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NASA’s exploration goals are focused on deep space travel and Mars surface operations.  

To accomplish these goals, large structures will be necessary to transport crew and logistics in 

the initial stages, and NASA will need to keep the crew and the vehicle safe during transport 

and any surface activities.  One of the major challenges of deep space travel is the space 

radiation environment and its impacts on the crew, the electronics, and the vehicle materials.  

The primary radiation from the sun (solar particle events) and from outside the solar system 

(galactic cosmic rays) interact with materials of the vehicle.  These interactions lead to some 

of the primary radiation being absorbed, being modified, or producing secondary radiation 

(primarily neutrons).  With all vehicles, the high energy primary radiation is of most concern.  

However, with larger vehicles that have large shielding masses, there is more opportunity for 

secondary radiation production, and this secondary radiation can be significant enough to 

cause concern.  When considering surface operations, there is also a secondary radiation 

source from the surface of the planet, known as albedo, with neutrons being one of the most 

significant species. Given new vehicle designs for deep space and Mars missions, the secondary 

radiation environment and the implications of that environment is currently not well 

understood.  Thus, several studies are necessary to fill the knowledge gaps of this secondary 

radiation environment.  In this paper, we put forth the initial steps to increasing our 

understanding of neutron production from large vehicles by comparing the neutron 

production resulting from our radiation transport codes and providing a preliminary 

validation of our results against flight data. This paper will review the details of these results 

and discuss the finer points of the analysis.  

Nomenclature 

GCR = galactic cosmic radiation 

SPE = solar particle event 

I. Introduction 

S NASA plans to venture into deep space and eventually Mars, vehicle designs and configurations are increasing 

in size to accommodate the additional supplies needed for longer duration missions1-2.  On the one hand, an 

increase in vehicle thickness provides some shielding to crew and electronics against lower energy primary radiation 
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resulting from solar particle events.  However, larger vehicle thicknesses also provide more material for high-energy 

particles, such as galactic cosmic radiation, to interact and produce secondary neutrons.  The secondary neutron 

environment from these new vehicle configurations is not well understood and the implications of this neutron 

environment could be cause for concern to crew, electronics, and materials.  In this paper, we will take a first step at 

examining the secondary neutron production from various vehicle thicknesses using two different radiation transport 

codes.  We will compare our simulated results with flight data to validate our calculations. Finally, we will discuss 

the implications of these results and the next steps necessary to further this investigation. 

II. Background 

A. Radiation Environment 

There are two types of radiation sources that will be discussed.  The first is primary radiation, which is a radiation 

source that has not interacted with any other material.  The second source is secondary radiation and is due to primary 

radiation interacting with a medium to create secondary products such as neutrons. 

 

1. Primary Radiation 

Solar particle events (SPEs) and galactic cosmic radiation (GCR) are the two major sources of primary space 

radiation for deep space missions. A secondary source, discussed in the next section, of space radiation (mostly 

neutrons) occurs from nuclear reactions when the incident SPE and/or GCR particles penetrate the bulk shielding of 

the spacecraft and other interior components, including the human body and avionics. These primary radiation sources 

are high energy protons and stripped nuclei up to iron (Fe). For heavily-shielded spacecraft, only extremely energetic 

SPEs are a concern, such as Ground Level Events (GLEs) discussed in ref 3. 

Examples of two GLEs are shown in Figure 1, which shows the integral and differential energy spectra for the 

series of SPEs that occurred during 19-24 October 1989 and the “Bastille Day” event  that occurred on 14 July 2000. 

 

 
Figure 1: Integral and differential energy spectra for two extremely large SPEs that occurred on October 1989 and 14 

July 2000. From 19-24 October 1989 there were three GLEs and an ESP, and the energy spectra shown in the plot is a 

combination of these four events. 

Figure 2 is a plot of the GCR energy spectra for several elemental species for both solar minimum and solar 

maximum. 
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Figure 2: Differential fluence of several GCR elemental species (H, He, O, and Fe) at solar minimum and solar maximum 

conditions.4 

In addition, GCR particles are extremely energetic, extending into the several GeV range (as does the GLEs), and 

it is these GCR particles that will produce a constant source of both primary and secondary radiation, mostly neutrons, 

exposures to the crew and onboard systems, including food and materials. 

 

2. Secondary radiation production and sources 

As was mentioned above, when these very energetic particles penetrate other materials (bulk shielding of the 

spacecraft, human body, and onboard systems, avionics, etc.) secondary particles, mostly neutrons, are produced due 

to nuclear reactions that occur.  

