International Space Station (ISS) 3D Printer Performance and Material Characterization Methodology

Quincy Bean NASA Marshall Space Flight Center

In-Space Manufacturing Overview

ISS-based

International Space Station (ISS) Technology Demonstrations are Key to 'Bridging' necessary Technology Development to Full Implementation of the Required In-space Manufacturing Capabilities for Exploration Missions.

ISS Platform

- 3D Print Tech Demo
- Future Engineers Print
- Additive Manufacturing Facility (AMF)
- In-space Plastic Feedstock Recycling
- Utilization Catalogue

Benefits

- On demand access to replacement parts and tools
- Streamlined orbital supply chain
- Critical technology for exploration missions

Earth-based Platform

- Certification & Verification
 of Parts Produced In-space
- In-space Characterization
 Database
- Printable Electronics & Spacecraft
- External In-space Manufacturing (not currently funded)

Alanetary Surface

Development & Test Synthetic Biology: Engineer and Characterize BioFeedstock Materials &

Processes

Missions.

Deep

Planetary Surfaces Platform

Beds and Reduced Gravity

Asteroid Manufacturing as well as Future Deep Space

Additive Construction

Regolith Materials

In-situ Feedstock Test

Flights Which Directly

Support Technology

Advancements for

s space Missions

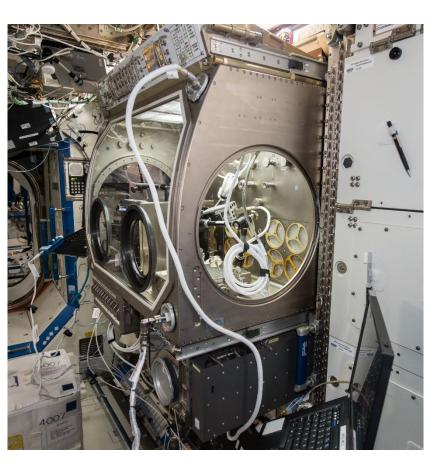
Earth-based Platform (cont.)

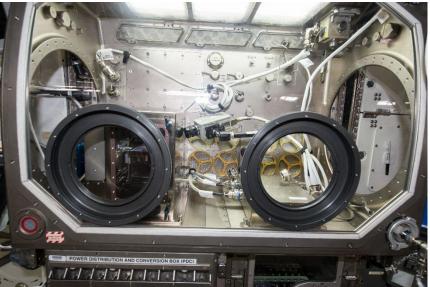
- In-space Metals Manufacturing
 Process Study (not currently funded)
- Additive Repair Ground Testing
- Self-Replicating/Repairing Machines
- In-situ Feedstock Development & Test: See Asteroid Platform
- Automation and Sensor Development

3D Print Technology Demonstration

3D Print Flight Unit with the Microgravity Science Glove Box Engineering Unit in the background

- First manufacturing capability on the International Space Station
- Phase 1: Proof of concept experiment
- 21 parts made on the ground with the flight unit and flight feedstock
- Same 21 parts made on orbit
- Comparisons will be made between flight and ground samples
 - Porosity
 - Layer adhesion
 - Mechanical properties
- Phase 2 will incorporate practical application


Tensile Coupon


Range Coupon

3D Print Phase I Timeline

- Launch via Falcon 9 rocket (SpaceX-4) 12:52AM Central on 21 Sept 2014
- Docking with ISS 5:52AM Central 23 September 2014
- Installation in MSG on 17 November 2014
- Phase I printing (following calibration) 24 November 2014 to 15 December 2015 (as crew time allowed)
- Removed from MSG on 16 December 2014 and stowed
- Phase I prints returned to Earth (SpaceX-5) 10 February 2015
- Unboxed at MSFC 6 April 2015
- Begin testing 28 April 2015

