

Range Reference Atmosphere 2013 Production Methodology

Lee Burns Raytheon/Jacobs ESSSA NASA/MSFC/EV44 Natural Environments

Spring, 2015 RCC-MG Meeting

Philosophy, Ground Rules, and Assumptions

Why did NASA/MSFC/EV44 (EV44) take on this project?

- General support for RCC programs and products.
- Use in Earth Global Reference Atmospheric Model (Earth-GRAM).

Data quality is stressed over quantity.

- If a profile fails a quality control (QC) check for one parameter then that profile is removed from computations for all parameters.
- Some QC relies on subject matter expertise (SME). Subjective judgments emphasize conservatism. "If in doubt, throw it out."

Process is performed in discrete steps.

- Output results from each step are saved in separate data files. This allows intermediate process inspection. Outputs from one step are used as the inputs to the next step.
- A lofty goal is full automation, but the difficulties associated with "real data" require SME interaction and babysitting.

Possible Methodology Outlines

Step 1: Determine Sites of Interest

Phase 1: Funded by NASA Space Launch System program.

Phase 2: Funded by Range Commanders Council.

Step 2: Define Parameters

Vertical coordinate:

Geometrical altitude in meters above Mean Sea Level.

Physical variables

Wind speed:	WS
Zonal wind:	U
Meridional wind:	V
Temperature:	Т
Dewpoint:	Td

Virtual temperature:	Τv
Pressure:	Ρ
Density:	D
Vapor pressure:	VP

Statistical quantities

Mean value:	μ
Median value:	MDN
Standard deviation:	σ

Skewness coefficient:SKEWLinear correlation: $r_{x,y}$

Step 3: Gather the Data

First preference: Get data directly from range weather office.

Cape Canaveral Edwards	N V	/ande Vallo	lenberg ops							
Wake Island	C	China	Lake							
Second preference: Get data from archival/distribution site.										
National Climatic D Integrated Global R	ata Center (NCDC), adiosonde Archive (IG	Earth System Laboratory (E	Research SRL)							
Kwajalein Dugway Eglin Kodiak	Wake Island Barking Sands Thule Yuma		Yuma China Lake	Point Mugu						
Wallops Vandenberg	China Lake Point Mugu		-55	ŝ.						

759.0 925,000

1482.1

155.0

761.0

640.7 1496.2

771.1

873.

889 1124.1

976.1

777.1

857.3

1400.9

1277.5

768.1

759.0

775.1

1095.0

3128.6

834.2

1504.2

1514.2

781.1

1511.3

880 4

795.1

1520.2

852.3

1269

1031.8

1068 9

1223.4

2150 6

818.3

907.5

1325.1

1529.2

2633.8

805.2

1482.1

797.1

1516.2

794.1

796.1

872.4

1377.8

850.000

925.000

925.000

939,000

850.000

925,000

911 000

887.000

904 000

925.000 916.000

860.000

925,000

925.000

924,000

890.000

700.000

919,000

850.000

850,000

925.000

916 000

925.000 850 000

919.000

900.000

896 000

880.000

700 000

922 000

914.000

869.000

850.000

745.000

923 000

852.000

925,000

850,000

925,000

925.000

917.000

864.000

15.63

15.6

17.4

19.2

16.0 15.0 19.0 15.4 16.4 20.2 17.03 19.0 18.8 18.8 21.8

NaN

NaN

NaN

20 65

15.8

19 03

19.6

18.6

16.83

Step 4: Format/Subset the Data

464 2

751.0 925.000

19.45

18.75

NaN

-8.90 |

-5.10

619 6 940 000

768.1 924.000

19.45 18.75

12	43	2.0 1008.000	26.65	22.75	-3.50	-0.60	72.2 1000.000	26.05	22.66	-4.40	-1.20	752.0	925.000	20.85	18.84	-9.20	-1.60	1139.1	885.000	17.85	16.75	NaN	NaN
00	47	2.0 1008.000	28.45	23.46	-5.00	-0.90	72.2 1000.000	27.65	22.65	-7.10	-1.30	415.1	962.000	24.45	23.24	NaN	NaN	597.6	942.000	22.65	22.15	NaN	NaN
1																							
	RI /		'n A	CE		F\ /	ллІ			L – –			 _							•			_
			IVI	SF		F V 2	14 na	SA		гar	nda	n r ci	TO	rm	าสา	TO	n a	arc	niv	/Ing	JЛ	ат	ิล
1					\sim /		ттпы	50		L MI	IMU	пм			iuc					/	5 4		ч.
<u>ا</u>																							
12	46	2.0 1009.000	27.05	22.09	-6.20	-3.60	81.2 1000.000	26.45	22.79	-7.60	-5.30	614.6	941.000	21.45	20.25	NaN	NaN	763.0	925.000	20.45	17.84	-7.90	-6.60

