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Cryogenic fluid management technology is critical to the success of future nuclear 

thermal propulsion powered vehicles and long duration missions.  This paper discusses 

current capabilities in key technologies and their development path.  The thermal 

environment, complicated from the radiation escaping a reactor of a nuclear thermal 

propulsion system, is examined and analysis presented. The technology development path 

required for maintaining cryogenic propellants in this environment is reviewed.  This paper 

is intended to encourage and bring attention to the cryogenic fluid management technologies 

needed to enable nuclear thermal propulsion powered deep space missions. 

Nomenclature 

SOFI = Spray On Foam Insulation 

MLI = Multi-Layer Insulation 

VD-MLI = Variable Density Multi-Layer Insulation 

DAM = Double Aluminized Mylar 

CFM = Cryogenic Fluid Management 

LAD = Liquid Acquisition Device 

TRL = Technology Readiness Level 

MLI = Multi-Layer Insulation 

LEO = Low Earth Orbit 

K = Kelvin 

SCIM = Standard Cubic Inches per Minute 

I. Introduction 

anagement of cryogenic propellants is a key technology area required to enable many long duration 

exploration missions.  This is an even greater challenge for vehicles powered through a nuclear propulsion 

system.  Nuclear thermal propulsion systems induce a radiation flux on the vehicle.  This presents challenges such as 

material selection for system components, electronics that can survive the radiation environment, crew dose, and 

thermal energy deposit into cryogenic fluid propellants.2  Hydrogen, a common propellant for a nuclear thermal 

propulsion systems, readily absorbs energy from the radiation flux due to its small mass.  Unless mitigated, this 
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leads to increased boil off of the propellant.  This is in addition to boil off caused by the ambient thermal 

environment.   

 Various passive and active systems or system concepts exist to counter the deposition of energy into cryogenic 

propellants.  Existing passive technologies such as Spray on Foam Insulation (SOFI) and Multi-Layer Insulation 

(MLI) have been used extensively in launch vehicles and satellites.  Advances in MLI are developing to deliver an 

insulation system that is more durable and capable of greatly decreased heat leak.  Active systems remove heat from 

cryogens in order to maintain the target cryogenic temperature.  Cryocoolers are an example of an active system.  

Historically, cryocoolers first began to fly in the 1990’s.  Flight cryocoolers have been small systems required by 

instruments and sensors.  These past systems have been designed to remove small quantities of heat.  Cryocooler 

systems designed to maintain large propellant quantities face challenges in meeting power and flight weight 

requirements.  Cryocooler research is also moving forward to develop large systems.   

 In addition to managing heat transfer to cryogens, there are other technology development items required for 

successful long duration mission cryogenic fluid management (CFM).  Valve leakage is an important development 

item.  Current state of the art for vent valves, fill and drain valves, disconnects, and other fluid control elements can 

have leakage rates on the order of 100 Standard Cubic Inches per Minutes (SCIM) or more.  These loss rates add up 

quickly over long duration missions. 

 Two additional CFM technologies that are important, but not discussed further in the paper are propellant mass 

gauging and liquid acquisition devices (LAD) in microgravity.  Gauging propellant quantities inside of a tank in 

zero g may be required to properly assess cryogen quantities.  Traditionally settling motors are used to bring the 

propellant to the rear of a tank after which the liquid level is detected.  Propellant Gauging research is at a low 

Technology Readiness Level (TRL) and needs development.  LAD’s operating in microgravity is also a technology 

area that needs development to reach reliable flight qualified systems.  These microgravity technologies would 

eliminate the need for settling motors and improve the reliability of propellant mass gauging and acquisition 

functions. 

II. Environment 

The thermal environment experienced by a deep space exploration vehicle can have a significant impact upon 

cryogenic fluids in vehicle systems.  Heat transfer from radiation sources in space and conduction from vehicle 

components should be considered.  For a vehicle that operates in the atmosphere of Earth or a destination planet; 

conduction, convection, and reflected radiation from the planetary environment can lead to significant heat input.  

CFM systems must maintain very low heat input in order to prevent propellant loss to boil off and the resulting need 

to carry large quantities of excess fuel.  The mass of excess fuel can add significant cost and complexity to the 

vehicle and mission architecture.   

