3-D Printed Ultem 9085 Testing and Analysis

June 17, 2015

National Aeronautics and Space Administration Ames Research Center Moffett Field, CA

Written by:

Daniel Aguilar, Sean Christensen, and Emmet Fox

Organization	Title/Subject	Number	Date	Page 1
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Table of Contents

Table of Figures 4
Table of Tables 6
Abstract7
1.0 Background7
1.1 The 3-D Print Process9
1.2 Slosh Product Damage Theories10
1.2.1 Slosh Damage Evidence10
1.2.2 Slosh Damage Theory Summary15
1.3 Future Ultem 9085 Applications15
2.0 Three Point Beam Testing17
2.1 Mechanics of Materials17
2.2 Relation to Ultem 908518
2.3 3-D Printing Limitations, Defects, and Deviations within the Batch
5 <i>i i</i>
2.4 Applicant Selection
2.4 Applicant Selection
2.4 Applicant Selection 20 2.5 Test Procedure 22 2.6 Performance Comparison of Applicants 23
2.4 Applicant Selection 20 2.5 Test Procedure 22 2.6 Performance Comparison of Applicants 23 2.6.1 Change in Mass 23
2.4 Applicant Selection.202.5 Test Procedure.222.6 Performance Comparison of Applicants.232.6.1 Change in Mass.232.6.2 Change in Dimension.24
2.4 Applicant Selection.202.5 Test Procedure.222.6 Performance Comparison of Applicants.232.6.1 Change in Mass.232.6.2 Change in Dimension.242.6.3 Strength & Deflection/ Stress & Strain.26
2.4 Applicant Selection202.5 Test Procedure222.6 Performance Comparison of Applicants232.6.1 Change in Mass232.6.2 Change in Dimension242.6.3 Strength & Deflection/ Stress & Strain262.6.4 Break Characteristics/FOD33
2.4 Applicant Selection.202.5 Test Procedure.222.6 Performance Comparison of Applicants.232.6.1 Change in Mass.232.6.2 Change in Dimension.242.6.3 Strength & Deflection/ Stress & Strain.262.6.4 Break Characteristics/FOD.333.0 SDP Enclosure Top Testing.34
2.4 Applicant Selection202.5 Test Procedure222.6 Performance Comparison of Applicants232.6.1 Change in Mass232.6.2 Change in Dimension242.6.3 Strength & Deflection/ Stress & Strain262.6.4 Break Characteristics/FOD333.0 SDP Enclosure Top Testing344.0 Conclusion36
2.4 Applicant Selection202.5 Test Procedure222.6 Performance Comparison of Applicants232.6.1 Change in Mass232.6.2 Change in Dimension242.6.3 Strength & Deflection/ Stress & Strain262.6.4 Break Characteristics/FOD333.0 SDP Enclosure Top Testing344.0 Conclusion365.0 InSPIRE II37
2.4 Applicant Selection202.5 Test Procedure222.6 Performance Comparison of Applicants232.6.1 Change in Mass232.6.2 Change in Dimension242.6.3 Strength & Deflection/ Stress & Strain262.6.4 Break Characteristics/FOD333.0 SDP Enclosure Top Testing344.0 Conclusion365.0 InSPIRE II376.0 Recommendations38
2.4 Applicant Selection202.5 Test Procedure222.6 Performance Comparison of Applicants232.6.1 Change in Mass232.6.2 Change in Dimension242.6.3 Strength & Deflection/ Stress & Strain262.6.4 Break Characteristics/FOD333.0 SDP Enclosure Top Testing344.0 Conclusion365.0 InSPIRE II376.0 Recommendations386.0 Appendices39

Organization	Title/Subject	Number	Date	Page 2
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

SPHERES

Sample Key Tables	39
Pre-Application dimension tables	40
Application Procedures	43
Arathane 5750-A/B (LV)	46
BJB TC-1614	48
Henkel Loctite 5110	49
Hysol Loctite E-20HP	49
ProBuild Marine Epoxy	51
Post-Application Processing	52
Post-Application Dimension Tables	54
Finite Element Analysis	57
Destructive Sample Testing	66
Strength and Deflection Tables and Graphs	73
Control	73
Arathane 5750-A/B (LV)	76
BJB TC-1614	78
Hysol E-20HP	81
Henkel Loctite 5110	83
ProBuild Marine	86
Stress vs. Strain Graphs	89
Control	89
Arathane 5750-A/B (LV)	91
BJB TC-1614	92
Hysol E-20HP	94
Henkel Loctite 5110	95
ProBuild Marine	97
Breaking Notes	99
Appendix B: SDP Enclosure Top Test	115
Procedure	117

