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NAVIGATION AND DISPERSION ANALYSIS OF THE FIRST ORION
EXPLORATION MISSION

Renato Zanetti∗, and Christopher D’Souza†

This paper seeks to present the Orion EM-1 Linear Covariance Analysis for the
DRO mission. The |∆V| statistics for each maneuver are presented. Included
in the memo are several sensitivity analyses: variation in the time of OTC-1 (the
first outbound correction maneuver), variation in the accuracy of the trans-Lunar
injection, and variation in the length of the optical navigation passes.

INTRODUCTION

This memo seeks to document the navigation and dispersion analysis for the Orion EM-1 Distant
Retrograde Orbit (DRO) mission. It is based upon the theory presented in Maybeck.1 This is
a further analysis of the DRO trajectory along the lines of what was presented by D’Souza and
Zanetti.2

The accuracy of the flight-path angle at EI is driven by several factors including the navigation,
targeting, and burn execution errors at the time of the last mid-course maneuver, and unaccounted
trajectory perturbations between the last mid-course maneuver and EI. Apollo missions tolerated a
maximum flight path angle error at EI of ±1 degree, with half of this error allocated to navigation.
A similar criterion is employed in this study.

Perturbations are a major source of errors in the cislunar navigation performance of Orion. In a
perfect world all the sources of perturbations would be modeled in the filter dynamics. However,
computational limitations preclude such extensive modeling. Therefore, the primary sources of
perturbations are characterized. In particular there are three categories of unmodeled acceleration:
propulsive sources, gravitational perturbations, and solar radiation pressure. Only propulsive errors
are included in this analysis; the gravitational and solar radiation pressure are not included – they
will be included in a future study. For EM1, the gravitational and solar radiation pressure errors are
several orders of magnitude below the thrusting sources. The propulsive sources considered are:
attitude deadbands, attitude slews, CO2 venting, and sublimator venting.

Linear covariance techniques are used to perform the analysis for the Orion Cislunar missions.
This comports well for the navigation system design since the cislunar navigation system on Orion
will be an Extended Kalman Filter. Many of the same states and dynamics used in the linear co-
variance analysis will be used in the on-board cislunar navigation system. A preliminary design of
the cislunar navigation system is presented. This is supported by linear covariance analyses which
provides navigation performance, trajectory dispersion performance and |∆V| usage.

∗Aerospace Engineer, EG6, NASA/JSC, Houston, TX.
†Aerospace Engineer, EG6, NASA/JSC, Houston, TX.
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The paper is organized as follows: Section 2 will contain a brief description of linear covariance
analysis. In Section 3, the navigation system will be described, both the filter dynamics as well as
the measurement. Section 4 will contain results of this analysis. Section 5 contains the sensitivity
analysis when the time of OTC-1 is varied. Section 6 contains the sensitivity analysis when the
accuracy of the Trans-Lunar Injection (TLI) is varied. Section 7 contains the sensitivity analysis
when the length of the optical navigation pass is varied. Finally, a few concluding comments are
made in Section 8.

LINEAR COVARIANCE ANALYSIS

This investigation is performed using linear covariance (LinCov) analysis techniques.?, 3 The
state vector is taken to be

x =
{
rT vT θT mT

op mT
tr bT

cent bpd
}T

. (1)
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rT vT θT mT

op mT
tr bT

cent bpd
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where r is the position of the vehicle with respect to the primary body, v is the corresponding
velocity with respect to the primary, θ is the attitude error, mop is teh misalignment of the optical
instrument, btr is the bias position of the instrument with respect to the navigation base, bcent

is the bias of the planetary centroid measurement, and bpd is the bias of the planetary diameter
measurement.

The nominal trajectory is obtained by integrating the nominal dynamics model with an Encke-
Nystrom method.? Neither the rotation vector θ nor its uncertainty are integrated in this analysis.
The nominal attitude is known at any time and it does not need to be calculated. The attitude
estimation error covariance is constant and is driven by the star tracker accuracy. The attitude
navigation dispersion covariance is constant and is given by the attitude control dead-band. The
attitude environment dispersion covariance is constant and obtained from the above two quantities
assumed uncorrelated. Before the star elevation is determined, the vehicle slews in preparation
for measurement acquisition. This attitude maneuver is performed by the onboard thrusters and is
assumed to be instantaneous. Due to thruster misalignment, this maneuver adds uncertainty to the
translational states. After the batch of measurements is available, the vehicle returns to its nominal
attitude. In linear covariance analysis, the difference between the true state and the nominal state is
defined as the environment dispersion