We use the example of secondary neutrons produced in the Earth’s atmosphere (albedo neutrons). As very high 

energy primary cosmic rays continuously arrive at the Earth, they interact with atoms in the Earth’s atmosphere 

creating secondary particles.  Of the possible secondary particles, high energy neutrons have been shown to be mainly 

responsible for causing single event upsets (SEUs) in memories and other devices in aircraft since the early 1990s. 

For the neutrons, as well as all other secondary particles within the atmosphere, the variation of the particle flux 

with three parameters (altitude, latitude, and energy) is of primary importance for understanding variation of the single 

event effects (SEE) rate. 

Altitude variation of atmospheric neutrons derives from competition between various production and removal 

processes that affect how the neutrons and the initiating cosmic rays interact with the atmosphere.  The result of the 

neutron interaction with the atmosphere is a maximum in the flux at about 60,000 feet called the Pfotzer maximum, 

and an overall variation of the neutron flux (energy range of 1-10 MeV) with altitude (based on aircraft measurements).   

Figure 3 shows the neutron flux density as it varies with altitude.5 
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Figure 3: Simplified model of atmospheric neutron flux variation with altitude. 

The latitude variation of the atmospheric neutrons is governed primarily by the Earth’s magnetic field.  The overall 

variation of the atmospheric neutron flux (energy range of 1-10 MeV) with latitude (based on aircraft measurements) 

is shown graphically in Figure 4. 

 
Figure 4: Simplified model of atmospheric neutron flux variation with latitude. 

There is an additional SEU rate in some devices contributed by the low energy neutrons (called thermal neutrons) 

that are produced in spacecraft and aircraft.  While the high energy neutrons cause SEUs through interaction with the 

Si atoms, thermal neutrons cause SEUs through their interaction with boron-10 that is found in some microelectronics.  

Where possible, parts containing boron-10 or natural boron should be avoided. When assessing SEE rates, thermal 

neutron effects should be considered, when appropriate. 

Thus, for deep space missions, GCR, SPEs, and secondary neutrons must be considered to assess the space 

radiation environment impact on the crew and onboard systems. 

B. Transport Codes 

FLUKA, short for FLUktuierende KAskade, is a Monte Carlo radiation transport code containing fully integrated 

physics capable of simulating the interaction of space radiation with material. The origins of FLUKA date back to the 

1960’s, with the latest version able to simulate the propagation of a wide range of particles through virtually all 

materials and with applications to accelerator projects, shielding studies, cosmic rays studies, medical and 
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radiobiology studies, and spacecraft electronics single event effects. For nuclear interactions relevant in this study, 

including neutrons, above 5 GeV/n, FLUKA employs DPMJET-III (Dual Parton and Jets version 3) with a modified 

initialization procedure, and for energies between 0.1 and 5 GeV/n, a modified RQMD (Relativistic Quantum 

Molecular Dynamics) model is used. For low energy nucleus interactions below 0.1 GeV/n, the Boltzmann Master 

Equation is used. All models are followed by a generalized intra-nuclear cascade process followed by a pre-

equilibrium stage and then an evaporation/fragmentation-fission stage.6-7 

Neutrons below 20 MeV are considered low-energy neutrons in FLUKA and are transported by a multigroup 

transport technique for computational considerations. Below 20 MeV, the neutrons are broken down into 260 energy 

groups, each approximately equal in logarithmic width, where both elastic and inelastic individual neutron interactions 

are tracked through group-to-group interaction probabilities. These probabilities are based on recent versions of the 

ENDF/B and JENDL-3 nuclear data files and contain data for up to 270 isotopes/materials at two different 

temperatures (some at more). The low energy neutron transport technique also includes effects such as Doppler 

broadening, gamma generation, energy deposition by kerma factors, residual nuclei production, secondary neutrons, 

and fission neutrons.6-7  

 The high charge and energy transport code, HZETRN2010,8-9 is a one dimensional, deterministic transport code 

developed at NASA Langley Research Center.  The code uses a straight ahead approximation of the Boltzmann 

transport equation for charged and neutral particles, with a continuous slowing down approach.  The advantages to 

using this code are that it has short run times and can be used to investigate any number of materials and configurations 

for radiation transport. This version of the code includes a bi-directional, coupled neutron transport model in its 

treatment of neutrons during slab transport and has been shown to have good agreement with Monte Carlo codes.9 