Organization	Title/Subject	Number	Date	Page 3
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

SPHERES

Appendix C: Data Sheets	122
Ultem 9085	122
Stratasys	122
Sabic	123
Applicant MSDS and TDS	124
Arathane 5750-A/B (LV)	124
BJB TC 1614	132
Hysol E-20HP	136
Henkel Loctite 5110	140
ProBuild Marine	143
Measuring Devices	145
Interface Load Cell 5K lb Data Sheet	145
Harbor Freight 6" Digital Caliper	147
Shadograph	150
7.0 References	150

Table of Figures

Figure 1: Image of the broken 3-D printed part onboard the ISS	11
Figure 2: Images of the countersunk screw hole *	11
Figure 3: Images of the countersunk screw hole	12
Figure 4: Countersunk flat-head versus pan-head	12
Figure 5: Countersunk flat-head out of alignment causing fracture	13
Figure 6: Illustration of a countersunk screw radiating force outwards if over torqued	13
Figure 7: Photograph taken of Slosh box S/N 002 during packing for launch *	14
Figure 8: The image above shows Halo's large 3-D printed parts in tan *	16
Figure 9: SDP has thin 3-D printed parts with fragile geometries shown in tan *	16
Figure 10: Top view of the Ultem bar (dimensions in inches)	18
Figure 11: Image showing cross section of the Ultern 9085 bar (dimensions in inches)	19
Figure 12: Formula to find the suggested rate of crosshead motion [17]	22
Figure 13: Change in mass of each Ultern bar as a percentage of its original mass	23
Figure 14: Average mass change of the Ultem samples post application	24

Organization	Title/Subject	Number	Date	Page 4
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 15: Average dimensional change of the Ultern samples post application	24
Figure 16: The top/bottom of the Ultem bars are rastered and the sides are contoured *	25
Figure 17: Average change in dimension of the raster sides	25
Figure 18: Average change in dimension of the contour sides	26
Figure 19: Displacement vs load of six Ultem 9085 samples (3 solid & 3 gapped)	28
Figure 20: Average Flexural Modulus of the gapped samples	28
Figure 21: Average Flexural Modulus of the solid samples	29
Figure 22: Stress vs. Strain of six Ultem 9085 samples (3 solid & 3 gapped)	30
Figure 23: Average Tensile Modulus of the gapped samples	30
Figure 24: Average Tensile Modulus of the solid samples	31
Figure 25: Max average load for gapped and solid samples of each applicant	31
Figure 26: Average displacement for gapped and solid samples of each applicant	32
Figure 26: Strength and deflection curves for the control samples	74
Figure 27: Average Flexural modulus for gapped control samples	75
Figure 28: Average Flexural modulus for solid control samples	75
Figure 29: Strength and deflection curves for samples with Arathane 5750-A/B (LV)	77
Figure 30: Average Flexural modulus for gapped samples with Arathane 5750-A/B (LV)	77
Figure 31: Average Flexural modulus for solid samples with Arathane 5750-A/B (LV)	78
Figure 32: Strength and deflection curves for samples with BJB TC-1614	79
Figure 33: Average Flexural modulus for gapped samples with BJB TC-1614	80
Figure 34: Average Flexural modulus for solid samples with BJB TC-1614	80
Figure 35: Strength and deflection curves for samples with Hysol E-20HP.	82
Figure 36: Average Flexural modulus for gapped samples with Hysol E-20HP	82
Figure 37: Average Flexural modulus for solid samples with Hysol E-20HP	83
Figure 38: Strength and deflection curves for samples with Henkel Loctite 5110	84
Figure 39: Average Flexural modulus for gapped samples with Henkel Loctite 5110	85
Figure 40: Average Flexural modulus for solid samples with Henkel Loctite 5110	85
Figure 41: Strength and deflection curves for samples with ProBuild Marine	87
Figure 42: Average Flexural Modulus for gapped samples with ProBuild Marine	87
Figure 43: Average Flexural Modulus for solid samples with ProBuild Marine	88
Figure 44 Average max load for gapped and solid samples of each applicant	88
Figure 45 Average displacement for gapped and solid samples of each applicant	89
Figure 47: Stress vs. Strain curves for control samples	89
Figure 48: Average Tensile Modulus of the gapped control samples	90
Figure 49: Average Tensile Modulus of the solid control samples	90
Figure 50: Stress vs. Strain curves for samples with Arathane 5750-A/B (LV)	91
Figure 51: Average Tensile Modulus for gapped samples with Arathane 5750-A/B (LV)	91
Figure 52: Average Tensile Modulus for solid samples with Arathane 5750-A/B (LV)	92
Figure 53: Stress vs. Strain curves for samples with BJB TC-1614	92