δx , x− x̄. (3)

The difference between the estimated state and the nominal state is defined as the navigation disper-
sion

δx̂ , x̂− x̄. (4)

Finally, the difference between the true state and the estimated state, is defined as the estimation
error, sometimes referred to as the onboard navigation error

e , x− x̂. (5)
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Following the standard Kalman filter assumptions, the difference between the nominal and estimated
models is represented with zero-mean, white noise. The estimated state evolves as

˙̂x = f(x̂), (6)

where f is a nonlinear function representing the system dynamics as modeled by the filter. The
evolution of the nominal state is modeled as

˙̄x = f̄(x̄) = f(x̄) + υ, (7)

where f̄ is a nonlinear function representing the state dynamics as modeled in designing the nominal
trajectory. The nominal dynamics f̄ may be higher fidelity than the filter’s dynamics f . The vector
υ represents the dynamics modeled in the nominal trajectory but neglected in the filter models.
In Kalman filtering, the difference between the true dynamics and the filter’s dynamics is called
process noise. While these unmodeled dynamics are not actually white noise, they are modeled as
such. The power spectral density of process noise is then tuned to achieve good performance. The
same procedure is used here. In order to capture the difference between the two dynamical models,
υ is modeled as a zero-mean white process with spectral density Q̂. The goal is to represent the
increased value of the navigation dispersion during propagation due to the difference between the
nominal and filter’s dynamical models.

The evolution of the navigation dispersion can be approximated to first-order as

δ ˙̂x = ˙̂x− ˙̄x = f(x̄ + δx̂)− f(x̄)− υ ' F(x̄)δx̂− υ. (8)

The evolution of the navigation dispersion covariance is governed by

˙̂
P = F(x̄)P̂ + P̂F(x̄)T + Q̂. (9)

Similarly, the true state is modeled to evolve as

ẋ = f(x) + ν. (10)

The evolution of the estimation error is given by

ė = ẋ− ˙̂x ' f(x̄) + F(x̄)(x− x̄) + ν − f(x̄)− F(x̄)(x̂− x̄) = F(x̄)e + ν. (11)

Vector ν is modeled as zero mean white noise with spectral density Q. The onboard covariance P
evolves as

Ṗ = F(x̄)P + PF(x̄) + Q. (12)

Notice that the Jacobian F could be evaluated at the estimated state x̂ instead of the nominal state
x̄, as in the extended Kalman filter.

Finally
δẋ = ẋ− ˙̄x ' F(x̄)δx + ν − υ (13)

and P̄ evolves as
˙̄P = F(x̄)P̄ + P̄F(x̄) + Q̄. (14)

Notice that Q̄ = Q + Q̂ if ν and υ are assumed to be uncorrelated.
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THE ORION CISLUNAR NAVIGATION FILTER

The Filter Dynamics

Since this filter operates once Orion is away from Earth (and outside of GPS range), the primary
forces governing the motion of the vehicle are the gravitational forces of the Earth, the Moon,
and the Sun. The trajectory is designed taking into account all three of these bodies. Whereas
the equations of motion are formulated with respect to a central body, this (central body) changes
depending on which sphere of influence the vehicle is subject to.

The equations of motion for the Earth-Sun-Moon system are

r̈PV = − µP
r3PV

rPV − µQ

[
rQV

r3QV

+
rPQ

r3PQ

]
− µS

[
rSV
r3SV

+
rPS

r3PS

]
(15)

where and rPV is the position of the vehicle (V ) with respect to the primary body (P ), rQV is the
position of the vehicle with respect to the secondary body (Q), rPQ is the position of the secondary
body with respect to the primary body, rSV is the position of the vehicle with respect to the Sun (S),
and rPS is the position of the Sun with respect to the primary body. The geometry is shown in Figure
2. In many applications, these equations are integrated by a Runge-Kutta or Runge-Kutta-Fehlberg
fixed-step or variable-step algorithms.

However, blindly applying a standard fourth-order Runge-Kutta method can lead to numerical
errors (if large step sizes are taken) not to mention inefficiencies (if small step sizes are taken). The
Encke-Nyström method has been shown to have none of these deficiencies – large step sizes can be
taken and numerical precision maintained at the same time.