A. Radiation Flux from a Reactor 

Absorption of nuclear radiation produced by fission can result in degradation or damage to structural 

components, and each interaction ultimately produces heat in the surrounding material.  Such nuclear heating is a 

special concern for spacecraft that rely upon cryogenic propellant, and the system must be designed to minimize the 

thermal burden that can result in cavitation at the pump or increased boil-off of stored propellant.  Those effects and 

possible mitigating strategies are discussed within this section. 

1. Nuclear Heating Mechanisms 

Primary concerns for nuclear heating in spacecraft are from the gamma ray photons and fast neutrons exiting the 

core region.  In both cases, particles of higher energy have a longer mean-free-path than those of lower energy.  The 

majority of neutrons produced in the reactor are born at high energy, and thus travel at high velocity, hence the term 

“fast neutrons”.  That energy can be shed by elastic collisions with lighter nuclei, especially that of hydrogen, 

thereafter the probability of further interaction increases.  After their first collision, fast neutrons are quickly slowed 

to the point that their kinetic energy is equal to that maintained by thermal equilibrium in the surrounding medium, 

hence the term “thermal neutrons”.  Heavy nuclei do little to absorb the kinetic energy of neutrons (consider the 

analogy of ping pong balls bouncing between bowling balls), so fast neutrons tend to travel through metallic 

structure relatively unhindered, while stopping quite abruptly in hydrogenous materials such as water, polymers, and 

of course liquid hydrogen.  Neutrons traveling at low speed are more readily absorbed by the atomic nuclei, and the 

resulting change of structure to the absorbing atom tends to produce secondary radiation.  A major source of gamma 

rays in nuclear-propelled spacecraft indeed comes from the absorption of thermal neutrons by hydrogen.  By 

contrast, gamma ray interact more readily with heavy material, such as metallic structure, and pass through low-

density material, such as liquid hydrogen, far more easily than neutrons.   
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The result of this dichotomy is that 

direct heating of propellant occurs in 

two manners concurrently.  First, 

neutrons slowing and stopping in the 

aft portion of the propellant tank 

closest to the engine produce a great 

deal of localized heating (and 

secondary gamma radiation) at the 

tank wall that diminishes quickly with 

increased depth.  Second, gammas 

absorbed throughout the tank volume 

produce a bulk heating effect that is 

more pronounced at the aft portion of 

the tank, but not to the extent caused 

by neutron heating.  Indirect heating 

of propellant is also caused by nuclear 

heated structural components and 

tank walls.  Monte Carlo simulations 

of a reference design indicate that fast 

neutrons typically deposit around one 

fifth of the total energy deposited by 

gamma rays.  The maximum energy 

density deposited by neutrons at the engine-facing surface is several times that deposited by gamma rays, but is 

almost entirely absorbed within the first 50 cm of liquid hydrogen, as shown in Figure 1. 

2. Thermal mixing and stratification 

The localized nature of nuclear heating results in a complex heat distribution that changes through the duration of 

an engine burn.  Vehicle acceleration, coupled with the density gradient due to heating, also induces convective 

flows that drive the aft-heated fluids counter to the pump-driven outflow.  This phenomenon is also seen in studies 

of more traditional externally heated tank walls in spacecraft13,14. These phenomenon then serve to counter one 

another, with preferential accumulation of heated propellant in the fore section and preferential nuclear heating of 

propellant in the aft section.  The resulting dynamics are then highly dependent upon multiple factors, including the 

Figure 1.  Example nuclear heating profile comparing neutron and 

gamma contributions for a 3-engine cluster with cylindrical LiH-S.S. 

and tungsten shield.    
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Figure 2.  (Left) Thermal stratification of heated propellant near the ullage interface or fore-end (top) of tank.  

Propellant temperature is critical near end of burn.  (Center) Local mixing forces immediate consumption of 

heated propellant and prevents buildup of heated fluid near end of burn.  (Right) Complete mixing homogenizes 

thermal distribution in the tank.   
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D

Figure 3.  Sketch describing variable parameters of Monte Carlo calculation 

in Table 1.  S = Standoff distance between nuclear engines and bottom of 

tank.  D = Diameter of cryogenic storage tank, including 20 cm insulation 

thickness. 

Table 1 – Calculated total heating rates in core stage tank for varying tank diameter 

and standoff distance.  Identical shielding in all cases.  

