

2015 National Space & Missile Materials Symposium (NSMMS) Space Materials Experiments, Modeling & Simulation Session June 23, 2015

> Niki Werkheiser NASA In-space Manufacturing Project Manager Niki.Werkheiser@nasa.gov 256-544-8406

What is In-space Manufacturing?

 Objective: Develop and enable the manufacturing technologies and processes required to provide on-demand, sustainable operations for Exploration Missions (in-transit and on-surface). This includes development of the desired capabilities, as well as the required processes for the certification, characterization & verification that will enable these capabilities to become institutionalized via ground-based and ISS demonstrations.

More than just 3D Printing.... In-space Manufacturing Technology Development Areas

Technologies Under Development for Sustainable Exploration Missions

In-space Manufacturing Path to Exploration

EARTH RELIANT

PROVING GROUND

ISS Platform

- 3D Print Tech Demo
- Additive Manufacturing Facility
- On-demand
 Utilization Catalogue
- Recycling Demo
- Printable Electronics
 Demo
- In-space Metals
 Demo
- External in-space Manufacturing &

Repair

Commercial Cargo and Crew

> Space Launch System

International Space

Station (ISS)

Planetary Surfaces Platform

- Additive Construction Technologies
- Regolith Simulant Materials Development and Test
- Execution and Handling
- Synthetic Biology Collaboration

EARTH INDEPENDENT

Earth-Based Platform

- Certification & Inspection Process
- Material Characterization Database
- Additive Manufacturing Automation

In-space Manufacturing Phased Technology Development Roadmap

Earth-based	International Space Station			Exploration		
	3D Print Tech Demo	Plastic Printing Demo Add Mfctr. Print Facility	Vcler Metal Printing ISats Self-repair/ rable External In- space Mfctr	Asteroids	Lunar	Mars
Pre-2012	2014	2015 2016	2017 2018	2020-25	2025	2030 - 40
 Ground & Parabolic centric: Multiple FDM Zero-G parabolic flights Trade/System Studies for Metals Ground-based Printable Electronics/Spacec raft Verification & Certification Processes under development Materials Database Cubesat Design & Development 	 In-space:3D Print: First Plastic Printer on ISS Tech Demo NIAC Contour Crafting NIAC Printable Spacecraft Small Sat in a Day AF/NASA Space- based Additive NRC Study ISRU Phase II SBIRs Ionic Liquids Printable Electronics 	 3D Print Tech Demo Future Engineer Challenge Utilization Catalogue ISM Verification & Cert Process Development Add. Mfctr. Facility (AMF) In-space Recycler SBIR In-space Material Database External In- space 3D Printing Autonomous Processes Additive In- space Repair 	 ISS: Utilization/Facility Focus In-space Recycler Demo Integrated Facility Systems for stronger types of extrusion materials for multiple uses including metals & various plastics Printable Electronics Tech Demo Synthetic Biology Demo Metal Demo Options 	 Lunar, Lagrange FabLabs Initial Robotic/Remote Missions Provision some feedstock Evolve to utilizing in situ materials (natural resources, synthetic biology) Product: Ability to produce multiple spares, parts, tools etc. "living off the land" Autonomous final milling to specification 	Planetary Surfaces Points Fab • Transport vehicle and sites would need Fab capability • Additive Construction	 Mars Multi-Material Fab Lab Utilize in situ resources for feedstock Build various items from multiple types of materials (metal, plastic, composite, ceramic, etc.) Product: Fab Lab providing self- sustainment at remote destination

ISS Technology Demonstrations are Key in 'Bridging' Technology Development to Full Implementation of this Critical Exploration Technology.

ISM Step #1: First 3D Printer in Space!