Figure 1. The Earth-Sun-Moon-Vehicle Geometry
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The Encke-Nyström Method The Encke-Nyström method has an illustrious legacy. Unlike the
Cowell’s method, only the perturbations away from two-body motion are integrated. As such, the
perturbations being integrated are small and excellent numerical precision is retained. In addition,
since the force-field under which the equations of motion being integrated is conservative, and
since the velocity derivatives are expressed in terms of the position only, a Nyström formulation of
integration is used. The disadvantage of this method is that there is a bit of mathematical set-up
required. However, if one is willing to pay this price, the dividends are enormous – both in terms of
precision and computation time. The equations which are integrated are as follows:

r̈PV = − µP
r3PV

rPV −
µQ
r3QV

[f(qQ)rPQ + rPV ]− µS
r3SV

[f(qS)rPS + rPV ] (16)

where

q( ) =

(
rPV − 2rP ( )

)
· rPV

r2P ( )

f(q( )) = q( )
3 + 3q( ) + q2( )

1 +
(
1 + q( )

)3/2
This formulation was used in the Apollo program.? It should be noted that Eqs.(15) and (16) are
mathematically equivalent.

In order to compute the state transition matrix from an epoch to another epoch in the future (or the
past), the partial of the future (or past) state with respect to the initial epoch must be computed. The
reason the Encke-Nyström algorithm is introduced into this discussion is that the Encke-Nyström
method is predicated on “small” deviations from a reference (osculating) orbit. This is precisely the
foundation upon which the state transition matrix for the cislunar trajectory is built and it is also
the foundation upon which linear covariance analysis is built. Whereas the state transition matrix is
defined as

Φ(t, t0) =

(
∂X(t)

∂X(t0)

)
Xnom

=

 ∂r
∂r0

∂r
∂v0

∂v
∂r0

∂v
∂v0


Xnom

the partials of the dynamics are defined as

A(t) =

(
∂Ẋ

∂X

)
Xnom

(t).

With the dynamics defined in Eq. (40), the partials of the dynamics are found to be

A(t) =

[
03×3 I3
G(t) 03×3

]
(17)
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where G(t) is defined as

G(t) = − µP
r3PV

(
I3 − 3

rPV r
T
PV

r2PV

)
−

µQ
r3QV

I3 −
µS
r3SV

I3 + 3µQ (f(qQ)rPQ + rPV )
rTQV

r5QV

+ 3µS (f(qS)rPS + rPV )
rTSV
r5SV
− µQ

rPQ

r3QV

∂f(qQ)

∂rPV
− µS

rPS

r3SV

∂f(qS)

∂rPV

In the preceding equation,
∂f(q())

∂rPV
is defined as

∂f(q())

∂rPV
= fq()(q())

2
(
rPV − rP ()

)T
r2P ()

and

fq()(q()) =
[3 + 3q()(2 + q())](1 + (1 + q())

3/2)− 1.5q()(3 + 3q() + q2())
√
q() + 1

(1 + (1 + q())3/2)2
.

The Trajectory Partials The Measurements

Optical measurements were processed every 60 seconds. The optical measurements consist of
star-horizon measurements and apparent angular radius measurements. These measurements take
into account when the planetary disk as projected on the focal plane is both larger than and smaller
than the field of view.

Planetary Centroid Measurement

In the past, the camera angles have been expressed in terms of two Euler angles, which we choose
as follows, to allow for the boresight to be (nearly) along the z−axis, as

icamP/cam =

 sinα cosβ
sinβ

cosα cosβ

 (18)

so that the components of the target in camera coordinates is

xP/cam = r sinα cosβ (19)

yP/cam = r sinβ (20)

zP/cam = r cosα cosβ (21)

If instead we are interested in the coordinates in the image plane, u and v such that the vector to
the point of interest is

u =


up−u
fsx
vp−v
fsy

1

 (22)

where, as seen in Figure 2, (up, vp) are the coordinates of the principal point (i.e. the point where
the camera boresight intersects the image plane), sx and sy are the x-axis and y-axis scale factors,
respectively, in units of pixels/length, and f is the focal length of the camera optics.
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Figure 2. Camera Image Plane Coordinates

The unit vector of the line-of-sight vector can also be expressed in terms of the horizontal and
vertical angles, δ and θ, where

tan δ =
up − u
fsx

(23)

tan θ =
vp − v
fsy

(24)

as

icamP/cam =
1√

tan2 δ + tan2 θ + 1

 tan δ
tan θ

1

 (25)