III. Method 

The CREME96 GCR model was used to generate both the HZETRN2010 and FLUKA input particle spectra data 

for this assessment. Solar maximum environment conditions and a low Earth orbit were selected to enable comparison 

with the available flight data. An altitude of 362.5 km, orbit inclination of 51.6° and quiet magnetic conditions were 

specified for the assessment. AP8MAX trapped protons were also included. To reduce the processing time needed for 

transport, seven species were selected to represent the input environment.  These species are trapped and GCR protons, 

alphas, heavy ions of carbon, oxygen, magnesium, silicon, and iron. For the HZETRN2010 calculations, the 

CREME96 generated spectra were interpolated against the HZETRN2010 energy grid. The CREME96 GCR particle 

spectra are plotted in Figure 5. 

 

 
Figure 5: CREME96 GCR particle spectra used as the input environment for both the FLUKA and HZETRN2010 

transport. 

  A range of shielding masses were selected for investigation to determine whether there are vast differences in 

the neutron production as a function of spacecraft thickness, as well as providing applicability of the data to a wide 
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range of spacecraft types and missions.  The shielding material selected is aluminum at the following thicknesses: 0.1, 

0.5, 1, 5, 10, 20, 50, 100, 150 and 200 g/cm2. 

The input environment generated by the CREME96 GCR model, along with the representative vehicle shielding 

thicknesses, were input into both FLUKA and HZETRN2010.  The two codes were run in specific configurations to 

facilitate more accurate comparison between them. 

For the purposes of this study, FLUKA can easily simulate low Earth orbit proton spectra, as well as galactic 

cosmic radiation, over the energy range of interest, including the peak flux of particles, and generate reliable neutron 

spectra as a function of spacecraft shielding. Differential spectra were sampled based on their cumulative probability 

distribution and input files were created for FLUKA. Each line in the input file contained the particle start position, 

direction cosines, and energy level. This file was combined with an input file containing details of the ion being 

transported, as well as the geometry for the simulation and definition of the desired output differential flux spectra. 

For the FLUKA simulation presented in this paper, the following number of primary ions were simulated (Table 1). 

 
Table 1: Number of particles simulated. 

 0.1 

g/cm2 
0.5 

g/cm2 
1.0 

g/cm2 
5.0 

g/cm2 
10 

g/cm2 
20 

g/cm2 
50 

g/cm2 
100 

g/cm2 
150 

g/cm2 
200 

g/cm2 

Z=1 5.0e9 5.0e9 5.0e9 3.2e9 2.2e9 1.0e9 5.0e8 5.0e8 1.3e9 2.5e8 

Z=2 4.9e9 2.8e9 9.6e8 4.0e8 2.0e8 9.8e7 5.0e7 4.9e7 2.5e7 2.5e7 

Z=6 5.9e8 5.7e8 2.9e8 5.0e7 2.9e7 1.5e7 2.4e7 2.7e7 2.4e7 2.5e7 

Z=8 8.9e8 3.0e8 1.2e8 3.0e7 1.8e7 9.0e6 2.4e7 7.4e6 2.4e7 2.5e7 

Z=12 4.7e8 1.2e8 5.0e7 1.6e7 5.0e6 4.8e6 4.9e6 7.3e6 1.2e7 5.0e6 

Z=14 3.7e8 1.1e8 5.0e8 1.3e7 5.0e6 3.9e6 4.1e6 7.3e6 1.2e7 5.0e6 

Z=26 1.2e8 3.2e7 1.8e7 4.2e6 2.4e6 1.2e6 2.4e6 1.0e6 1.2e6 2.5e6 

 

The simulations were performed on several clusters at various times, each consisting of several hundred nodes up 

to 1,000 nodes. Generally, the thick shielding runs were run on the cluster with the most available nodes because of 

the length of time required for completion. The simulations were performed with the PRECISIOn defaults in FLUKA, 

and double differential yields weighted by 1/cos(theta), where theta is the angle of the ion crossing the surface with 

respect to the normal, were obtained with respect to energy and charge. The charge was integrated out leaving output 

differential spectra, i.e. number of ions/cm2/GeV/n/sec in each energy bin. Because the native output units of Monte 

Carlo codes are normalized per primary simulated, the output spectra were then normalized to the space level based 

on the total number of particles for each input spectrum.  To facilitate comparison with HZETRN2010, the FLUKA 

results were interpolated against the HZETRN2010 energy grid. 

