicus must propagate S2 before P1 is called. Conversely, if P1 is pushing data

to S3 , then it must be called before S3 can be propagated. The propagation order is determined

8



DRAFT

automatically by Copernicus using a topological sorting algorithm.13 Thus the user does not need to
be concerned with specifying mission phases or attributes in any particular order, since the program
will automatically handle this, and propagate everything in the correct order.

SCRIPT PLUGINS

The first type of external plugin is known as a “script plugin”. For this type, the plugin itself is
an external script or application. Data is transferred between Copernicus and the script by reading
and writing JSON files. A flow chart of the script plugin concept of operations is shown in Figure
2a. When a call is required to the plugin (e.g., during optimization), Copernicus generates a JSON
input file and executes the plugin. An example input file is shown in Figure 9. The plugin reads
the input file, runs, and generates the output file (an example output file was shown in Figure 5a).
Copernicus then reads the output file and continues.

A script plugin can be any file that can accept command line arguments and be executed by a
system call. Examples include executable files, Python scripts, and shell scripts. The input file is
passed to the plugin in the system call as the first command-line argument. Copernicus also redirects
the plugin’s standard output and standard error streams to the current mission log file. This is so any
messages printed by the plugin will be visible in the Copernicus GUI. The precise call syntax used
is:

> <executable> <plugin> <input file> >> <log> 2>&1

For example, a call to a Python plugin would look like:

> python my_plugin.py input.json >> LOG.OUT 2>&1

It is the responsibility of the plugin to retrieve the input file name from the command line argument.
A script plugin can be written in any programming language (it is only necessary for it to be able to
read and write JSON files). Basic outlines in Python, C++, and Fortran 2003 are shown in Figure 8.

Note that, when solving the optimization problem, Copernicus may call the plugin many times
(e.g., during computation of the Jacobian matrix using finite-difference gradients). If the plugin
is a simple computation, then the overhead of calling the external program (say, Python) and the
file I/O could be a significant percentage of the plugin run time. However, for applications where
evaluation of the plugin outputs has a significant computational burden, this may not be an issue. It
is up to the user to decide this. For maximum computational efficiency, the DLL type plugins can
be used (described in the following section), although these are (perhaps) more difficult to create
than a simple Python script.

DLL (SHARED LIBRARY) PLUGINS

Shared library (or DLL) external plugins (see Figure 2b) are the most powerful and compu-
tationally efficient type of Copernicus plugin. For these, the user-created code is compiled and
dynamically linked to Copernicus when the plugin is loaded. It runs in the same memory space
as Copernicus, and can be as efficient as the main Copernicus code. In addition, all information is
passed through the DLL interface rather than by reading and writing files. This can allow it to run
with much less overhead than a script plugin. The config file for a DLL plugin is very similar to
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Figure 6: Segment and Plugin Variables. This diagram shows the relationship between Copernicus
segment variables and plugin variables, and how they can be interconnected and/or included in the
Copernicus optimization problem.

S1
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S2

P2

S3

P1
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Figure 7: Segment and Plugin Dependencies. The interconnectivity of segment and plugins can be
represented by a Directed Acyclic Graph (DAG) such as this. Here, the circles represent segments
and the squares represent plugins. S2 → S1 indicates that segment 2 depends on segment 1 (i.e., it
is inheriting data from it). In this case, the proper propagation order is: {S5, P2, S1, S2, P1, S3, S4}.
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1 import sys
2 n_args = len(sys.argv)
3 if (n_args >=2):
4 input_file = str(sys.argv [1])
5 # ... main plugin code ...
6 else:
7 raise Exception(’Error’)

(a) Python Example

1 #include <iostream >
2 #include <string >
3

4 using namespace std;
5

6 int main(int argc , char *argv [])
7 {
8 if (argc > 1) {
9 string input_file = argv [1];