We can relate the two sets of coordinates‡ as follows:

tanα = tan δ (30)

tanβ = tan θ cos δ (31)
‡We note that

cos δ =
fsx√

(up − u)2 + f2s2x
(26)

cos θ =
fsy√

(vp − v)2 + f2s2y
(27)

sin δ =
up − u√

(up − u)2 + f2s2x
(28)

sin θ =
vp − v√

(vp − v)2 + f2s2y
(29)
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Thus

α = δ (32)

Whereas the geometry of the horizontal and vertical angles in the focal (and image) plane are
useful (particularly for correcting for radial distortion), we can directly relate the u, v coordinates
to the position of the planet in the camera frame as

up − u
sxf

=
xcamP/cam

zcamP/cam

(33)

vp − v
syf

=
ycamP/cam

zcamP/cam

(34)

where xcamP/cam, ycamP/cam and zcamP/cam are the Cartesian coordinates of the planet with respect to the
camera expressed in camera coordinates (corresponding to rcamP/cam.

Concept of Operations of Maneuvers and Optical Navigation Passes

It was assumed that there were 4 outbound trajectory correction (OTC) maneuvers on the leg from
the Earth to the Moon, a single powered flyby maneuver (PFM-1) targeted for the DRO insertion
point, two outbound correction maneuvers between the PFM-1 and the DRO Insertion (DRO-I)
point. Once on the DRO, there were 3 (DRO) Orbit Maneuvers (OM) spaced approximately equally,
all targeting the DRO Departure maneuver point. After the DRO Departure (DRO-D) Maneuver,
there are two correction maneuvers targeted the perilune conditions of the second Powered flyby
maneuver (PFM-2). Finally, at after PFM-2, there are three correction maneuvers. These maneuvers
and their TIGs are outlined in Table 1. Note that the times of the maneuvers (TIGs) in the table are
MET, with TLI occuring at an MET of 3.81 hours, so that OCT-1 occurs at TLI + 6 hours. As well
the |∆Vnom| are the nominal size (magnitude) of the maneuver. The non-zero maneuvers (PFM-
1, DOR-I, DRO-D, PFM-2) are the deterministic maneuvers and the remainder are the correction
maneuvers (with a nominal size of zero).

The navigation passes were chosen so as to conclude 1 hour before each maneuver. This was to
allow for the final targeting of the maneuver as well as time to perform an attitude maneuver to get
to the maneuver attitude. During those epochs when the maneuvers occured more than 24 hours
apart, navigation passes were scheduled so as to ensure that the onboard state remained reasonable.

TRAJECTORY AND DISPERSION ANALYSIS FOR THE EM-1 (DRO) MISSION

Table 2 contains the data for the injection covariance matrix used in this analysis. Table 3 contains
the model for the process noise used during the mission, both quiescent and active.4 Tables 4 and
5 contain the optical navigation camera parameters and error model, respectively. Finally, Table 6
contains the maneuver execution errors for this case.

The Navigation Errors for the entire trajectory are presented in Figures 3 and 4. The correspond-
ing trajectory dispersions for the entire trajectory are presented in Figures 5 and 6. The legend
”Lunar Tracking” indicates that period of time when the Moon is tracked.

Trans-DRO Phase

The navigation errors mapped to DRO Insertion errors are presented in Figures 7-8. The trajectory
disperions mapped to DRO insertion trajectory dispersions are presented in Figures 9-10.
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Figure 3. Onboard Position Navigation Error for the Entire Trajectory
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Figure 4. Onboard Velocity Navigation Error for the Entire Trajectory
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Figure 5. Position Trajectory Dispersions for the Entire Trajectory
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Figure 6. Velocity Trajectory Dispersions for the Entire Trajectory
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Maneuver # Type tig (hrs) |∆Vnom| (m/s)

1 OTC-1 9.81 0.000
2 OTC-2 25.81 0.000
3 OTC-3 81.60 0.000
4 OTC-4 97.60 0.000
5 OPF 103.60 174.537
6 OTC-5 122.41 0.000
7 OTC-6 144.00 0.000
8 DRI 169.21 243.072
9 OM-1 204.00 0.000
10 OM-2 240.00 0.000
11 OM-3 276.00 0.000
12 DRD 316.80 84.907
13 RTC-1 372.01 0.000
14 RTC-2 426.01 0.000
15 RTC-3 477.62 0.000
16 RPF 483.62 252.334
17 RTC-4 501.61 0.000
18 RTC-5 591.04 0.000
19 RTC-6 607.04 0.000

Total 754.849

Table 1. The Maneuver Plan

DRO-Orbit Phase

The navigation errors mapped to the time of the DRO Departure Maneuver are presented in
Figures 11-12. The trajectory disperions mapped to the time of the DRO Departure Maneuver are
presented in Figures 13-14.