Standoff b/w Tank and Engines 3 m 6 m 9 m 

Tank 

Diameter 

6 m 10.9 kW 3.7 kW 1.5 kW 

7.6 m 24.1 kW 7.5 kW 3.2 kW 

8.4 m 32.3 kW 10.0 kW 4.2 kW 

 

flow rate of propellant exiting the tank into the engine, the radiation flux entering the aft face of the tank, and the 

presence of any mitigating devices to direct the flow of propellant inside of the tank.  Accumulation of stratified 

layers of heated propellant can likely be avoided with careful design of baffling and mixing devices inside of the 

propellant tank12.  A set of possible scenarios are sketched in Figure 2. 

3. Mitigation Strategies 

Several strategies may be employed to reduce the impact of radiation upon stage performance and to optimize 

the system for mass savings.  Most obvious among these is the use of a radiation shield between the reactor core and 

the thermally sensitive staging systems.  Even in the absence of any crew, or with the assumption that the crew are 

otherwise adequately shielded, some amount of shielding will be required to reduce the neutron and gamma 

radiation flux to the propellant storage and transfer systems.  Determining the maximum permissible flux to these 

components will in fact drive the constraints for design of radiation shielding.  Shielding brings a costly penalty in 

terms of mass, however, and should be minimized by designing the staging systems with consideration for radiation 

transport.   

A number of key parameters 

influence the amount of 

radiation imparted on the 

cryogenic storage system.  Chief 

among these are standoff 

distance from engine to storage 

tank as well as tank diameter 

(particularly at the aft face).  

Shadow-shielding for engines 

close to a broad tank surface 

requires a very large diameter 

slab to effectively intercept the 

radiation cast from the peripheral surfaces of the core and reflector.  This problem is exacerbated for clustered 

engines where the emitting surfaces are off of the central axis.  The diameter (and mass) of the shield can be reduced 

drastically by either moving the engines further from the core stage tank or by reducing the apparent diameter of the 

tank at the aft side.  This is especially important for shield designs restricted approximately to the diameter of the 

containment vessel and radial reflector, as is demonstrated by the Monte Carlo calculation described in Table 1 and 

Figure 3.  For that calculation a reference cylindrical shield design was used with 1 meter diameter to match that of 

the radial reflector, composed of lithium hydride with stainless steel for neutron absorption, lead for gamma 

attenuation, and weighing approximately 1 metric ton.  The design is not considered optimized in terms of geometry, 

mass, or materials, but serves as a reference for comparison of certain geometric effects of the stage.  Actual 

shielding designs must be optimized specifically for a given staging design, mission profile, and permissible 

radiation flux. 

In addition to the optimization of stage design to mitigate radiation heating of cryogens, a small heat leak may be 

permitted in order to power a small combustion type system with the excess boil off for auxiliary power.  This 

would ease shielding and thermal protection requirements for the stage. 

The results of this survey study; however, indicate the dramatic effect that stage design may have upon thermal 

performance of a nuclear rocket in terms of nuclear heating.  Consideration should be made for the use of distance 

trusses and/or a narrowed/tapered core stage to optimize against the mass penalty for shielding. 
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B. External Thermal Environment 

1. Earth Atmosphere and Low Earth Orbit 

 A deep space vehicle will be put into orbit, possibly in multiple modules for on orbit assembly, by a launch 

vehicle.  While the exploration vehicle will likely be protected by a payload shroud, some thermal heat soak may 

reach the on board cryogens.  After ascent, vehicle components will be placed into a low earth orbit (LEO).  Deep 

space exploration vehicles will likely need to be assembled in orbit due to the large size needed propellant and 

payload mass requirements.  Assembly time will be driven by the rate at which launch vehicles can be fielded and 

exploration vehicle components prepared.  Many weeks or months will pass before a vehicle is assembled in orbit.  

This long loiter time results in the LEO thermal environment having significant impact on cryogenic fluid storage.  

Factors to account for are heating from rarefied gas molecules, radiation reflected off the Earth, Earth’s magnetic 

field and charged particle interaction, and solar radiation (average of 1370 W/m2).10 

2. Deep Space 

 The primary source of thermal energy in deep space (deep space being outside the sphere of influence of a 

planet) is radiation.  Background radiation will deposit energy into the spacecraft and cryogenic fluids.  Cosmic 

microwave background radiation fills the universe nearly uniformly.  It is nearly isotropic radiation in the 

microwave spectrum that is a relic of the big bang.  Cosmic radiation is an isotropic particle radiation generated 

outside the solar system by super nova explosions.  It is made up of high energy particles (~109 eV) that include 

protons, alpha particles, beta particles, and some heavier nuclei.10   

The sun is an additional source of heating.  Energy is transferred through solar radiation interaction with a 

vehicle and its systems.  Energy is deposited via sunlight or photons.  The quantity of which is dependent upon the 

distance from the sun.  Solar wind must also be accounted for in thermal energy management.  Solar wind is a 

fluctuating stream of plasma released from the sun through regions of concentrated magnetic field.  It is composed 

of high energy particles which may interact with spacecraft systems. 10  

3. Other Celestial Body 

 When in the vicinity of the destination celestial bodies (for example: Mars) the same types of environmental 

factors are present as in LEO, but in different magnitudes which vary based on Celestial Body characteristics.  