- The 3D Print Tech Demo launched on SpaceX-4 (9/21/14) and was installed in the Microgravity Science Glovebox on ISS
- To date, it has printed 21 parts in space (14 unique designs); the printer functioned nominally.
- First part "emailed" to Space: 3D Print of a ratchet tool demonstrated on-demand capability by uplinking a part file that was not pre-loaded to the 3D Printer.
- The first flight samples were 'unboxed' at NASA MSFC in April 2015
 - Results to be openly published Fall 2015

3D Printer International Space Station Technology Demonstration Initial Samples

Printer Performance Capability

3D Printing ISS Tech Demo Sample Testing Overview

In Space Manufacturing Elements

- AMF Additive Manufacturing Facility (SBIR Phase II-Enhancement) with Made In Space
 - Commercial printer for use on ISS
 - Incorporates lessons learned from 3D Printer ISS Tech Demo
 - Expanded materials capabilities: ABS, ULTEM, PEEK
 - Increased build volume
 - Anticipated launch late CY2015
- In-space Recycler ISS Technology Demonstration Development (SBIR 2014)
 - Objective: Recycle 3D printed parts into feedstock to help close logistics loop.
 - Phase I recycler developments completed by Made In Space and Tethers Unlimited.
 - Phase II SBIR (2014) awarded to Tethers Unlimited.
 - Final deliverable will result in flight hardware for the Inspace Recycler for proposed ISS Technology Demonstration in FY2017.

Launch Packaging Recycling Phase I SBIR (2015)

 Objective: Recycle launch packaging materials into feedstock to help close logistics loop

Additive Manufacturing Facility (AMF)

Tethers Unlimited SBIR to Develop ISS Recycler Tech Demo

In-Space Manufacturing Elements

In-space Printable Electronics Technology Development

- Development of inks, multi-materials deposition equipment, and processes
- Collaborating with Xerox Palo Alto Research Center (PARC) on Printable Electronics technologies developed at MSFC and Xerox PARC.
- NASA Ames Research Center developing plasma jet printable electronics capability
- Jet Propulsion Lab (JPL) has Advanced Concepts project to develop "printable spacecraft"
- Printable Electronics Roadmap developed targeting ISS technology demonstrations including RF sensors/antennae, in-space printed solar panel, and printable cubesats
- In-space Multi-Material Manufacturing Technology Development
 - In-space Adaptive Manufacturing (ISAM) project with Dynetics utilizing the Hyperbaric Pressure Laser Chemical Vapor Deposition (HP-LCVD)
 - HP-LCVD technology holds promise for a novel solution to manufacturing with multiple materials (including metallics) in microgravity.
 - Phase I deliverable is spring similar to design utilized on ISS

Printable Electronic Technologies

Spring Created by Adaptive Manufacturing

Additive Construction by Mobile Emplacement (ACME)

- Joint initiative with the U. S. Army Engineer Research and Development Center Construction Engineering Research Laboratory (ERDC-CERL) Automated Construction of Expeditionary Structures (ACES) Project
- Objective: Develop a capability to print custom-designed expeditionary structures ondemand, in the field, using locally available materials and minimum number of personnel.
- Goal: Produce half- scale and full-scale structures with integrated additive construction system at a lab or planetary analog site

- Funded by NASA/GCDP and U.S. Army Corps of Engineers (USACE)
- Partnerships between MSFC, KSC, Contour Crafting Corporation (CCC), and the Pacific International Space Center for Exploration Systems (PISCES)

Leveraging External Platforms for Technology and Skillset Development

National Future Engineers STEM Program: National challenge conducted jointly by NASA and American Society of Mechanical Engineers (ASME)

- Competition was held in two divisions, Junior (K-12) and Teen (13-18)
- First Challenge was to design a tool that astronauts could use on ISS. Teen winner's part will be printed on ISS later this year.
- The Space Container Challenge was announced on 5/12/15 and closes 8/2/15. <u>www.futureengineers.org</u>
- Discussions underway for a joint NASA/IndyCar Challenge

NASA GrabCAD Handrail Clamp Assembly Challenge

- GrabCAD has a community of nearly 2 million designers
- Challenge was to design a 3D Printed version of the Handrail Clamp Assembly commonly used on ISS
- Nearly 500 entries in three weeks
- \circ Five winners were selected

Future Engineers Winning Part – Multi-purpose Maintenance Tool (MPMT)

ISS Handrail Clamp Assembly GrabCAD (left) & traditional (right)

In-space Manufacturing Summary

In order to provide meaningful impacts to Exploration Technology needs, the ISM Initiative Must Influence Exploration Systems Design Now.