STATISTICS FOR THE VARIATION IN THE TIME OF OTC-1

Table 7 contains the |∆V| statistics for when the time of OTC-1 is varied. Recall that the times
in the table are MET, with TLI occuring at an MET of 3.81 hours, the nominal OCT-1 occurs at TLI
+ 6 hours.

Finally, Table 8 contains the delivery statistics at the EI point for each of these cases when the
times of OTC-1 were varied.

STATISTICS FOR THE VARIATION IN TRANSLUNAR INJECTION (TLI) ACCURACY

Table 9 contains the values for the (TLI) injection errors and their error source.5 One can see that
the anticipated injection errors (from COVEAP (COVariance Error Analysis Program) are consid-
erably larger than either the requirement or the case when INCA updates were used. One would
expect that the |∆V| statistics would reflect this increase in error for the COVEAP errors.
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Error Value

U (Radial) Position 9443.9 m
V Position 59741.4 m

W (Out-of-Plane) Position 3347.3 m
U (Radial) Velocity 52.066 m/s

V Velocity 8.915 m/s
W (Out-of-Plane) Velocity 12.957 m/s

Table 2. Injection Accuracy (3σ)

Type Value

Quiescent 3.531 × 10−9 m2/s3

Active (CM/SM) 1.310 × 10−5 m2/s3

Active (CM only) 7.877 × 10−5 m2/s3

Table 3. Vehicle Translation Process Noise Characteristics

Table 10 contains the |∆V| statistics for when the (TLI) injection errors were varied. As expected
the COVEAP injection errors result in the largest |∆V| usage.

Finally, Table 11 contains the delivery statistics at the EI point for each of these cases when the
injection errors were varied.

STATISTICS FOR THE VARIATION IN THE LENGTH OF OPTICAL NAVIGATION
PASSES

Table 12 contains the |∆V| statistics for when length of the optical navigation passes is varied.
The last column in the Table is the case when one hour passes are performed for all of the optical
navigation passes except for the last two passes (before the RTC-5 and RTC-6). Rather surprisingly,
there was no statistical difference in |∆V| usage when the length of the optical navigation passes
was varied.

Finally, Table 13 contains the delivery statistics at the EI point for each of these cases when the
length of the optical navigation pass was varied. As expected, the delivery accuracy improves with
the length of the optical navigation pass.

CONCLUSIONS AND RECOMMENDATIONS

This paper has detailed the linear covariance analysis for the EM-1 DRO mission. The major
contributor to the |∆V| usage is the TLI error; hence if the accuracy of TLI can be improved (to
even meeting the requirements) there would be a substantial propellant savings. In addition, if the
epoch of the first correction maneuver (OTC-1) were to occur at TLI + 3 hours, that would result
in a substantial propellant savings. Finally, if the length of the optical navigation passes for the
final two maneuvers (RTC-5 and RTC-6) were to be increased to 2 hours (from 1 hour), that would
improve the trajectory dispersions at EI.
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Parameter Value

Field of View 20.0 degrees
Pixel Pitch 2.2 microns

Focal Length 16.0 mm
Focal Plane Array Size 2592 x 1944

Table 4. Optical Camera Characteristics

Error Type Value

Centroid Measurement 0.14 (1σ) pixels
Diameter Measurement 0.14 (1σ) pixels

Centroid Measurement Markov IC 0.07 (1σ) pixels
Diameter Measurement Markov IC 0.07 (1σ) pixels

Misalignment Markov IC 15.0 (1σ) arc-seconds
Centroid Measurement Markov Time Constant 4.0 hrs

Misalignment Markov Time Constant 60.0 sec

Table 5. Optical Camera Error Model
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Maneuver Execution Error 3σ Value

Noise (mm/s) 3.00
Bias (mm/s) 3.00

Scale Factor (ppm) 30.0
Misalignment (deg) 0.03

Table 6. The Maneuver Execution Error Model

Figure 7. Trans-DRO Onboard Navigation Error Mapped to DRO Insertion Position Errors
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Figure 8. Trans-DRO Onboard Navigation Error Mapped to DRO Insertion Velocity Errors