Factors affecting the thermal environment (e.g. distance from the sun, diameter, reference temperature, emissivity) 

must be well understood in order to properly design cryogenic fluid management systems. 10 

III. Cryogenic Fluid Management Technology 

Technology that conditions cryogenic fluids has been around for decades.  There are various systems for non-

aerospace related applications.  Launch vehicles have long been flying with cryogenic propellants for decades.  

Application of cryogenic propellants has been over short periods of time on the order of several hours.  Long 

duration missions in the past have relied on other forms of propulsion such as hypergolic or electric propulsion.  

These have been smaller robotic missions.  For human and larger scale exploration missions, cryogenic propellants 

will be needed for high thrust propulsion systems.   
††Current capabilities in storing cryogenic propellants are inadequate for long duration missions.  Current state of 

the art is Centaur’s 9-17 hours with boil off rates of approximately 30% per day.  Mars missions are expected to take 

roughly 18 to 24 months to complete.  This mission time is vastly larger than current cryogenic storage capabilities.  

Cryogenic fluid management technologies must be developed in the present to enable future exploration missions 

beyond Earth.   

A. Passive Systems 

Passive systems act as thermal barriers.  They reduce the heat flux into the cryogenic fluid by decreasing thermal 

conductivity and radiation.  Support structures are a source of heat conduction in which heat flows from the vehicle 

structure into the cryogen storage tank.  Support structures are designed to be low conductivity to reduce this heat 

flux.  Insulation systems are applied to tanks, pipes, and any cryogen carrying components.11  Spray on Foam 

Insulation (SOFI) is applied to outer surfaces.  It is most effective in atmospheric environments.  Multi-Layer 

Insulation (MLI) is made up of thin layers of high reflectance metal that act as radiation shields wrapped around 

cryogenic systems in many layers.3  Historical systems have been ineffective in the atmosphere but have performed 

well in vacuum.   

                                                           
†† Information obtained through interviews with engineers at Marshall Space Flight Center 
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MLI for cryogenic storage is designed for high vacuum conditions and typically consists of many radiation 

shields, separated by low conductivity spacer material, between the hot and cold boundaries. The radiation shielding 

normally consists of a thin plastic film coated on one or both sides with a thin layer of high reflectance metal, 

usually aluminum or gold.  MLI systems are often comprised of multiple double aluminized Mylar (DAM) radiation 

shields with Dacron net spacer material between shields. While radiation generally dominates heat transfer, solid 

conduction through the spacer material becomes an issue at low temperatures such as those experienced by the inner 

MLI layers on a cryogenic fluid tank3. 

Recent research into MLI has shown that, with some design changes, significant performance improvements can 

be made.  Advanced forms of MLI are being developed in industry.  Some companies are working on several 

significant improvements.  These companies are developing low conductivity spacers to replace conventional 

netting that control layer spacing.4  Their design has shown 40 – 60 % lower heat flux than conventional MLI.4  

Spacers have been designed to be load responsive and provide support for a light weight vacuum shell for launch 

vehicle applications.  The new design offers two orders of magnitude decrease in heat leak and one order of 

magnitude decrease in mass.4 

NASA has also investigated the use of variable density MLI.  To optimize the MLI for a cryogenic application, 

the colder inner layers can be spaced further apart than the warm outer layers where radiation dominates heat 

transfer. This type of MLI is referred to as variable density MLI (VD-MLI) because the layer spacing varies across 

the MLI cross section, reducing both insulation mass and thermal heat leak. The spacing geometry in a VD-MLI 

system can be controlled by the addition of bumper strips constructed with folded Dacron netting. The bumper strip 

thickness can be easily adjusted by varying the number of folds. In addition, larger but fewer perforations for 

venting during ascent to orbit can be used to reduce radiation heat transfer through the MLI.  Tests have shown that 

variable density MLI decreased heat leak by 41% compared to standard MLI performance for a warm boundary 

condition of 305K and 25 fewer layers than the standard.3 

B. Active Systems 

Active thermal control systems remove heat from the target reservoir.  Cryocoolers are a maturing active cooling 

technology.  They began flying in the early 1990’s.  The primary use of flight cryocoolers has been for 

instrumentation.  Many of NASA’s space instruments require cryogenic refrigeration to improve dynamic range, 

increase wavelength coverage, or enable the use of advanced detectors.  Typical cooling temperature range has been 