Organization	Title/Subject	Number	Date	Page 5
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 54: Average Tensile Modulus for gapped samples with BJB TC-1614	93
Figure 55: Average Tensile Modulus for solid samples with BJB TC-1614	93
Figure 56: Stress vs. Strain curves for samples with Hysol E-20HP	94
Figure 57: Average Tensile Modulus for gapped samples with Hysol E-20HP	94
Figure 58: Average Tensile Modulus for solid samples with Hysol E-20HP	95
Figure 59: Stress vs. Strain curves for samples with Henkel Loctite 5110	95
Figure 60: Average Tensile Modulus for gapped samples with Henkel Loctite 5110	96
Figure 61: Average Tensile Modulus for solid samples with Henkel Loctite 5110	96
Figure 62: Stress vs. Strain curves for samples with ProBuild Marine	97
Figure 63: Average Tensile Modulus for gapped samples with ProBuild Marine	97
Figure 64: Average Tensile Modulus for solid samples with ProBuild Marine	98

Table of Tables

Table 1: An example of some of the defects that were observed around the reinforced holes.	
The red arrows indicate the defects in the contour sections *	20
Table 2: Table of the various applicant, observations, and post working methods	21
Table 3: Notes on work characteristics of applicants	21
Table 4: Rate of the crosshead motion used in the NASA ARC Ultem testing	23
Table 5: Difference between the fill of the Solid and Gapped samples	26
Table 6: Gapped control results matrix	27
Table 7: Solid control results matrix	27
Table 8: Comparison of the Flexural modulus from various resources	32
Table 9: Gapped sample break characteristics	33
Table 10: Solid sample break characteristics	33
Table 11 Crew induced loads from SSP57000	35
Table 12: Gapped control samples	73
Table 13: Solid control samples.	74
Table 14: Gapped samples with Arathane 5750	76
Table 15: Solid samples with Arathane 5750.	76
Table 16: Gapped samples with BJB TC-1614	78
Table 17: Solid samples with BJB TC-1614.	79
Table 18: Solid samples with Hysol E-20HP.	81
Table 19: Gapped samples with Henkel Loctite 5110	83
Table 20: Solid samples with Henkel Loctite 5110.	84
Table 21: Gapped samples with ProBuild Marine	86
Table 22: Solid samples with ProBuild Marine	86

Organization	Title/Subject	Number	Date	Page 6
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Abstract

The purpose of this document is to analyze the mechanical properties of 3-D printed Ultem 9085. This document will focus on the capabilities, limitations, and complexities of 3D printing in general, and explain the methods by which this material is tested. Because 3-D printing is a relatively new process that offers an innovative means to produce hardware, it is important that the aerospace community understands its current advantages and limitations, so that future endeavors involving 3-D printing may be completely safe. This document encompasses three main sections: a Slosh damage assessment, a destructive test of 3-D printed Ultem 9085 samples, and a test to verify simulation for the 3-D printed SDP (SPHERES Docking Port). Described below, 'Slosh' and 'SDP' refer to two experiments that are built using Ultem 9085 for use with the SPHERES (Synchronized Position Hold, Engage, Reorient, Experimental Satellites) program onboard the International Space Station (ISS) **[16].** The SPHERES Facility is managed out of the National Aeronautics and Space Administration (NASA) Ames Research Center in California.

1.0 Background

3-D printing of thermoplastics has recently become of great interest. Made from polymer resins, a thermoplastic is a type of plastic that becomes a homogenized liquid when heated, hardens when cooled, and becomes brittle and subject to fracture when frozen. These characteristics are reversible, which lends the material its name. 3-D printing hardware and software have grown in resolution and stability. This, along with a reduction in manufacturing costs, allows for a more mainline implementation over many fields of use. Currently, NASA allows Ultem 9085, a polyetherimide (PEI) based thermoplastic, and onboard the International Space Station (ISS) as an approved 3-D printed material **[13].** Ultem 9085 is one of the few 3-D printed materials approved for use inside the ISS. Ultem has desirable properties such as decreased outgassing and flammability as seen in table one below. Many of the other common 3-D printable thermoplastics are too hazardous to be safely implemented inside the ISS due to risk to science, facility, and crew member safety.