10 // ... main plugin code ...
11 }
12 else { cout << "Error" << endl; }
13 }

(b) C++ Example

1 program my_plugin
2 implicit none
3 integer :: ilen
4 character(len=:), allocatable :: input_file
5 ilen = command_argument_count ()
6 if (ilen >=1) then
7 call get_command_argument (1, length=ilen)
8 allocate(character(len=ilen) :: input_file)
9 call get_command_argument (1, input_file)

10 ! ... main plugin code ...
11 else
12 stop ’Error’
13 end if
14 end program my_plugin

(c) Fortran 2003 Example

Figure 8: Example Script Plugin Snippets. A script plugin must first read the input file name from
the first command line argument. Examples for Python, C++, and Fortran 2003 are shown here
(script plugins can be written in any programming language). The main plugin code reads the input
file, performs the appropriate computations, and generates the output file.
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1 {
2 "info": {
3 "config": "path/to/PLUGIN_CONFIG.json",
4 "output": "path/to/PLUGIN_OUTPUT.json",
5 "dir": "path/to/script/",
6 "need_trajectories": true
7 },
8 "inputs": [
9 {

10 "label": "dt1",
11 "value": 0.1E+2
12 }
13 ]
14 }

Figure 9: Example Script Plugin Input File. The JSON input file is generated by Copernicus, and
must be read by a script plugin. This is the input file that corresponds to the config file shown in
Figure 4. The main purpose of this file is to pass the values of the input variables into the plugin.
In this case, there is only a single variable (“dt1”). Other information is also provided to the plugin
via the info variable.

the one for a script plugin, the only difference being in the info structure (see Figure 4). Here, the
type variable must be set to “dll”, and the dll variable must specify the location of the DLL file.

Communication between Copernicus and the user-created DLL plugin is only through a set of
specified procedures that must be exported by the DLL. The main two are:

• The DLL must export an execute() subroutine which is called by Copernicus. The execute()
subroutine has the interface shown in Figure 10a (data is exchanged using the input and output
pointers). The json value type is defined in the JSON-fortran library,9 which must be linked
with the DLL. While script plugins can be written in any programming language that can
read and write JSON files, the DLL plugins must be written in modern Fortran and compiled
with the Intel Fortran compiler (which is used to compile Copernicus). This is because the
json value types use Fortran pointers and allocatable variables which, in general, are not
interoperable with C (and may not be interoperable among different Fortran compilers).

• A DLL plugin can also include a procedure that is meant to be called only once when the
DLL is first loaded. This is done by exporting an initialize() subroutine (the interface is
shown in Figure 10b). For example, this routine can be used to load database files that are
subsequently used by the plugin when the execute() routine is called.

Copernicus can dynamically load any number of DLL plugins. On Windows, this process uses
the operating system APIs LoadLibrary(), GetProcAddress(), and FreeLibrary().16 The Linux
version of Copernicus can load shared library plugins (.so files) in the same manner, using dlopen(),
dlsym(), and dlclose().

As with script plugins, DLL plugins do not require any knowledge of the internal workings of
Copernicus. It is enough to simply provide the two procedures in the DLL that Copernicus will
call. The advantage of this is ease of use, however it also has its disadvantages. A plugin cannot
access information from Copernicus which might be useful (say, the force models, reference frames,
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or propagation methods). This capability could be added in a future revision, either by adding
additional data to the JSON structures that are passed back and forth, or potentially by exporting
additional types or procedures from Copernicus that the plugin can access.

The DLL plugins provide a “power user” solution for extending Copernicus. It is the most com-
putationally efficient option, but is more complicated compared to the script plugin option. The next
plugin type to be discussed is the simplest option.

PARSER PLUGINS

A parser plugin is an instance of the internal plugin type that allows for easily introducing user-
specified equations into the mission and the optimization problem. It does not call external scripts
or DLLs and does not use any input or output files (see Figure 2c). A parser plugin consists only of
a JSON config file. The basic premise is that the set of output variable are computed as functions
of the set of input variables, based on user-specified equations. The equations are evaluated by
Copernicus using a function parser internal to the program.17 Thus, for simple equations, a parser
plugin can be much faster to execute than a script plugin, while being much easier to create than a
DLL plugin. Once the plugin is loaded, all computations take place internally within Copernicus.
Parser plugins are the easiest to use plugin type, and will perhaps be the ones used the most by
Copernicus users.