 For HZETRN2010, the CREME96 GCR input environment is considered a user defined environment.  To run 

properly, it was formatted to fit the HZETRN2010 GCR environments definition database, which includes columns 

for all 59 GCR isotopes. Each material thickness was run separately due to the forward and backward treatment of the 

neutron transport to yield a total of ten runs.  The transported neutron flux results were compiled for comparison with 

FLUKA. 

 The On-Line Tool for the Assessment of Radiation in Space (OLTARIS10) was used to provide neutron albedo 

information in low Earth orbit during solar maximum conditions.  The neutron albedo model in OLTARIS is a 

parametric fit of data gathered by NASA Langley Research Center.10,11  The altitude and inclination were specified to 

362.5 km and 51.6°, respectively, to remain consistent with the CREME96 GCR input environment used during 

transport.  This neutron albedo environment was transported through the specified thicknesses mentioned above and 

provided a resulting neutron flux.  To accurately compare the transported data with measured flight data, the 

transported neutron flux resulting from GCR, trapped protons, and albedo need to be combined.  Thus, the output 

neutron flux resulting from albedo was then interpolated against the HZETRN2010 energy grid to enable summation 

with the transport results from HZETRN2010 and FLUKA.  The combined results were then compared with flight 

data. 

IV. Results 

A. HZETRN2010 and FLUKA Comparison 

The FLUKA neutron fluxes behind various levels of aluminum shielding are plotted along with the HZETRN2010 

results in Figure 6 and Figure 7 below. Flux error bars are plotted on the FLUKA data at each decade in energy; 

however, they appear to be no larger than the width of the plot line. The simulations show fairly good agreement in 



 

American Institute of Aeronautics and Astronautics 
 

 

7 

overall shape and magnitude, with the FLUKA simulation being slightly higher in magnitude. However, at high 

energies (several hundred MeV/n), the two data sets appear to match well at all shielding thicknesses. The fluctuations 

in the FLUKA data at low energy are attributed to poor statistics. The inflection points owing to the trapped proton 

environment appear to be more distinct in the HZETRN2010 data and more smeared out in the FLUKA data. 

 

 
Figure 6: Comparison of HZETRN2010 and FLUKA for thicknesses ranging from 0.1 to 20 g/cm2. 

 

 
Figure 7: Comparison of HZETRN2010 and FLUKA for thicknesses ranging from 50 to 200 g/cm2. 
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 To compare the data in another way, each of the data sets plotted in Figure 6 and Figure 7 were integrated over the 

energy levels using the trapezoidal rule (Equation 1).  The integrated data was then plotted against thickness to better 

understand how the neutron flux output changed with increased shielding mass (Figure 8). 

 

 ∑(𝑋𝑖 − 𝑋𝑖−1) (
𝑓(𝑋𝑖−1)+𝑓(𝑋𝑖)

2
) (1) 

 

 
Figure 8: Integrated neutron flux of both HZETRN2010 and FLUKA results plotted against thickness of shielding mass. 

B. Simulation Data Compared with Flight Data 

There were four sets of flight data extracted for comparison with the FLUKA and HZETRN2010 results.  All four 

sets of measurements were made during solar maximum conditions from 1989 to 2001.  The first two sets of data12 

were from space shuttle missions. STS-28 occurred on August 8, 1989 during solar cycle 22, and the orbit was located 

at 302 km with a 57° inclination.  STS-36 occurred on February 28, 1990, also during solar cycle 22, with an orbit at 

246 km and inclination of 62°. The neutron data acquired during these flights was via a Bonner Ball neutron detector.  

The locations of the detector were not specified in the paper, and the shielding mass in front of the detector is unknown.  

The third set of flight data13 came from the Mir space station during the 1990-1992 timeframe, also during solar 

cycle 22.  Mir was located at an altitude between 354 km and 374 km with an inclination of 51.6°.  The detector used 

during this experiment was a fission foil detector.  The location of the detector is unknown, but the shielding thickness 

in front of the detector is estimated at 40 g/cm2. 

The final set of flight data14 is an average of neutron flux data collected during a mission aboard the International 

Space Station (ISS).  This data was collected during solar cycle 23 and was collected at two locations within the ISS.  

The first data collection occurred on March 23, 2001 and was located at the US lab rack 1P1.  The second data 

collection occurred on November 14, 2001 at the US lab rack 1D3.  The data was measured using a Bonner Ball 

neutron detector and the shielding thickness in front of the detector ranged from 20-50 g/cm2. 