Organization	Title/Subject	Number	Date	Page 7
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

		%				MFR
Material	% TML	CVCM	% WVR	Data Ref	Application	Code
ABS Plastic	0.94	0.04	0.25	GSC35076	3-D Printing	CIM
ABS Plus	0.63	0.08	0.25	GSC33928	3-D Printing	XXX
					Molding	
Ultem 9085, Injection molded	0.4	0	0.32	GSC32863	Compound	SBC
Ultem 9085	0.41	0.1	0.37	N/A	3-D Printing	SYS
PET Plastic (Makergeeks.com)	0.61	0.05	0.24	GSC35079	3-D Printing	XXX
PLA Plastic (Makerbot)	0.56	0.01	0.33	GSC35082	3-D Printing	XXX
P430 ABS Plus	0.37	0	0.25	GSC33853	3-D Printing	SYS

Table 1: Material Outgassing [13]

SPHERES is a NASA project currently in use onboard the ISS. SPHERES consists of three free flying vehicles identifiable by their shell colors of Red, Blue, and Orange. Initially, the SPHERES were designed for testing of control theory algorithms. The Satellites are about the size and mass of an eight pound bowling ball and use cold gas (CO₂) thrusters to propel themselves around a fixed experimental volume. The SPHERES program currently operates out of the Japanese Experiment Module (JEM) inside the ISS. SPHERES uses ultrasound beacons and infrared radiation (IR) as a metrology system to identify their position in conjunction with accelerometers and gyroscopes. SPHERES has had continual success through the years due to an expansion port built into the vehicle allowing guest scientists to utilize some or all of the SPHERES core features. SPHERES is one of the most popular projects on board the ISS. [16]

In the spring of 2013, a crew member found a slightly damaged component on the SPHERES payload known as Slosh during the unpacking inspection aboard the ISS. Several components of the Slosh experiment are made of 3-D printed Ultem 9085 which were printed by a company called RedEye, a subsidiary of Stratasys. Stratasys is the manufacturer of the 3-D printers which utilize Ultem 9085 [19]. The SPHERES engineering team undertook the task to assess what the probable causes of the Slosh avionics box fracture were.

The component that fractured was not under high loads or crucial to structural integrity. No harm to the crew members or science resulted from this incident. Nevertheless, this incident provides an opportunity to develop and improve the current understanding of 3-D printed parts in order to prevent further incidents from occurring. All tests were conducted at NASA Ames Research Center by the authors of this document along with other members of the SPHERES engineering team. When the incident first occurred, the time and location of the break was unknown. As a result, the initial goal was to improve the strength and deflection properties of Ultem 9085 samples by post processing. However, the break was later found to have occurred on the

Organization	Title/Subject	Number	Date	Page 8
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

ground before flight, and so the team decided to look closer at the torque specifications and design choices for future payloads that will use Ultem 9085.

1.1 The 3-D Print Process

3-D printing is categorized as additive manufacturing, also technically known as fused deposition modeling (FDM). Essentially, the product is created by a hot extrusion process that is computer numerically controlled (CNC) to ensure extreme accuracy and tolerances. This is quantifiable as a welding process as the printed Ultem 9085 thermoplastic has numerous welded contact points. As a visual, think of a hot glue gun creating overlapping extrusions in a grid pattern on a microscopic scale. During the fabrication of a 3-D printed component, there are four phases of development that have an effect on the quality of the final product. These phases are: the principal investigators' design, computer aided drawing (CAD) to a computer aided machining (CAM) conversion, manufacturing operations, and post processing.

1.1.1 The first phase is the principal investigators' (PI) design. The design of a product is often driven by the intended purpose, as well as machinability and assembly. One of the attractive features of 3-D printing is the capability to produce geometries that conventional machining would never allow. That being said, it is critical that the designer keeps this in mind to fully utilize the benefits of the technology. This encompasses the choice of including additional ribs, fillets, and other geometries that encourage strength and reduced mass which are often desirable traits for aerospace applications. There is no set of established rules; however one can state that the designer must view the product in a new light, as the limitations of conventional machining are no longer a restriction.