3D Print Ground and Flight Sample Testing

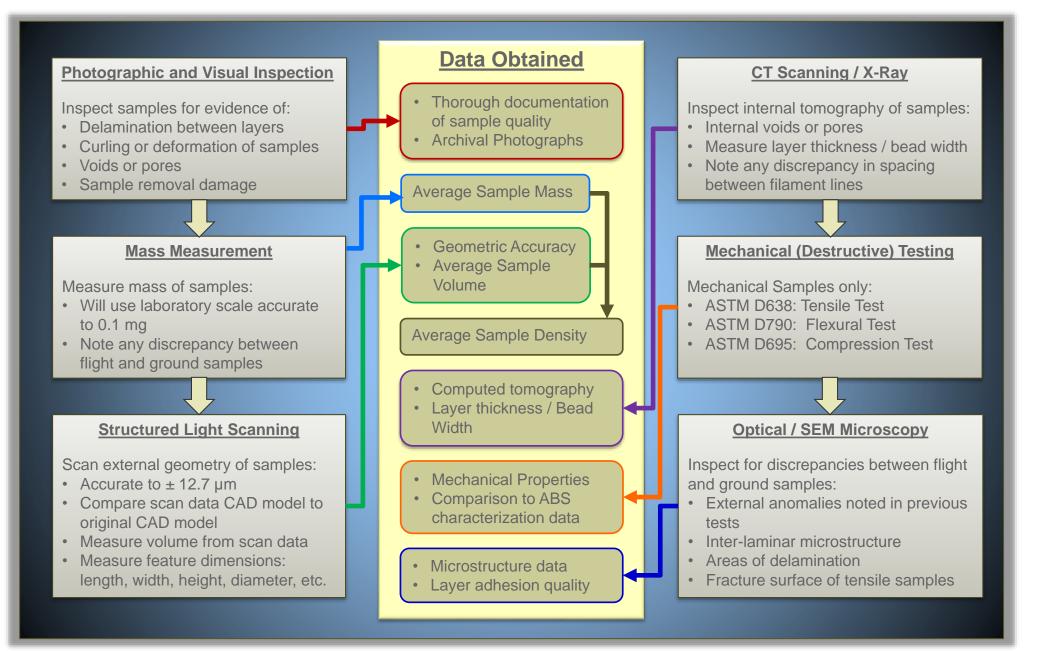
Non-Destructive Evaluation

Initial inspection

Visual

Photographic

- Structured Light Scanning
- Mass/Density
- Computed Tomography
- Optical Microscopy
- Scanning Electron Microscopy



Phase 1 Test Plan

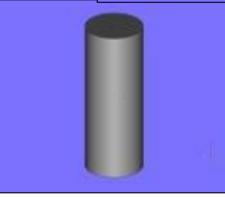
Visual and photographic Inspection

- Identification and documentation of anomalies, damage (e.g., print tray removal damage)
- Identification and documentation of any visual differences between flight and ground samples (initial identification of microgravity effects)
- Attention will be given to any signs of delamination between layers, curling of the sample, surface quality, damage, voids or pores, and any other visually noticeable defect.

- Structured Light Scanning
 - ATOS Compact Scan Structured Light Scanner
 - Blue light grid projected on the surface
 - Stereo-images captured
 - Image processing provides
 - A CAD model of the printed part

- A comparison of the printed part and the original CAD file from which the part was printed
- A statistically valid determination of the volume of the sample

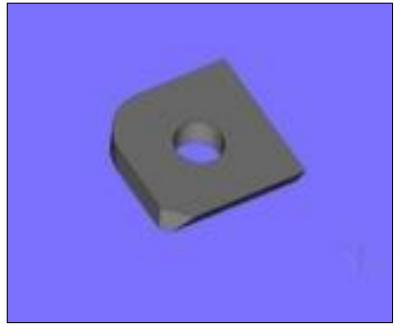
- Mass Measurement / Density Calculation
 - Mass measurement using a calibrated laboratory scale accurate to 0.1mg repeated five times for a mean mass
 - Density calculation requires the volume determined by structured light scanning
 - Provides information on void space or expansion of the material created during the printing process
 - Flight samples will be compared with their respective ground samples to assess any differences

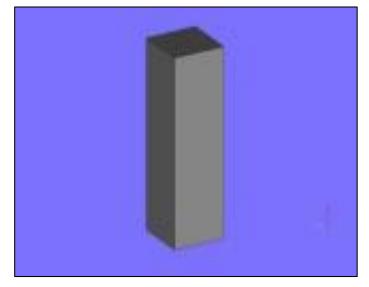

- Computed Tomography
 - Phoenix Nanome|x 160
 - X-ray scans
 - Provides 2D and 3D models of the internal structures that could affect mechanical properties
 - Internal voids
 - De-lamination of the ABS layers
 - Resolution as low as 8-10 microns is possible

- ASTM Standards
 - D638 for tensile testing
 - Tensile strength, tensile modulus, and fracture elongation
 - D790 for flexure testing
 - Flexural stress and flexural modulus
 - D695 for compression testing
 - Compressive stress and compressive modulus