-5,90 |

-6.20

-4.10

Master File Format (MFF)

-4.00

-4.70

21.66

22 00 51 |

36 1

12

12 25

12 28

12 29

12 29

12 30

12 30

12 1992

> 12 31

> 01 01

> 01 01 03

> 01 03

01 04

01 04

01 05

01 05

01 06

01 07

01

01 08

01 08

01 10 01 10

01 11

01 12

01 12

01 13

01

01

01 15

01 1993

14 01 15

16

1992 01 06

1993 01 09

1992 01 09

1993

1993 01 11

1992

1002

1993 01

1993 01 01

31

1992

1992 12 26 12 2.0 1009.000

2.0 1008.000

28 85

26.65

- Various input formats (Shuttle, IGRA, ESRL) are converted to MFF.
- Remove 'garbled' and duplicate profiles identified during data ingest.
- Convert year values from 2-digit to 4-digit, if necessary.

27 85

72.2 1000.000 26.25 21.56

- Convert various "missing data" flags (ex. -999.99) to IEEE NaNs.
- Compute U and V winds from wind speed and direction.
- Input datasets with long periods of record (POR) are trimmed to highlight most recent data (highest quality, most representative). Standard POR is from 1990 to present. If sample sizes are insufficient, then older data are included.
- Multiple-source input data are integrated into a single file.

1220	1 1	/ 00	1/1	2.0 1012.000	20.00	21.00	-7.00	-1.10	107.3 1000.000	20.00	21.00	-3.60	-1.10	070.0	547.000	20.00	19.90	100	100	/00.1	520.000	20.20	10.00	-14.00	-0.10	1010.2	000.000
1993	01 1	7 12	29	2.0 1012.000	26.65	21.66	-7.10	-4.10	106.3 1000.000	25.85	21.56	-9.30	-4.40	788.1	925.000	20.45	19.05	-14.70	-2.60	879.4	916.000	20.05	18.75	NaN	NaN	1020.8	901.000
1993	01 1	B 00	35	2.0 1012.000	28.25	21.25	-7.50	-6.30	230.6 986.000	23.85	19.95	NaN	NaN	634.7	941.000	19.85	18.75	NaN	NaN	763.0	927.000	19.45	16.36	NaN	NaN	1264.5	874.000
1993	01 1	8 12	46	2.0 1011.000	26.85	22.46	-6.70	-3.90	98.3 1000.000	26.25	23.06	-10.20	-5.90	778.1	925.000	20.05	19.34	-15.90	-4.30	1508.2	850.000	16.45	15.45	-16.90	-1.50	1534.3	848.000
1993	01 1	9 00	54	2.0 1011.000	28.85	22.86	-8.50	-4.90	98.3 1000.000	27.25	23.36	-10.20	-5.90	239.6	984.000	25.05	23.55	NaN	NaN	776.1	925.000	20.65	19.85	-16.80	-7.80	868.3	916.000
1993	01 2	00 0	43	2.0 1010.000	28.85	23.96	-7.50	-6.30	90.2 1000.000	27.45	23.96	-9.70	-6.80	272.7	980.000	24.85	23.96	NaN	NaN	774.1	925.000	21.25	20.75	NaN	NaN	1547.3	846.000
1993	01 2	0 12	47	2.0 1010.000	27.25	23.95	-6.70	-3.90	89.2 1000.000	26.25	23.95	-8.10	-4.70	250.7	982.000	24.65	24.14	NaN	NaN	770.1	925.000	21.65	20.56	-15.00	-5.50	1061.9	895.000
1993	01 2	1 00	49	2.0 1011.000	28.85	23.96	-6.30	-5.30	98.3 1000.000	27.65	23.55	-8.40	-5.90	247.6	983.000	25.65	22.75	NaN	NaN	491.3	956.000	24.25	20.36	NaN	NaN	1119.1	889.000
1993	01 2	1 12	55	2.0 1011.000	27.05	23.06	-4.90	-2.90	98.3 1000.000	26.25	23.35	-6.20	-3.60	618.6	942.000	21.45	21.25	NaN	NaN	776.1	925.000	20.65	20.06	-12.20	-2.20	990.7	903.000
1993	01 2	2 00	42	2.0 1011.000	29.45	23.46	-3.90	-3.30	98.3 1000.000	27.25	23.85	-5.10	-3.60	217.6	987.000	24.85	24.05	NaN	NaN	495.3	956.000	22.65	22.15	NaN	NaN	622.7	942.000

Step 5: Quality Control the Data

Out of bounds value check. Convert the following to NaNs:

- U or V values > 200 m/s.
- T values < -100 C
- T values > 70 C.
- Td values where T < -60 C.