1.1.2 The second phase is the implementation of a solid model into a real product. In order to convey the computer code language the machine operates from, a software process must convert the solid model into a compatible format. The software to convert CAD to CAM code is a proprietary software used by the manufacturing company. The software, called Insight, has the authority to produce a CAM code using a simplistic algorithm without human oversight. This is often used to expedite the process and reduce cost to quickly produce a product not intended for maximum strength qualities. The alternative to the default quick print option is to have a skilled engineer/operator introduce modifications to the numerous settings and variables. Because of the large number of variables, examples being: part orientation, grid spacing, support structures, tip style, resolution, step levels, surface finish, patterns, laminate angles, reinforcement layers, thicknesses, fill density, etc, each part has to have its own CAD to CAM operator analyze and use best judgment on the qualities that are demanded by the PI.

Organization	Title/Subject	Number	Date	Page 9
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

1.1.4 The final phase is post-processing. Once the product is printed, there are chemical application processes available such as epoxy impregnation and surface sealing. NASA Ames has conducted research on possible application materials as well as processes to improve material characteristics. Results of this research will be addressed later in this document.

1.2 Slosh Product Damage Theories

1.2.1 Slosh Damage Evidence

The fractured piece of Ultem 9085 found by the crew members on the ISS can be seen in figure one. As shown in the photo, the damage was found around a countersunk screw located close to the corner edge of the avionics box. A piece of Ultem 9085 is missing and assumed as foreign object debris (FOD). Originally, the fracture was assumed to have occurred during launch or crew handling, but later it was found to have happened on the ground before flight, as can be seen in the photograph of the pre-flight damage in figure seven. The immediate solution by the ISS crew was to apply Kapton tape to the damaged area. After contacting the PI and the manufacturer of the 3-D printed Ultem 9085 components, several possible contributing factors were identified.

Organization	Title/Subject	Number	Date	Page 10
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

SPHERES

Figure 1: Image of the broken 3-D printed part onboard the ISS *Image property of NASA SPHERES

Figure 2: Images of the countersunk screw hole *

Organization	Title/Subject	Number	Date	Page 11
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 3: Images of the countersunk screw hole *

The first identified contributing factor was the countersunk flat-head screw. The broken component in question was a flat plate, which was screwed down using a flat-head screw. This was intended to be recessed or flush to the surface plate so as to avoid sharp edges. Flat-head screws have a conical shaped head, which have certain traits that a designer must understand to utilize. Unlike a pan-head screw, countersunk flat-head screws force the countersunk material to align with the screw head. Any error in the alignment of two or more holes will result in deformation due to stretching or shrinking of the material between them. This causes radial stress around the hole on the material being secured. However, in the Slosh design, the screw in question is threaded into an aluminum standoff and not directly into another piece of Ultem. This implies that any force of misalignment was not a contributing factor in the case of Slosh.

Organization Title/Subject Numb SPHERES National Lab ULTEM 9085 Testing SPH-04-X	Date Page 12 100 June 17, 2015 Page 12
---	--

An additional issue with countersunk flat-head screws is the nature of the torque required to secure the load. Because the head is conical in shape, it is essentially a wedge. If the wedge is driven too far it will cause radial forces to stretch or break the hole being tightened.

Figure 6: Illustration of a countersunk screw radiating force outwards if over torqued.

Torque specifications can typically be found through standards organizations. Proper torque specs can be found through testing as well **[12]**. It is unknown if the screw in question had proper torque value applied, or if it was torqued with a satisfactory tool with the correct resolution and accuracy for this application. Often there can be a mentality of "tight is tight"

Organization	Title/Subject	Number	Date	Page 13
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

among certain technicians, but this cannot be quantified nor reproduced with precision, especially among different technicians.

An additional identified contributing factor is the location of the screw hole. The thickness of the material as well as the proximity of the hole's location to the edge of the product suggests this design was susceptible to damage at this point.

Figure seven shows a photograph taken of the damaged Slosh avionics box at KSC (Kennedy Space Center) before launch. In the photograph, there is a visible fracture at the location where the damage occurred. These cracks are visible only in certain lighting conditions and were not observed during packing.

Figure 7: Photograph taken of Slosh box S/N 002 during packing for launch *

A final possible contributing factor to the damage of the Ultem 9085 on the Slosh hardware was the CAD to CAM process used. After contacting the company responsible for the production of the Slosh products, it was discovered that the production log was not saved nor requested by the PI. However, the operator recalled the particular print job and recalled that the CAD to CAM

Organization	Title/Subject	Number	Date	Page 14
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

process used the default quick print option. He also stated that no further design modifications were implemented.

