Propulsion System Development for the Iodine Satellite (iSAT) Demonstration Mission

Joint Conference of 30th International Symposium on Space Technology and Science, 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan July 4 – 10, 2015

K.Polzin, S. Peeples, J. Seixal, S. Mauro,B. Lewis, G. Jerman, D. Calvert, J. DankanichNASA Marshall Space Flight Center

H. Kamhawi, T. Hickman NASA Glenn Research Center

> J. Szabo, B. Pote, L. Lee Busek Co., Inc

- iSAT iodine satellite
- 12U (20x20x30-cm) CubeSat flight demo of a 200-W iodine-fed Hall effect thruster
- Purpose here is to describe development and testing of the propulsion system that will be flown

- Why iodine?
 - Stores as a dense solid with a low vapor pressure
 - High $\rho \cdot I_{sp}$ making it an enabling technology for near-term small satellite applications
 - Also provides potential systems-level advantages for mid-term higher power spacecraft propulsion
 - Propellant flow can be thermally-regulated, subliming at low temperature (<100 C) to yield a low pressure (~50 torr) gas source
 - Low power performance similar to SOA xenon Hall thrusters
 - Current-Voltage characteristics very similar between iodine and xenon-fed Hall thrusters
 - Cold surfaces in a vacuum chamber can be used to 'cryopump' propellant

Propulsion System - General

- Thruster
 - Version of Busek BHT-200 Hall thruster modified for iodine compatibility (BHT-200-I)
 - BHT-200 was first American Hall thruster to fly in space (US Air Force TacSat-2, 2006)
 - Lab testing at 200-W and higher has shown xenon vs. iodine efficiency approx. equal at same operating conditions
 - Lower measured plume divergence with iodine than xenon
- Cathode
 - Typical BaO cathode cannot be used with iodine propellant
 - Baseline is 12CaO-7Al₂O₃ electride emitter cathode
 - Electride cathode initiated w/little to no heating systems-lelve power savings for mission
 - In general, LaB₆ cathode also iodine-compatible, but requires more power to initiate discharge – could be used on less power-starved missions

- Thruster Power
 - Power for main discharge, magnetic circuit, and cathode operation
 - 28 VDC input voltage
 - Efficiency >90% at 200W thruster operation
 - Capability to change magnetic circuit polarity
 - Capability to ignite electride cathode (objective to ignite without heater power)
 - Capability to provide heater power to condition/state a cathode
- Feed System Control and Monitoring
 - Control one latch valve
 - Control two proportional flow control valves
 - Monitor 4-10 temperature sensors
 - Monitor 1-3 pressure transducers
 - Feed System heater control for four (4) independent heater 'zones'

- ¹/₄" Hastelloy tubing, welded throughout
- 40 micron Hastelloy filter
- Two (2) Vacco PFCVs (independent control of cathode and anode flowrates
- Tank loading of 0.7 kg I_2 with starting ullage volume of 20%

- Auxiliary board to operate valves and monitor systems in lab (in lieu of PPU)
- Power distribution card to provide power at correct voltages
- Functionality to be incorporated into PPU

- Reservoir cylinder of 85.5 mm height, 31.75 mm diameter
- 100 g of iodine, cylindrical shape, equidistant from all sides
- 2.88 W of heater input power

٠

- lodine heated by
 - Radiation-only: ~ 1.5 orbits to heat iodine
 - Conduction-only: > 9 orbits to heat iodine

		thermal conductivity	density	specific heat	IR
$\operatorname{component}$	material	$(W/(m-^{\circ}C))$	(kg/m^3)	$(J/(kg-^{\circ}C))$	${f emissivity}$
propellant reservoir	titanium	$7.1 @ 25^{\circ}C$	4428.8	$539.6 @ 25^{\circ}C$	0.2
propellant (solid)	iodine	0.449	4940	429	0.8
propellant (gaseous)	titanium	0.004351	4930	217.6	—
insulation	aluminized	$0.1557 @ 25^{\circ}C$	1449.6	$1001.5 @ 25^{\circ}C$	0.03
	black kapton				Solar Absorptivity 0.12