- Optical (Leica M205 A) and Scanning Electron Microscopy (Hitachi S-3700N)
 - Detail the surface microstructures of the layers
 - Detail the surface of the flight prints damaged by over-adhesion to the build tray; it is hoped this will identify the root cause of the overadhesion
 - Inter-laminar regions will be investigated; flight and ground samples will be compared
 - Defects or anomalies noted by the initial inspection will be examined, as well as the fracture surfaces from the mechanical tests

Storage and Handling of Samples


To eliminate any potential differences in flight versus ground results caused by environmental factors, the following storage and handling instructions were followed:


- All samples shall be stored individually in clearly marked and sealed plastic bags.
- Desiccant shall be placed in each bag with the sample.
- When not in use, samples shall be stored in a dry place at room temperature and away from direct sunlight.
- All handlers of the samples shall wear latex or other suitable gloves to avoid direct skin contact.
- The samples are to be kept dry at all times and kept away from any moisture source unless otherwise specified for a specific test.
- The samples themselves will not be labeled, to avoid mixing up the samples only 1 sample will be tested at a time.
- Once testing of a sample is completed, the sample shall be returned to its bag and the next sample may be tested.
- Once the test conductors have completed testing all of the samples, they shall notify and return the samples to the Principal Investigator.

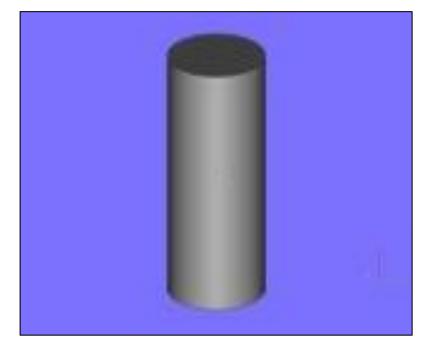
Calibration Coupon

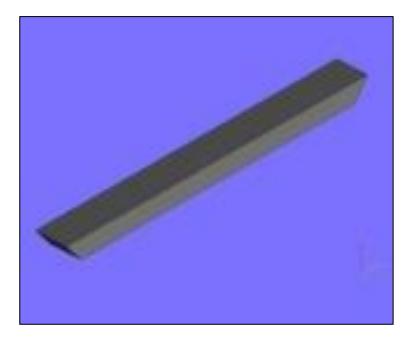
- Sample 001
- 3.00cm x 3.00cm x 0.41cm
- Printed to test calibration of the distance between the extruder and print plate

Layer Quality Test Specimen

- Sample 003
- 1.00cm x 1.00cm x 3.00cm
- Printed to assess the layer quality and tolerances

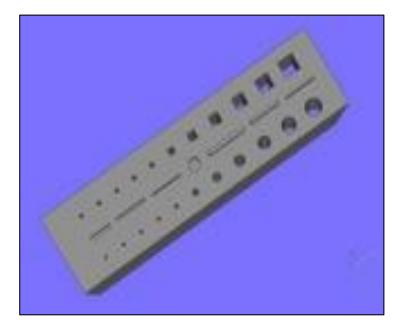
Tensile Coupon


- Samples 004, 012, 015, and 018
- 11.35cm x 1.91 cm (neck width 0.61cm) x 0.41cm
- Printed to assess the tensile strength of the printed material at 45°C/-45°C lay-up orientation



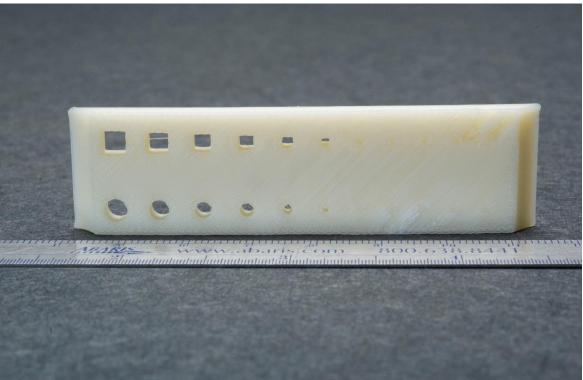
Compression Coupon

- Samples 005, 013, and 016
- Diameter 1.27cm, height 2.54cm
- Printed to assess the compressive strength of the printed material



Flexural Coupon

- Samples 006, 014, and 017
- 8.81cm x 0.99cm x 0.41cm
- Printed to assess flexure properties of the printed material at 45°C/-45°C lay-up orientation