1.2.2 Slosh Damage Theory Summary

In summary, the cause of the Slosh payload damage cannot be confirmed due to its inaccessibility. However, it is believed a mix of screw hole location, improper torque, poor printing instructions, and possible material defects are likely causes for the damage. The inherent nature of 3-D printed parts with so many production variables makes it incredibly difficult to have a stable set of design and manufacturing rules. Every part will require different needs to ensure a quality product. Due to geometry, machine settings, design, support structures, and manufacturing errors, every part is inherently non-homogenous. Because of this, it is unrealistic to set any design or manufacturing rules and standards.

Given the low structural importance of the Slosh part in question along with the evidence shown, it was determined that the Slosh assembly on station is not a safety concern.

1.3 Future Ultem 9085 Applications

The International Space Station Spheres Integrated Research Experiments (InSPIRE II) payload consists of two experiments, the SPHERES Docking Ports (SDP) and Halo, both of which plan on utilizing 3-D printed Ultem 9085 in various aspects of their design. This is the same material responsible for the incident that occurred in spring of 2013 when a crew member found a slightly damaged component on the SPHERES payload (Slosh) during the unpacking inspection aboard the ISS. To prevent further incidents from happening, the SPHERES engineering team at NASA Ames Research Center has conducted three point beam tests on Ultem 9085 samples that have been treated with various sealants and epoxies in the hopes of finding better material characteristics. Please see the Destructive Testing Procedures in Appendix A for details of the test. Halo will use a large volume of 3-D printed Ultem 9085. SDP, on the other hand, will use a small volume of Ultem 9085, but these 3-D printed parts will be fragile due to their geometries. The large volume of 3-D printed material on Halo and the fragile geometry of SDP both raise concerns about structural failure.

Organization	Title/Subject	Number	Date	Page 15
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

SPHERES

Figure 8: The image above shows Halo's large 3-D printed parts in tan *

Figure 9: SDP has thin 3-D printed parts with fragile geometries shown in tan *

OrganizationTitle/SubjectNumberDateSPHERES National LabULTEM 9085 TestingSPH-04-XS-100June 17, 2015Page 16	6
--	---

2.0 Three Point Beam Testing

2.1 Mechanics of Materials

It is important to understand the distinction between elastic deformation and plastic deformation, especially for this experiment. Elastic deformation is reversible. Once forces on an object are no longer being applied, the object returns to its original shape **[6]**. This is not true for plastic deformation, where objects will not return to their original shape. The plastic region occurs after the elastic region, varying in size from material to material. For thermoplastics such as Ultem 9085, the plastic region is relatively large. Ceramic, on the other hand, has a very small plastic region **[6]**.

Both the plastic and elastic regions can be easily seen on a stress strain plot. The linear portion of the curve signifies that the material is undergoing elastic deformation, and the non-linear portion signifies plastic deformation. The point at which the material begins to plastically deform is called the yield strength or yield point. Critical to understanding and quantifying these regions are the **Tensile Modulus**, **Flexural Modulus**, and **Secant Modulus**. Tensile modulus, synonymous with Young's modulus, is used to define the elastic, or linear, region of a stress strain curve. From the plots in this study, it was observed that the stress strain curve is never linear. However, the three point bending test that was conducted placed the Ultem samples in both tension and compression. The behavior observed in the samples is therefore a combination of elastic and plastic behavior **[6]**.

In order to describe the bending stiffness of a plastic beam under three point loading, the plastic industry uses a term called the Flexural Modulus, which is completely a product of the experiment. This phenomenon is geometry dependent, and cannot be applied to other loading conditions. The Flexural Modulus is typically used to compare the relative bending stiffness of various plastics with same geometry under the same loading conditions.

The Secant Modulus is also used to describe plastic behavior beyond the yield limit. The secant modulus can be applied at any strain level, but like the Flexural Modulus, it depends on the geometry, material, and strain level.

Both of these properties are important to Finite Element Analysis (FEA) of plastics, as most FEA packages cannot model plastic behavior accurately, although some do **[10]**. Instead, most FEA software can only handle linear models, so the best one can do is perform an approximation with a guess on strain level and the corresponding secant modulus for that particular strain. The

Organization	Title/Subject	Number	Date	Page 17
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

current limitations on modeling plastic behavior underlines the importance of conducting experiments, where one may get a more realistic understanding of how these materials behave under loads.