An example parser plugin in shown in Figure 11. The JSON config file specifies a parser plugin
by setting the type variable in the info structure to “parser” (rather than “dll” or “script”).
Also note that the output variable structure includes an expression string variable. The expression
is an equation which can include any of the input or output variables, referenced by the variable
labels. For a parser plugin, each of the output variables must include an expression. Since the
output variables can be used as constraints in the Copernicus optimization problem, this type of
plugin makes it easy to create simple user-defined constraints. It can also be used for more general
inherits, since output variable values can also be pushed to segment variables. For example, a parser
plugin could be used to specify that the semimajor axis of one segment should be equal to some
fraction of the semimajor axis from another segment. Previously in Copernicus, such an inherit (or
even a nonlinear constraint) was not possible. In the example shown in Figure 11, the following
constraint is defined:

m0 =

(
1− ContPer

100

)(
ae−C3/b + c

)
(1)

where a, b, and c are user-specified coefficients, and ContPer is a contingency % factor. The vari-
able C3 is the characteristic energy of a state (which can be inherited from a segment in Copernicus).
The constraint can then be applied to the initial mass (m0) of the segment. Before the plugin feature
was available, a new constraint like this would have required a code change to Copernicus and a
new release. Now, it can be easily implemented by the user.

A full set of arithmetic operators (+, -, *, /, ˆ), logical operators (>, <, >=, <=, ==, /=), and basic
intrinsic functions (abs, sin(), exp(), log(), etc.) are available for constructing expressions.3

Logical IF() statements are also allowed (IF(x,y,z) being evaluated as (x ? y : z)). For logical
expressions, values = 0 are considered false, and values 6= 0 are considered true. Any number
of equations can be defined, thus allowing for potentially very complicated parser plugins (each
expression can be arbitrarily complicated and include any number of variables). The parser code is
written in modern Fortran and uses various Fortran 2003 features such as deferred-length character
strings in order to make this possible.12
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1 abstract interface
2 subroutine execute(input ,output ,status_ok)
3 !DEC$ ATTRIBUTES DEFAULT, DLLEXPORT, ALIAS:"execute" :: execute
4 import :: json_value
5 implicit none
6 type(json_value),pointer :: input !input data structure
7 type(json_value),pointer :: output !output data structure
8 logical ,intent(out) :: status_ok !false if there was an error
9 end subroutine execute

10 end interface

(a) A DLL plugin must export the execute() subroutine with this interface. It reads the input data structure
and generates the output data structure.

1 abstract interface
2 subroutine initialize(config ,dll ,status_ok)
3 !DEC$ ATTRIBUTES DEFAULT, DLLEXPORT, ALIAS:"initialize" :: initialize
4 implicit none
5 character(len=*), intent(in) :: config !config file path
6 character(len=*), intent(in) :: dll !dll file path
7 logical ,intent(out) :: status_ok !false if there was an error
8 end subroutine initialize
9 end interface

(b) A DLL plugin may contain an initialize() subroutine with this interface. If present in the DLL,
Copernicus will call this subroutine when the DLL is first loaded. This can be used to perform initialization
operations that only need to be done once.

Figure 10: DLL Subroutine Interfaces. A DLL plugin must contain the execute() subroutine,
and can optionally contain the initialize() subroutine. The subroutines must have the exact
interfaces shown here (on Windows, they must include the !DEC$ Intel compiler directives so they
are exported by the DLL).
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A few simple example output variables with expressions are shown in Figure 12, where x, y, and
z are input variables. Expressions are not case sensitive, and whitespace is not significant. Each of
the input and output variables must have a unique label in a parser plugin, and only include valid
variables names containing alphanumeric characters and underscores. An invalid expression will
generate an error message. For parser plugin outputs that depend on other outputs, a topological
sorting algorithm13 is used to determine the proper evaluation order (and also check for and warn
about circular dependencies). Thus, the expressions can be defined in any order. This can be seen
in Figure 12, where the “f2” variable depends on variables defined after it.