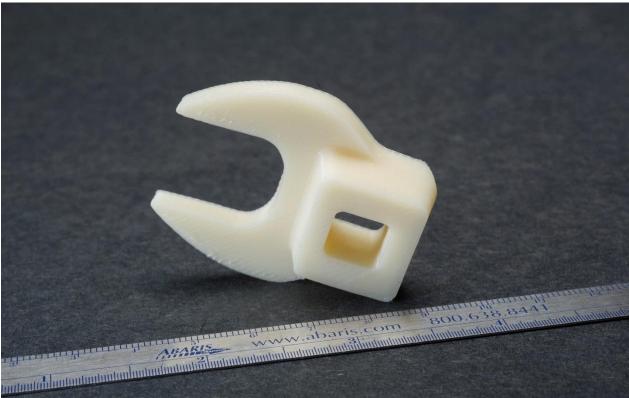


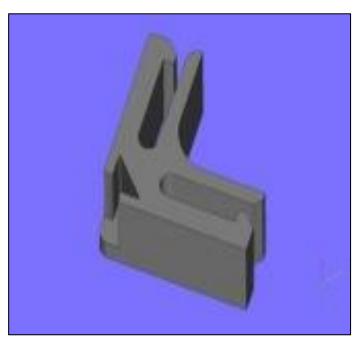
Negative Range Coupon

- Sample 007
- 7.49cm x 2.01cm x 0.43cm
- Printed to test performance, geometric accuracy, and tolerances of the 3D Print for voids of specific geometry

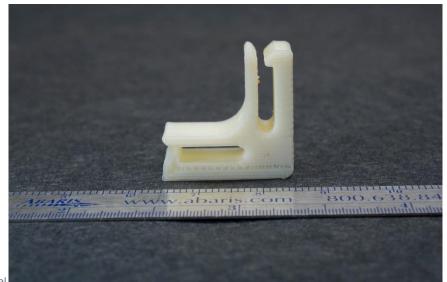
Torque Tool Specimen

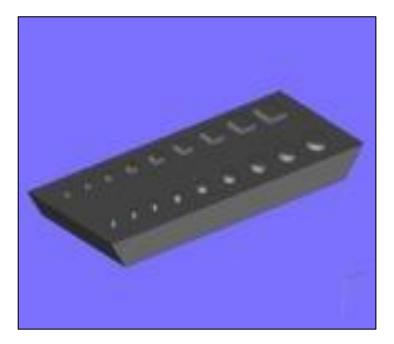
- Sample 008
- Diameter 3.00cm x height 2.50cm
- · Printed to demonstrate the ability to fabricate replacement crew tools




Crowfoot Specimen

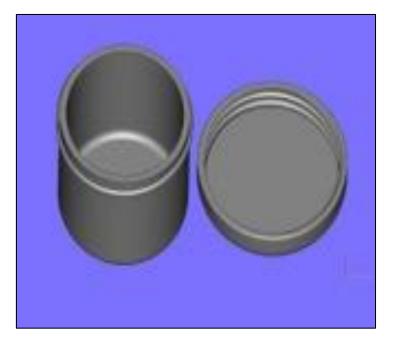
- Sample 009
- 4.70cm x 3.99cm x 1.30cm
- Printed to demonstrate the ability to fabricate replacement crew tools





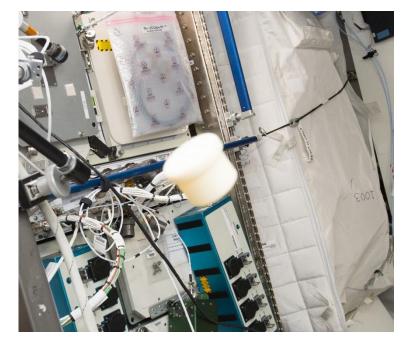
Structural Clip Component

- Sample 010
- 2.69cm x 2.10cm x 0.90cm
- Structural connector / spacer that can be utilized to assemble avionics / electronics cards onorbit
- Printed to demonstrate the ability to fabricate structural components, potentially eliminating the constraints imposed by launch loads on spaceflight structures



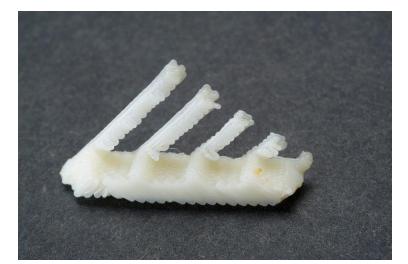
Positive Range Coupon

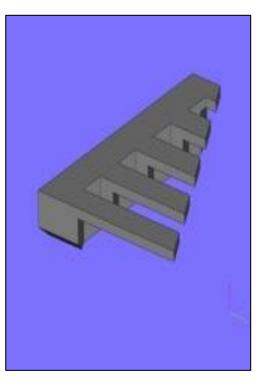
- Sample 011
- 6.12cm x 2.01cm x 0.51cm
- Printed to test performance, geometric accuracy, and tolerances of the 3D Print for positive relief features