• In-space Manufacturing offers:

- Dramatic paradigm shift in the development and creation of space architectures
- Efficiency gain and risk reduction for low Earth orbit and deep space exploration
- "Pioneering" approach to maintenance, repair, and logistics will lead to sustainable, affordable supply chain model.
- In order to develop application-based capabilities in time to support NASA budget and schedule, ISM must be able to leverage the significant commercial developments.
 - Requires innovative, agile collaborative mechanisms (contracts, challenges, SBIR's, etc.)
 - NASA-unique Investments to focus primarily on adapting the technologies & processes to the microgravity environment.
- We must do the foundational work it is the critical path for taking these technologies from lab curiosities to institutionalized capabilities.
 - Characterize, Certify, Institutionalize, Design for AM
- Ideally, ISS US Lab rack or partial rack space should be identified for In-space Manufacturing utilization in order to continue technology development of a suite of capabilities required for exploration missions, as well as commercialization on ISS.

BACKUP

3D Printing ISS Tech Demo Sample Testing Techniques

Visual and photographic Inspection

- Identification and documentation of anomalies, damage (e.g., print tray removal damage)
- Identification and documentation of any visual differences between flight and ground samples (initial identification of microgravity effects)
- Attention will be given to any signs of delamination between layers, curling of the sample, surface quality, damage, voids or pores, and any other visually noticeable defect.

Mass Measurement / Density Calculation

- Mass measurement using a calibrated laboratory scale accurate to 0.1mg repeated five times for a mean mass
- Density calculation requires the volume determined by structured light scanning
 - Provides information on void space or expansion of the material created during the printing process
 - Flight samples will be compared with their respective ground samples to assess any differences

Visual Inspection of Flight and Ground Parts

Laboratory Scales utilized for Mass & Density Calculations

3D Printing ISS Tech Demo Sample Testing Techniques

Structured Light Scanning

- ATOS Compact Scan Structured Light Scanner
- Blue light grid projected on the surface
- Stereo-images captured
- Image processing provides
 - A CAD model of the printed part
 - A comparison of the printed part and the original CAD file from which the part was printed
 - A statistically valid determination of the volume of the sample

Computed Tomography (CT) Scanning/X-Ray

- Phoenix Nanome|x 160
- X-ray scans
- Provides 2D and 3D models of the internal structures that could affect mechanical properties
 - o Internal voids
 - o De-lamination of the ABS layers
- Resolution as low as 8-10 microns is possible

ATOS Compact Scan Structured Light Scanner

Phoenix Nanomelx 160 CT Scan

3D Printing ISS Tech Demo Sample Testing Techniques

Mechanical (Destructive) Testing

- ASTM Standards Applied on Mechanical Samples only
- D638 for tensile testing
 - Tensile strength, tensile modulus, and fracture elongation
- D790 for flexure testing
 - Flexural stress and flexural modulus
- D695 for compression testing
 - Compressive stress and compressive modulus

Optical and Scanning Electron Microscopy

- Detail the surface microstructures of the layers
- Detail the surface of the flight prints damaged by overadhesion to the build tray; it is hoped this will identify the root cause of seemingly increased adhesion of part to tray
- Inter-laminar regions will be investigated; flight and ground samples will be compared
- Defects or anomalies noted by the initial inspection will examined, as well as the fracture surfaces from the mechanical tests

Mechanical Samples for Destructive Testing

Leica M205-A Optical Microscope

Hitachi S-3700N Scanning Electron Microscope