EXAMPLES

The usefulness of plugins is that they can be used to augment the existing capabilities of Coper-
nicus, allowing solutions of trajectory optimization problems that could not otherwise be solved
using the tool. A schematic of this is shown in Figure 13, where a mission is shown incorporating
ten segments and two plugins. Various plugin examples have been given in the previous sections.
Additional possibilities for Copernicus plugins include:

• A Python script plugin has been created to enable Copernicus to call the POST ascent opti-
mization program. This is represented by P1 in Figure 13, and is the subject of a companion
paper.6 A Copernicus screenshot of this in action is shown in Figure 14.

• Implementation of a wide range of constraints are now possible using plugins. The simple
parser plugins makes it easy to impose constraints that can be expressed as a equation or set
of equations (see P2 in Figure 13). More sophisticated constraints can also be created using
script or DLL plugins. For example, Copernicus currently includes a very specific type of
polynomial Entry Interface (EI) constraint.3 However, a user can now create a plugin for any
such constraint (say, using a different type of polynomial, or even by querying a database of
EI states).

• If a trajectory sub-problem can be parameterized into a set of variables, and solved for a
range of those variables, then this can be used to build of database that can be interpolated
(rather than solving the problem again every time it is needed).18 A DLL plugin could then be
created which simply evaluates the outputs as interpolated functions of the inputs (say, using
a multivariate b-spline interpolation method19). This plugin can then be included into a larger
optimization problem. For example, a database of optimized POST ascent trajectories could
be constructed for a particular launch vehicle.

• It is now possible to introduce additional methods of spacecraft propagation into Copernicus
using plugins. For example, collocation (not currently present in the tool) could be added
as a plugin.20 The collocation variables and constraints would be included into the main
Copernicus optimization problem along with the existing segment-based ones.

FUTURE WORK

The plugin capability was first included in the 4.1 release of Copernicus, and additional refine-
ments were included in the 4.2 release. Future work includes:

• Allow a plugin to also optionally return gradient information if it is known. For example, if
some of the plugin output variables are included in the optimization problem, and they have
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1 {
2 "info": {
3 "type": "parser",
4 "name": "MASSCOMPLEX",
5 "description": "Parser plugin example."
6 },
7 "inputs": [
8 { "label": "a", "value": 20000 },
9 { "label": "b", "value": 60 },

10 { "label": "c", "value": 10 },
11 { "label": "ContPer", "value": 10 },
12 { "label": "m0", "cop_var": "M", "units": "kg"},
13 { "label": "x0", "cop_var": "STATE",
14 "frame": {
15 "frame_type": "J2000",
16 "main_body": "EARTH"
17 },
18 "time_units": "s",
19 "distance_units": "km",
20 "angle_units": "deg",
21 "params": [
22 { "label": "C3", "cop_var": "C3" },
23 { "label": "Rp", "cop_var": "Rp" },
24 { "label": "Inc", "cop_var": "Inc" },
25 { "label": "RAAN", "cop_var": "RAAN" },
26 { "label": "AOP", "cop_var": "AOP" },
27 { "label": "Tau", "cop_var": "Tau" }
28 ]
29 }
30 ],
31 "outputs": [
32 {
33 "label": "Mfunc",
34 "units": "kg",
35 "expression": "m0 - ((1.0- ContPer /100.0)*(a*exp(-C3/b)+c))"
36 }
37 ]
38 }

Figure 11: Example Parser Plugin Script Plugin. A parser plugin consists only of the JSON config
file. This example has six input variables (one of which is a state of six elements), and one output
variable. It constrains an initial mass m0 to an exponential decay function of C3. The value of
C3 can be obtained from a Copernicus segment, while the coefficients (a, b, c, and ContPer) can
be specified by the user, or even included as part of the optimization problem. Note that some
information (e.g., specification of inherits, segments numbers, optimization and constraint scale
factors, etc.) is done in the GUI and is not shown here.
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"outputs": [