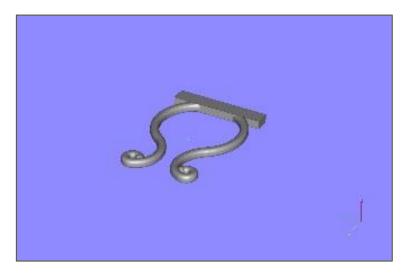


Sample Container


- Sample 019
- Body diameter 4.03cm, body height, 3.28cm
- Top diameter 4.60cm
- Printed to test the printer's capability to produce two items at one time with interlocking-capable threads






Microgravity Structure Specimen

- Sample 020
- 2.46cm x 2.21cm x 0.51cm
- Printed to demonstrate fabrication of a part that would be difficult, if not impossible, to successfully 3D print in the pictured orientation due to gravity (i.e., sag, overhang, etc.)
- Used to determine if benefits exist to printing in microgravity (i.e., the ability to print large overhangs without supports)



Wire Tie

- Sample 021a
- 1.92cm x 1.30cm x 0.12cm
- · Printed to demonstrate the flexibility of the material after printing

Ratchet

- Sample 021b
- 11.35cm x 3.30cm x 2.59cm
- The software file for this part was uplinked, illustrating how a part can be designed on Earth and manufactured in space, on demand

3D Print Forward Work

- Finalizing Phase II samples (including Future Engineers STEM print)
- Testing of Phase I samples
- Printing of Phase II samples
- Delivery of Phase II samples to Earth
- Phase III?

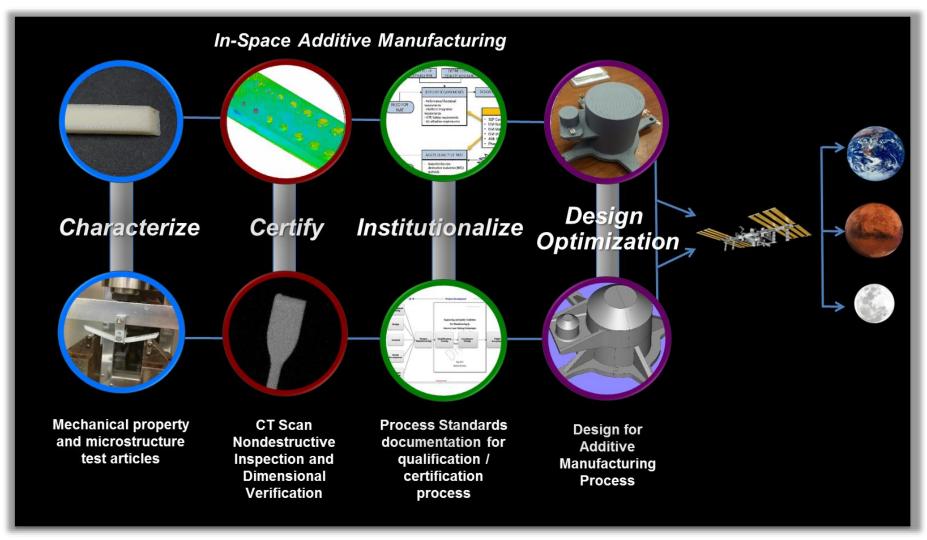
Path Forward: Near Term ISS Technology Demonstrations

Recycler

- Recycling / Reclaiming 3D Printed Parts and / or packing materials into feedstock filament
- Crucial capability to sustainability in-space
- Reduce up-mass of feedstock resupply and down-mass of packaging waste

Additive Manufacturing Facility

- Next generation 3D Printer developed by Made In Space
- Commercial 3D Printer on ISS for both external and NASA customers
- New material capabilities (for more usable, robust parts)



External Structures & Repairs

- Perform repairs on tools, components, and structures in space
- Repair with AM technologies such as 3D Print and metallic manufacturing technologies (e.g. E-beam welding, ultrasonic welding, EBF3) to perform the repair.

Image: NASA

Utilization Catalogue

- Provides astronauts with a library of pre-approved part files to build as needed
- · Begin by re-designing crew tools and non-critical replacement parts
- Influence space station and exploration systems designs to incorporate AM design philosophy
- Ongoing effort will include replacement parts for critical systems