- Iodine compatibility with feed system, thruster, and spacecraft materials
- Little literature data on iodine exposure at the relevant conditions
- Two sets of experiments undertaken to better-quantify exposure in iSAT conditions

Systems	Metal or Alloy	Base Elements	Dry Iodine Vapor @ 25°C	Dry Iodine Vapor @ 100°C	Dry Iodine Vapor @ 300°C, 0.53 atm (Corrosion Rate mm/year)	Dry Iodine Vapor @ 450°C, 0.53 atm (Corrosion Rate mm/year)
Nickel	Pure Nickel	Ni	Resistant	Resistant	0.27	1.2
Alloys	Inconel 600	Ni-Cr-Fe	Resistant	Resistant	0.107	0.54
	Inconel 625	Ni-Cr-Mo	Resistant	Resistant	0.057	No Data
	Hastelloy B	Ni-Mo	Resistant	Resistant	No Data	0.464
	Hastelloy C	Ni-Cr-Mo	Resistant	Resistant	0.056	No Data
Noble	Pure Platinum	Rt	Resistant	Resistant	0	0.006
Metals	Pure Gold	Au	Resistant	Resistant	0	0.024
Refractory	Pure Tungsten	W	Resistant	Resistant	0	0.008
Metals	Pure Molybdenum	Mo	Resistant	Resistant	0.003	0.033
	Pure Tantalum	Ta	Resistant	Resistant	0.005	0.88
Aluminum	Pure Aluminum	Al	Unusable	Unusable	Unusable	Unusable
Copper	Pure Copper	Cu	Resistant	Unusable	Unusable	Unusable
Alloys	Brass	Cu-Zn	Resistant	Unusable	Unusable	Unusable
Iron	Iron, Cast Iron, Steel	Fe	Resistant	Unusable	Unusable	Unusable
Alloys	316 Stainless Steel	Fe-Cr-Ni	Resistant	Resistant	$0.4 \; (\text{Estimated}^*)$	2.1
	304 Stainless Steel	Fe-Cr-Ni	Resistant	Resistant	0.6 (Estimated*)	3.2
* Entire to descent and a to 2000 Changed are entry all the frame 4500 Changed						

* Estimated corrosion rate at $300^{\circ}\mathrm{C}$ based upon extrapolation from $450^{\circ}\mathrm{C}$ data.

Materials Compatibility

Active Iodine Flow Test Setup

Matorial Catogory	Matorial Idontification	1 Week Surface	1 Week Thickness	
Material Category	Material Identification	Condition	Change	
	304 Stainless Steel	Minor Darkening	None	
Steel Alloys	316 Stainless Steel	Minor Darkening	None	
	4130 Alloy Steel	Minor Darkening	None	
Aluminum Alloys	6061 Aluminum	Minor Darkening	None	
	7075 Aluminum	Minor Darkening	None	
	7075 Aluminum, Anodized	Minor Darkening	None	
Copper Alloys	110 Copper	White Layer	Swelled	
Copper Anoys	Brass	Blackened	None	
Titanium Allovs	Titanium 6-Al-4V	Minor Darkening	None	
ritamum Anoys	Commercially Pure Ti	Minor Darkening	None	

Propellant Loading / 80-hr Test

- Loading procedure heating (before loading) followed by neutral gas purge to drive out oxygen, water vapor, and other volatile compounds
- 80-hr test at NASA-GRC to operate total mission throughput (anode on iodine)
- Performance measurements on xenon initially (baseline)
- Iodine feed to anode operated with reservoir, Vacco PFCV, and MSFC-developed auxiliary board
- Plume plasma measurements (Faraday probe, Langmuir probe) and materials coupons

• This work is sponsored by NASA's Space Technology Mission Directorate and is managed by the Small Spacecraft Technology Program at the NASA Ames Research Center.