- Td value < -60 C.
- P value < 0 mb
- P value > 1200 mb.

Remove profiles for the following conditions:

- Lowest reporting altitude has no valid data (NaNs).
- # levels with any valid data < 10.
- # levels with valid P, T, Td, U, or V data < 8.
- Lowest reporting altitude > nominal surface + 0.1 km.
- Maximum wind shear between adjacent levels > 0.3 s^{-1} .
- Profile is judged to be erroneous by visual inspection by SME. This is an explicitly interactive process.

Step 6: Interpolate the Data

Step 6.1: Establish Output Altitude Grid

- Standard vertical domain goes from 0-30 km MSL.
- 0.5 km vertical resolution.
- Lowest grid value is set to nominal surface value.
- Any altitudes < nominal surface value are removed.

Step 6.2: Compute Geopotentials

Step 6.3: Interpolate Wind Values

Step 6.4: Interpolate Pressure

Step 6.5: Interpolate Temperature, Dewpoint

JACOBS

Step 6.6: Compute Derived Quantities

Step 7: Compute Statistical Values

Computations are made independently for each altitude. Monthly, net annual values.

- Sample size:
- Mean values:
- Median values:
- Standard deviations:
- Skewness coefficients:
- Correlation coefficients:

Wind, Thermo, Humidity. U, V, WS, P, T, D, VP, Tv, Td. U, V, WS, P, T, D, VP, Tv, Td. U, V, WS, P, T, D, VP, Tv, Td. WS, P, T, D, VP, Tv, Td.

A

Compute Mean and Median Values

Mean values:

$$\mu_{\mathsf{X}} = N^{-1} \times \sum_{i=1}^{N} X_N.$$

Median values:

Let
$$\acute{X} = sort(X)$$
. Then, $MDN_{\chi} = \begin{cases} \acute{X}\left(\frac{N+1}{2}\right) & \text{odd N.} \\ \frac{1}{2} \times \left[\acute{X}\left(\frac{N}{2}\right) + \acute{X}\left(\frac{N}{2} + 1\right)\right] \text{ even N.} \end{cases}$

Compute Standard Deviation and Skewness

Variance:

$$VAR_{X} = \frac{1}{N-1} \times \sum_{i=1}^{N} (X_{i} - \mu_{X})^{2}.$$

Standard deviations:

$$\sigma_{\rm X} = \sqrt{\rm VAR}_{\rm X}$$

Skewness:

SKEW_X =
$$\frac{1}{N} \times \sum_{i=1}^{N} \left(\frac{X_i - \mu_X}{\sigma_X}\right)^3$$

Compute Wind Component Correlation

Linear Pearson correlation coefficient:

$$\mathbf{r}_{U,V} = \frac{\sum_{i=1}^{N} [(U_i - \mu_U)(V_i - \mu_V)]}{\sqrt{\sum_{i=1}^{N} (U_i - \mu_U)^2 \sum_{i=1}^{N} (V_i - \mu_V)^2}}$$

Step 8: Diagnostic Testing

Tests performed independently for U, V, WS, T, Td, and P. Computed RRA mean values and standard deviations are used to produce $\mu \pm 6\sigma$ envelopes for each month. All constituent profiles are compared to the envelopes. If all profiles are within the envelopes, then diagnostic • testing is complete and process continues on to validation testing. Any profile with any value outside the respective • envelopes are removed from the set of interpolated profiles. Once this is complete, then step 7 is repeated with the new set of input profiles. This cycle is iterated until there are no envelope exceedances.

Diagnostic Testing Results (Example)

Step 9: Validation Testing

A total of ten validation tests are performed

- Five skewness tests: P, T, Td, D, WS.
- Three Buell relationship tests.
- Gas law reconstruction test.
- Wind component reconstruction test.

Validation Testing: Skewness

Monthly skewness values at each altitude are compared to established limits. Any noted exceedances are flagged as failures.