{"label": "f1", "expression": "2.0 * xˆ2 + sin(x*y) + (1.0 / z)" },
{"label": "f2", "expression": "f1 + f3 + f4" },
{"label": "f3", "expression": "if ( sin(x)>0.5, 1.0, exp(y) )" },
{"label": "f4", "expression": "abs(x) * pi() - tan(yˆ(2+z))" }

]

Figure 12: Example Parser Expressions. This example (which are output variables from a parser
configuration file), define four functions of the input variables x, y, and z. The output functions
can be used as constraints in the optimization problem, or can be pushed to segment variables. Any
number of output variables can be defined in any order.
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Figure 13: Example Copernicus Mission Using Segments and Plugins. The mission shown here
includes ten segments and two plugins. The segments can represent multiple vehicles with multiple
propulsion systems, and can be propagated both forward and backward in time. In this example, the
script plugin P1 exports an Earth ascent trajectory that begins the mission, while the parser plugin
P2 implements a T/W constraint at the conclusion of a finite burn phase.
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Figure 14: Example Copernicus Mission Screenshot. In this simple example, the red trajectory

is an ascent trajectory produced by POST, imported into Copernicus via a Python script plugin.
Copernicus manages the optimization problem (multiple iterations are shown here), so POST is
used in this case as only a simulator. The blue segment is a normal Copernicus segment that inherits
the time, mass, and state at the end of the ascent phase.
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analytic gradients with respect to some of the optimization variables. That would mean these
gradients would not have to computed by Copernicus using finite differences, which would
speed up the overall solution process.

• Expand the DLL plugin feature to allow for interfacing plugins written in programming lan-
guages other than Fortran. This may require the “Further Interoperability with C” features
expected in the Fortran 2015 standard.21 However, in practice, this may not be an issue, since
this is currently already possible with the inclusion of a bridge DLL written in Fortran that
can interface with both Copernicus and the user-created DLL written in another language.

• Allow for sending an entire segment trajectory to a plugin. In this mode, Copernicus would
propagate a segment as normal, and send all the points to a plugin. This could be used to
implement various path type constraints, without requiring the plugin to perform the propa-
gation.

• Exporting of additional data and/or procedures from Copernicus to DLL plugins, so that they
have access to some of the internal types and procedures of Copernicus (such as force models,
reference frames, celestial body ephemerides, and propagators). This would make more so-
phisticated DLL plugins possible without having to include basic algorithms that are already
present in Copernicus.

• Implement a more comprehensive hash table caching scheme for plugin input and output vari-
able values. This would provide a more comprehensive framework for reducing the number
of unnecessary plugin calls (if, for example, the plugin is called multiple times with the same
input).

• Expand the GUI to allow for more control over aspects of plugin configuration that currently
require manually editing the config file. Ideally, there would be a GUI for creating plugins
from scratch.

CONCLUSIONS

The new plugin feature is one of the most significant updates to Copernicus since the initial
release. For the first time, it enables users to expand the tool in a variety of ways. Allowing
different types of plugins (from simple to complex) also enables use by analysts who may not be
expert programmers, while still enabling “power users” to code up very sophisticated plugins that
have the potential to add significant new capabilities to the tool. It is expected that this new ability
will greatly increase the utility of Copernicus, and expand the tool into new realms of spacecraft
trajectory design and optimization. It is already being used for Orion and SLS analysis, and will
continue to expand and evolve with the needs of NASA and by incorporating feedback from users.
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NOTATION

API Application Program Interface

DAG Directed Acyclic Graph

DLL Dynamic-Link Library

EI Entry Interface

GUI Graphical User Interface

JSC Johnson Space Center

JSON JavaScript Object Notation

MSFC Marshall Space Flight Center

NASA National Aeronautics and Space
Administration

POST Program to Optimize Simulated
Trajectories

SLS Space Launch System
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