Figure 9. Trans-DRO Trajectory Dispersions Mapped to DRO Insertion Position Dispersions
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Figure 10. Trans-DRO Trajectory Dispersions Mapped to DRO Insertion Velocity Dispersions

Figure 11. DRO Orbit Onboard Navigation Error Mapped to DRO Departure Position Error
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Figure 12. DRO Orbit Onboard Navigation Error Mapped to DRO Departure Velocity Error

Figure 13. DRO Orbit Trajectory Dispersions Mapped to DRO Departure Position Dispersion
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Figure 14. DRO Orbit Trajectory Dispersions Error Mapped to DRO Departure Velocity Dispersion
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OTC-1 at 3h OTC-1 at 4h OTC-1 at 5h OTC-1 at 6h

Man # Type tig |∆V|nom |∆V|99.73 |∆V|99.73 |∆V|99.73 |∆V|99.73
(hrs) (m/s) (m/s) (m/s) (m/s) (m/s)

1 OTC-1 Varied 0.000 80.332 85.441 90.012 94.431
2 OTC-2 25.81 0.000 0.803 0.838 0.866 0.774
3 OTC-3 81.60 0.000 1.929 2.049 2.241 2.441
4 OTC-4 97.60 0.000 1.574 1.881 2.202 2.550
5 OPF 103.60 174.537 176.266 176.294 176.360 176.412
6 OTC-5 122.41 0.000 5.505 5.505 5.505 5.506
7 OTC-6 144.00 0.000 2.007 2.007 2.007 2.007
8 DRI 169.21 243.072 243.241 243.241 243.241 243.241
9 OM-1 204.00 0.000 0.590 0.590 0.590 0.590
10 OM-2 240.00 0.000 0.715 0.715 0.715 0.715
11 OM-3 276.00 0.000 0.475 0.475 0.475 0.475
12 DRD 316.80 84.907 85.097 85.097 85.097 85.097
13 RTC-1 372.01 0.000 0.349 0.349 0.349 0.349
14 RTC-2 426.01 0.000 0.374 0.374 0.374 0.374
15 RTC-3 477.62 0.000 3.318 3.318 3.318 3.318
16 RPF 483.62 252.334 252.678 252.678 252.678 252.678
17 RTC-4 501.61 0.000 1.664 1.664 1.664 1.664
18 RTC-5 591.04 0.000 1.232 1.232 1.232 1.232
19 RTC-6 607.04 0.000 2.659 2.659 2.659 2.659

Total 754.849 860.807 866.406 871.585 876.513

Table 7. |∆V| Statistics for the Variation in the Times of OTC-1

EI Delivery Error OTC-1 at 3h OTC-1 at 4h OTC-1 at 5h OTC-1 at 6h

Latitude (3σ) 0.559 ◦ 0.559 ◦ 0.559 ◦ 0.559 ◦

Longitude (3σ) 0.022 ◦ 0.022 ◦ 0.022 ◦ 0.022 ◦

Flight Path Angle (3σ) 0.256 ◦ 0.256 ◦ 0.256 ◦ 0.256 ◦

Heading Angle (3σ) 0.303 ◦ 0.303 ◦ 0.303 ◦ 0.303 ◦

Table 8. The Final Entry Interface 3σ Delivery Statistics as a Function of the Time of OTC-1
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Error COVEAP Requirement w INCA Updates

U (Radial) Position 9443.9 m 7950.5 m 6412.9 m
V Position 59741.4 m 41301.6 m 41301.6 m

W (Out-of-Plane) Position 3347.3 m 4696.0 m 2149.1 m
U (Radial) Velocity 52.066 m/s 37.033 m/s 36.850 m/s

V Velocity 8.915 m/s 6.437 m/s 6.282 m/s
W (Out-of-Plane) Velocity 12.957 m/s 8.458 m/s 8.102 m/s

Table 9. Variation in Injection Accuracy (3σ)

COVEAP Requirement w INCA Updates

Man # Type tig |∆V|nom |∆V|99.73 |∆V|99.73 |∆V|99.73
(hrs) (m/s) (m/s) (m/s) (m/s)