Parameter	Valid Skewr	ness Condition
WS	SKEW ≤ 4.0	for µ _{ws} < 15 m/s
	SKEW ≤ 2.5	for $\mu_{ws} \ge 15$ m/s
Р	-2.5 ≤ SKEW ≤ 2.5	
Т	-2.5 ≤ SKEW ≤ 2.5	
D	-3.5 ≤ SKEW ≤ 3.5	
TD	-2.5 ≤ SKEW ≤ 2.5	

Validation Testing: Buell Relationships

Equalities relating thermodynamic statistical parameters. Any month/altitude combinations where |LHS-RHS| > 0.1 are flagged as failures.

#1

#2

#3

Buell, C.E., Some relations among atmospheric statistics, J. Met., **11**, 1954

> Thermodynamic correlation terms are not part of RRA output but are computed concurrently for this test

Validation Testing: Gas Law Reconstruction

Specific gas constant, R, is derived from output RRA mean values and compared to the accepted value. Any differences greater than 0.5 J kg⁻¹ K⁻¹ are flagged as failures. Note that this test is only applied above 10 km, where the air is assumed dry.

$$R_{RRA} = \frac{P}{D \times T}$$

$$R_{accepted} = 287.058 \text{ J kg}^{-1} \text{ K}^{-1}$$

Validation Testing: Wind Reconstruction

Assuming a bivariate normal distribution of the U and V wind components, the component statistics (mean and standard deviations) can be related to the wind speed statistics. A monthly mean wind speed estimate is computed from this relationship and compared to the RRA mean wind speed. Any differences greater than 3 m/s are flagged as failures.

$$\mu_{\rm WS,estimate} = \sqrt{\mu_U^2 + \mu_V^2 + \sigma_U^2 + \sigma_V^2 - \sigma_{WS}^2}$$

JACOBS

Buell Relationships

JACOBS

Wind Speed Skewness

JACOBS

Gas Law Reconstruction

JACOBS

Wind Speed Reconstruction

Validation Testing Notes

- All tests are performed analytically. Graphs are only used for visualization.
- A validation test "failure" does not identify the particular bad profile(s) causing the failure. If a failure is noted, then various idiomatic secondary analyses are performed to identify the profiles causing the failure condition. This process is highly interactive and relies heavily on SME experience and judgment.
- After a dataset passes all validation tests, then an independent validation is performed by other EV44 personnel using separately implemented methodology.

Step 8: Post-Processing/Documentation

- Generate plots of all RRA statistical parameters.
- Save RRA data to Excel spreadsheet format.
- Save timestamp listing and inventory files for all profiles used for final RRA production.
- Create Earth GRAM-formatted text files.
- Produce RRA development reports for each site.
- Send Excel files and development reports to the RCC-MG Meteorological Support Committee chair, for posting on the EAFB weather office web site.

Summary

- New RRA datasets have been created for 15 sites. These are available on the EAFB weather office web site.
- The New RRAs are also available, in Earth-GRAM format, by requesting Earth-GRAM 2010 V.4 from EV44. POC is Patrick White 256-544-5776

Patrick.W.White@NASA.gov

 Now that EV44 has developed the capability, we would like to support additional future developments. Providing this support operationally may require some finagling. Due to the nature of the process and the necessity of SME interaction, EV44 would prefer not to give out our software to avoid potential misapplication.

Questions

Periods of Record Used

SITE	Start POR	End POR	# Profiles	Data Source
Cape Canaveral	11/26/1988	12/31/2011	16813	Station
Edwards	1/2/1990	4/4/2012	9291	Station
Vandenberg	12/2/1992	1/7/2013	9733	Station + IGRA
White Sands	1/2/1992	8/26/2012	9055	IGRA
Wallops	1/1/1990	1/7/2013	15108	Station + IGRA
China Lake	1/8/1980	12/18/1997	3506	IGRA + ESRL
Point Mugu	1/23/1971	8/27/2013	8386	IGRA + ESRL
Dugway	1/1/1990	11/17/2013	15817	IGRA
Yuma	10/19/1971	12/24/2013	8650	IGRA + ESRL
Eglin	1/28/1980	11/13/2013	11909	IGRA
Kwajalein	1/1/1990	11/17/2013	14772	IGRA
Kodiak	1/1/1990	11/17/2013	16465	IGRA
Wake Island	1/1/1980	5/13/1997	11839	IGRA
Barking Sands	1/1/1980	1/27/2015	17037	IGRA
Thule	1/1/1980	10/10/2006	13418	IGRA