Given that all of the extracted flight data was collected behind a shielding mass in the range of 20-50 g/cm2, we 

focused our comparison of HZETRN2010 and FLUKA on 50 g/cm2 shielding.  The results of the comparison are 

shown in Figure 9. 
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Figure 9: Comparison of four sets of flight data with FLUKA and HZETRN2010 simulation results at 50 g/cm2 thickness. 

 

V. Discussion 

In this study, HZETRN2010 and FLUKA results show similar agreement, and the differences would result in 

FLUKA predicting slightly higher rates for neutron related effects, such as dose from neutrons or displacement damage 

dose for materials. The comparison performed in this study doesn’t show as good agreement as in previous 

comparisons, which have generally been done for proton only environments, such as solar particle events or GCR 

environments separately, but not combined.15 This same prior work uses different sampling techniques for these two 

environment regimes because each environment spans different energy scales. Source energy biasing is desired for 

low energy proton spectra, such as that from solar particle events or trapped radiation, to improve neutron statistics, 

something that was not done in this study because the trapped protons were combined with the galactic cosmic ray 

proton spectra. Although not discussed in this paper, this simulation shows much better agreement in predicted proton 

fluxes across all thicknesses. Therefore, in conclusion for the HZETRN2010 and FLUKA comparison, the two codes 

agree well enough to make comparisons to the flight data. 

In studying the simulation data, specifically Figure 8, it is apparent that with increasing shielding mass, there is an 

increase in the neutron flux.  This increase is quite dramatic at lower thicknesses and then begins to decrease in slope 

at higher thicknesses.  This observation could be cause for concern as vehicle sizes increase for human missions to 

deep space and to Mars. 

The flight data was compared against the FLUKA and HZETRN2010 simulation results at 50 g/cm2 thickness.  

From 0.01 MeV to 100 MeV, the simulation and collated flight data agree very well.  The simulation results extend 

out to 50 GeV, but the flight data only extends to 100 MeV.  Therefore, it is unknown whether that agreement will 

continue at higher energies.  The space shuttle neutron flux was consistently lower than the ISS and Mir space station 

fluxes.  Given that the locations of the neutron detectors and thus the shielding thicknesses in front of the detectors 

was not well known in all of the data, it is possible that this difference in neutron flux is a result of different shielding 

thicknesses between the space shuttle and the two space stations.  Furthermore, there is some uncertainty as to how 

well this flight data agrees to the simulation data without knowing the approximate shielding thicknesses in front of 

the detectors. As Figure 8 shows, a contributor to the increase in neutron flux is the shielding mass thickness of the 

vehicle. Thus, further research into these neutron experiments to verify the shielding information is necessary.  

Additionally, other experiments with more precise information on shielding mass, larger ranges of shielding mass and 

larger ranges of energy are necessary to verify completely the results from the simulation. 
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VI. Conclusion 

The results of this study show that there is good agreement between FLUKA and HZETRN2010 in the neutron 

fluxes.  Thus, future neutron studies can use HZETRN2010 to perform quick analyses of simple shielding 

geometries to determine neutron yields and understand effects of neutrons.  As a vehicle design gets more refined 

and requires complex analysis, FLUKA may be a better tool to understand the full neutron environment produced 

by the vehicle. 

Furthermore, comparing the simulation results to neutron flight data showed good agreement at a vehicle thickness 

of 50 g/cm2.  Additional work is needed to further validate the simulation data at greater energies and different 

thicknesses.   

Finally, our observations showed an overall increase in the neutron flux with increasing thickness of the vehicle.  

This result may be a cause for concern as vehicle sizes increase for human missions to deep space and Mars.  Future 

work needs to be completed to validate the simulation data at these larger thicknesses and the implications to crew, 

avionics, and materials due to the increase in neutron flux needs to be well understood. 

This work is a first step at understanding the neutron environment resulting from primary radiation interactions 

with the vehicle shielding mass.  Future work will also encompass the neutron albedo environment from the surface 

of Mars as another source of neutron radiation.  Better understanding the surface albedo environment, as well as the 

interactions of that surface albedo with the vehicle shielding mass to produce a secondary neutron environment, is 

not well understood.  Thus, further analysis in this area, as well as investigating the implications of the secondary 

neutron environment from the Martian surface will be important to future Mars missions. 
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