2.2 Relation to Ultem 9085

The SPHERES team at NASA Ames Research Center conducted its own three point destructive testing on Ultem 9085. The results of this test were found to be considerably different than the material properties found on the manufacturer's (Stratasys) data sheets. Although the objective of the test was not to compare measured values, the explanation of the difference between these values is important. As stated above, the modeling and comparison of plastic behavior is not straightforward. This is complicated even more by the fact that the 3-D print settings determine much of a samples performance under a three point load. Stratasys performed their test in accordance with the ASTM D790 standards, which defines dimensions for the samples to be tested. The SPHERES team performed the test on samples which were closer to the actual geometries found on flight hardware, thus the discrepancy in measured values can be attributed to the difference in geometry, speed of the test, micro gaps between extrusion paths in the 3-D printed pattern, and methods for gathering data. For example, what strain value was used to determine the Flexural Modulus? Was the Secant Modulus used? Where was the Tensile Modulus measured? The ASTM D790 test also dictates that the test will conclude when the sample has deflected by 5% of its original shape or has broken [17]. Again, it is important to ask what strain value was used for gathering data. These are all important factors to consider when gathering data about plastic materials. For details of the test performed at NASA Ames, please see the Destructive Sample Testing in Appendix A.

Figure 10: Top view of the Ultem bar (dimensions in inches)

Organization	Title/Subject	Number	Date	Page 18
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 11: Image showing cross section of the Ultem 9085 bar (dimensions in inches)

2.3 3-D Printing Limitations, Defects, and Deviations within the Batch

49 samples were ordered from RedEye for use in the three point beam test. Numerous defects were found within each of the 49 samples that emphasized the limits of the Fortus 900, the printer used by Stratasys to manufacture the Ultem samples. For detailed printer information please reference Appendix C. In order to attach labeling tags to each sample, a hole was present on each end tab. When the samples were manufactured, a reinforced contour structure was extruded around this hole as seen in table one. These reinforced parts would address concerns about force in a radial direction, but they were poorly attached to the surrounding raster region of the sample. This meant that these reinforced sections were able to be pushed out without much effort. In addition to this, defects such as scratches, burns, dents, and bumps were found on various samples. It was presumed that these defects were results of the inconsistency of the extrusion process. One of the most common defects were gaps surrounding the reinforced holes.

Organization SPHERES National Lab	Title/Subject ULTEM 9085 Testing	Number SPH-04-XS-100	Date June 17, 2015	Page 19	
Organization SPHERES National Lab	Title/Subject ULTEM 9085 Testing	Number SPH-04-XS-100	Date June 17, 2015	Page 19	

Table 1: An example of some of the defects that were observed around the reinforced holes.The red arrows indicate the defects in the contour sections *

Sample Type	Top left	Top Right
Control Gapped	404	404

2.4 Applicant Selection

The phases of design and manufacturing are too specific and unique to offer build requirements or design rules that fully blanket all applications. After speaking with the Stratasys application engineer, the topic of post processes was raised **[19]**. Depending on the application, Stratasys and other vendors suggest several post processing options with the goal of improving strength and deflection characteristics. Ultem 9085 has the capacity to be media blasted, glued, electroplated, heat polished, sanded, tapped, filed, machined, as well as coated with adhesives. For applications related to future SPHERES payloads for use inside the ISS environment, the use of adhesives was of interest to this assessment.

Five applicants were selected to be used with the objective of improving the overall characteristics of 3-D printed Ultem 9085. Applicants were chosen based on previously published data as well as multiple conversations held with application engineers at respected corporations **[4].** The viscosity, FST, offgassing, outgassing, mechanical properties and chemical properties were all taken into account for the selection process.

In addition to the applicants selected, two different print settings were selected for the samples of Ultem 9085. 3D printers have the ability to alter the density of their prints. It was reasoned that more gaps between extrusion paths would allow adhesives to impregnate the samples easier. Samples with a 0.004 inch gap were dubbed "gapped" and samples with a 0.000 inch gap were dubbed "solid." The different print settings would also allow for an analysis on the strength properties of gapped versus solid samples.

Organization	Title/Subject	Number	Date	Page 20
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Table 2: Table of the various applicant, observations, and post working methods

Applicant	Application Method	Observations	Post work
Control	N/A	Smooth	N/A
Arathane 5750 A/B	Dip	Sticky, Tacky	Razor Blade/Filed
Hysol E-20HP	Brush	Smooth yet bumpy	Sanded/Filed
ProBuild Marine	Brush	Smooth yet bumpy	Sanded/Filed
Loctite 5110	Dip	Greasy	Kimwipe
BJB TC-1614	Dip/Vacuum	Smooth	Sanded/Filed