55 to 150 K.5  Many cryocoolers that function to cool instrumentation have flown and been successful.  These small 

cryocooler systems have operated for extended periods of time with high reliability.  Examples of successful 

cryocooler systems include the Jet Propulsion Laboratory Sorption cryocooler for the PLANCK space telescope and 

the 50-80K Astrium for Helios 2A and 2B.6 

‡‡Initially, the cryocooler development effort was focused on reliability and lifespan of systems to make them 

suitable for supporting instrumentation that would operate for long periods of time on orbit.  More recently efforts 

have turned to developing systems for lower temperature applications 10 to 20 K range with larger heat removal 

capabilities.  Improving efficiency, watt removed per watt used, has also been an area of focus.  An ongoing 

cryocooler developmental project is underway as a joint effort between Creare Inc. and Glenn Research Center.  The 

goal of the project is to develop and demonstrate a cryocooler using a turbo-brayton cycle to provide 20 Watts of 

cooling at 20 K.8,15  This category of cryocooler is what will be needed for future long duration missions since 

hydrogen will need to be maintained in the 20 K range to remain in a liquid state.  It is important that this 

technology continues to be supported as it will be required to keep the propellant mass requirements of an 

exploration vehicle within achievable limits. 

C. Low Leakage Valves 

Often it is assumed for long duration missions that propellants are sealed in vessels (tanks) and the mass of the 

propellants is not lost if boil off is stopped.  However, the state of the art for valves, fill and drain valves, 

disconnects, and other fluid control elements of a size relative to a launch vehicle or NTR mars exploration vehicle 

have leakages on the order of 100 Standard Cubic Inches per Minute (SCIM).  As many as ten of these components 

in the main propulsion system, for a mission of up to three years, could lose on the order of 100,000 lbs. of 

propellant.  Losing propellant mass of this quantity would mean the vehicle must have significantly larger tanks or 

risk running short on propellant.1   

                                                           
‡‡ Information gathered through interviews with engineers from the Jet Propulsion Laboratory, Glenn Research 

Center, and Creare Inc. 
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Clearly there is a need to develop valves with leakages many orders of magnitude lower than the current state of 

the art.  The propulsion department at Marshall Space Flight Center has begun work in this area to develop leakages 

as low as 10-3 SCIM.  Several concept seat designs are being explored to achieve low leakage rates.  Seats, which 

break and remate as the valve opens and closes, are the primary source of leakage.  Consistent sealing is difficult 

and contamination can prevent a proper seal.  Most main propulsion system state of the art valves use a flat seat 

design and a large load to achieve leakage acceptable for a short mission.  These designs have contact stresses and 

controlling contact angle, concentricity, and achieving flatness is difficult for lower leakages.  Smaller valves use a 

tooth seat design, but previous work has shown this is difficult to scale up.  Currently, an effort is underway to 

design a large spherical seat design and a differential angle seat design that will be tested and scaled up to a size 

more relevant to a nuclear Mars exploration vehicle.1   

Low leakage valves require increased support and attention to reach maturity and leakage performance required 

for long duration missions.  Low leakage rates must be achieved to make a long duration mission possible.  Even 

small leaks will add up to large quantities of propellant. 

IV. Conclusion 

There are many challenges to storing cryogenic fluid and propellants on a long duration deep space mission.   

These challenges are complicated by the presence of radiation emanating from a reactor of a nuclear thermal 

propulsion system.  Fluid temperature must be controlled and heat leak minimized through the use of passive 

insulation systems such as multi-layer insulation and active heat removal systems such as cryocoolers.  Leakage 

through valves and other fluid control devices must be decreased and brought as close as possible to zero.  While 

current technologies are quite inadequate, research and development efforts are ongoing through multiple 

organizations to meet these technology goals.  It is important that cryogenic fluid management be recognized for its 

significance and the technologies enabling cryogen storage for long periods of time be fully supported.  These 

technologies will be required to accomplish large scale and manned exploration missions to the asteroids and Mars. 
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