1 OTC-1 9.81 0.000 94.431 68.466 66.551
2 OTC-2 25.81 0.000 0.774 0.619 0.611
3 OTC-3 81.60 0.000 2.441 2.054 2.041
4 OTC-4 97.60 0.000 2.550 1.890 1.858
5 OPF 103.60 174.537 176.412 176.283 176.275
6 OTC-5 122.41 0.000 5.506 5.505 5.505
7 OTC-6 144.00 0.000 2.007 2.007 2.007
8 DRI 169.21 243.072 243.241 243.241 243.241
9 OM-1 204.00 0.000 0.590 0.590 0.590
10 OM-2 240.00 0.000 0.715 0.715 0.715
11 OM-3 276.00 0.000 0.475 0.475 0.475
12 DRD 316.80 84.907 85.097 85.097 85.097
13 RTC-1 372.01 0.000 0.349 0.349 0.349
14 RTC-2 426.01 0.000 0.374 0.374 0.374
15 RTC-3 477.62 0.000 3.318 3.318 3.318
16 RPF 483.62 252.334 252.678 252.678 252.678
17 RTC-4 501.61 0.000 1.664 1.664 1.664
18 RTC-5 591.04 0.000 1.232 1.232 1.232
19 RTC-6 607.04 0.000 2.659 2.659 2.659

Total 754.849 876.513 849.216 847.240

Table 10. |∆V| Statistics for the Variation in (TLI) Injection Errors
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EI Delivery Error COVEAP Requirement w INCA Updates

Latitude (3σ) 0.559 ◦ 0.559 ◦ 0.559 ◦

Longitude (3σ) 0.022 ◦ 0.022 ◦ 0.022 ◦

Flight Path Angle (3σ) 0.256 ◦ 0.256 ◦ 0.256 ◦

Heading Angle (3σ) 0.303 ◦ 0.303 ◦ 0.303 ◦

Table 11. The Final Entry Interface 3σ Delivery Statistics as a Function of the Injection Accuracy

1 Hour Pass 1.5 Hour Pass 2 Hour Pass 1∗ Hour Pass

Man # Type tig |∆V|nom |∆V|99.73 |∆V|99.73 |∆V|99.73 |∆V|99.73
(hrs) (m/s) (m/s) (m/s) (m/s) (m/s)

1 OTC-1 9.81 0.000 94.431 94.431 94.431 94.431
2 OTC-2 25.81 0.000 0.774 0.775 0.775 0.774
3 OTC-3 81.60 0.000 2.441 2.435 2.429 2.441
4 OTC-4 97.60 0.000 2.550 2.550 2.550 2.550
5 OPF 103.60 174.537 176.412 176.381 176.362 176.412
6 OTC-5 122.41 0.000 5.506 5.401 5.385 5.506
7 OTC-6 144.00 0.000 2.007 1.963 1.953 2.007
8 DRI 169.21 243.072 243.241 243.225 243.216 243.241
9 OM-1 204.00 0.000 0.590 0.570 0.553 0.590
10 OM-2 240.00 0.000 0.715 0.677 0.647 0.715
11 OM-3 276.00 0.000 0.475 0.456 0.441 0.475
12 DRD 316.80 84.907 85.097 85.092 85.088 85.097
13 RTC-1 372.01 0.000 0.349 0.337 0.329 0.349
14 RTC-2 426.01 0.000 0.374 0.360 0.350 0.374
15 RTC-3 477.62 0.000 3.318 3.239 3.173 3.318
16 RPF 483.62 252.334 252.678 252.664 252.655 252.678
17 RTC-4 501.61 0.000 1.664 1.599 1.573 1.664
18 RTC-5 591.04 0.000 1.232 1.165 1.125 1.232
19 RTC-6 607.04 0.000 2.659 2.436 2.322 2.780

Total 754.849 876.513 875.755 875.357 876.634

Table 12. ∆V Statistics for the Variation in the Length of the Optical Navigation Pass
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EI Delivery Error 1 Hour Pass 1.5 Hour Pass 2 Hour Pass 1∗ Hour Pass

Latitude (3σ) 0.559 ◦ 0.488 ◦ 0.424 ◦ 0.438 ◦

Longitude (3σ) 0.022 ◦ 0.019 ◦ 0.018 ◦ 0.018 ◦

Flight Path Angle (3σ) 0.256 ◦ 0.223 ◦ 0.194 ◦ 0.200 ◦

Heading Angle (3σ) 0.303 ◦ 0.265 ◦ 0.231 ◦ 0.239 ◦

Table 13. The Final Entry Interface 3σ Delivery Statistics as a Function of the Length of the Optical
Navigation Pass
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