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Motivation

• iSAT – iodine satellite

• 12U (20x20x30-cm) CubeSat flight demo of a 200-W iodine-fed Hall effect thruster

• Purpose here is to describe development and testing of the propulsion system that 

will be flown
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Motivation - continued

• Why iodine?

– Stores as a dense solid with a low vapor pressure

– High rIsp making it an enabling technology for near-term small satellite applications

– Also provides potential systems-level advantages for mid-term higher power spacecraft 

propulsion

– Propellant flow can be thermally-regulated, subliming at low temperature (<100 C) to yield a 

low pressure (~50 torr) gas source

– Low power performance similar to SOA 

xenon Hall thrusters

– Current-Voltage characteristics very 

similar between iodine and xenon-fed Hall 

thrusters

– Cold surfaces in a vacuum chamber can 

be used to ‘cryopump’ propellant
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Propulsion System - General

Aft Looking Forward

Propulsion Plate from Front Side
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Thruster & Cathode

• Thruster

– Version of Busek BHT-200 Hall thruster modified for iodine 

compatibility (BHT-200-I)

– BHT-200 was first American Hall thruster to fly in space (US Air 

Force TacSat-2, 2006)

– Lab testing at 200-W and higher has shown xenon vs. iodine 

efficiency approx. equal at same operating conditions

– Lower measured plume divergence with iodine than xenon

• Cathode

– Typical BaO cathode cannot be used with iodine propellant

– Baseline is 12CaO-7Al2O3 electride emitter cathode

– Electride cathode initiated w/little to no heating – systems-lelve

power savings for mission

– In general, LaB6 cathode also iodine-compatible, but requires 

more power to initiate discharge – could be used on less 

power-starved missions
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PPU

• Thruster Power

– Power for main discharge, magnetic circuit, and cathode operation

– 28 VDC input voltage

– Efficiency >90% at 200W thruster operation

– Capability to change magnetic circuit polarity

– Capability to ignite electride cathode (objective to ignite without heater power)

– Capability to provide heater power to condition/state a cathode

• Feed System Control and Monitoring

– Control one latch valve 

– Control two proportional flow control valves

– Monitor 4-10 temperature sensors

– Monitor 1-3 pressure transducers

– Feed System heater control for four (4) independent heater ‘zones’
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Feed System

• ¼” Hastelloy tubing, welded throughout

• 40 micron Hastelloy filter

• Two (2) Vacco PFCVs (independent control of cathode and anode flowrates

• Tank loading of 0.7 kg I2 with starting ullage volume of 20%
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Feed System Control and Monitoring

• Auxiliary board to operate valves and monitor systems in lab (in lieu of PPU)

• Power distribution card to provide power at correct voltages

• Functionality to be incorporated into PPU

w/LCR filtering
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Reservoir – Thermal Modeling

• Reservoir – cylinder of 85.5 mm height, 31.75 mm diameter

• 100 g of iodine, cylindrical shape, equidistant from all sides

• 2.88 W of heater input power

Iodine

Propellant 

reservoir
• Iodine heated by

– Radiation-only: ~ 1.5 orbits to heat iodine

– Conduction-only: > 9 orbits to heat iodine
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Materials Compatibility

• Iodine compatibility with feed system, thruster, and spacecraft materials

• Little literature data on iodine exposure at the relevant conditions

• Two sets of experiments undertaken to better-quantify exposure in iSAT

conditions
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Materials Compatibility
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Propellant Loading / 80-hr Test

• Loading procedure – heating (before loading) followed by neutral gas purge to

drive out oxygen, water vapor, and other volatile compounds

• 80-hr test at NASA-GRC to operate total mission throughput (anode on iodine)

• Performance measurements on xenon initially (baseline)

• Iodine feed to anode operated with reservoir, Vacco PFCV, and MSFC-developed

auxiliary board

• Plume plasma measurements (Faraday probe, Langmuir probe) and materials

coupons
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