Table 3: Notes on work characteristics of applicants

Applicant	Notes
Arathane 5750 A/B	Arathane 5750 was very easy to work with. Before dipping, the correct ratio of part A to part B was measured out and combined according to the safety data sheets. The 3-D printed parts were submerged in plastic containers for 10 minutes. Parts were left to cure on hanging racks for 24 hours. Arathane 5750 stayed viscous during the entire work process. However, the viscous nature of Arathane 5750 led to the formation of drops that hardened on one edge of the sample. After curing, the samples were very sticky/tacky. Dried bumps of this applicant were easily removed using razor blades.
Hysol E-20HP	Hysol E-20HP is packaged in cartridges for use with a caulking gun. After the epoxy was squeezed out onto the sample, it was brushed on. This epoxy was hard to work with because of its high viscosity. It became tacky in approximately 5 minutes, so it had to be brushed completely on by then. It was left to dry, but it was clear that the surface of the sample would have evidence of brush strokes on it, leaving a bumpy finish. This was the most viscous of all the applicants. Excess E-20HP was sanded and filed off.
Pro Build Marine	Pro Build Marine came in two parts, the hardener and the resin. Both parts were combined as recommended. The 3-D printed part was then dipped. The work time was 50 minutes which is reasonable, because modifications and brushing off the excess epoxy was done in that time. Excess Pro Build Marine was also sanded and filed.
Loctite 5110	Loctite 5110 was the least viscous applicant tested. It was extremely easy to

Organization	Title/Subject	Number	Date	Page 21
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

	work with, but this sealant did not cure properly. A week after application, this epoxy was still not dry. It left the 3-D printed sample wet and slightly greasy. Kimwipes were used to remove the excess 5110 that had built up on the surface.
BJB TC-1614	BJB was easy to apply to the 3-D printed part because it had a medium viscosity. The 3-D part was dipped and and vacuumed for 10 minutes. The working time for a 100 gram mass at 77F (25°C) is 2 hours; this gives plenty of time to apply it and brush off the excess correctly. After the applicant cured, drops similar to the Arathane 5750 samples were found on the samples. Excess BJB was sanded and filed.

2.5 Test Procedure

Industry standard for flexural testing is conducted according to the American Society for Testing and Materials (ASTM) D790 "Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials". The common size of the test specimens is 0.5" x .125" x 5".

The purpose of this testing was not to revalidate Stratasys material property values, but to evaluate application of adhesives, their response to deflection on the surface area, and the resultant effect on foreign object debris. The ASTM D790 sample size would not offer a favorable geometry to witness the desired goals.

It was decided that 1" x 1" x 8" test specimens would be used instead to give more surface area as well as represent a similar thickness to some of the SPHERE Inspire II components. The ASTM Standards dictates the constant deflection rate as seen in the equation below. In addition, the geometry for the ASTM test is commonly a rectangular cross section, whereas the SPHERES engineering team chose a square profile. It was a conscious decision to do this, as it would give more resultant surface area for inspection.

$$R = ZL^2/6d \tag{1}$$

where:

- R = rate of crosshead motion, mm (in.)/min,
- L = support span, mm (in.),
- d = depth of beam, mm (in.), and
- Z = rate of straining of the outer fiber, mm/mm/min (in./ in./min). Z shall be equal to 0.01.

Figure 12: Formula to find the suggested rate of crosshead motion [17].

The calculated result for the $1^{n}x 1^{n}x 6^{n}$ (6" point to point span, 8" length) according to the ASTM formula was to have a deflection rate of 0.06"/min which would result in samples taking over 10 minutes per break. Considering the large volume of samples to be tested as well as the cost

Organization	Title/Subject	Number	Date	Page 22
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

factor of using testing facilities the team decided to increase the cross head motion (z movement) to a more accelerated value. This accelerated value would most likely lead to different stress strain curves than listed in the Stratasys data sheet. This was an accepted delta as the goal was to utilize testing resources efficiently and evaluate relative strengths versus industry comparisons.

Table 4: Rate of the crosshead motion used in the NASA ARC Ultem testing

Rate of crosshead motion	0.005 in/sec = 0.3 in/min	
* The test presedure used eep he found in Appendix A		

* The test procedure used can be found in Appendix A.

2.6 Performance Comparison of Applicants

2.6.1 Change in Mass

Figure 13: Change in mass of each Ultem bar as a percentage of its original mass

Organization SPHERES National Lab ULTE	Title/Subject Numb EM 9085 Testing SPH-04-X	Der Date Date S-100 June 17, 2	2015 Page 23
--	--	---------------------------------------	--------------

2.6.2 Change in Dimension

Figure 15: Average dimensional change of the Ultem samples post application

Organization	Title/Subject	Number	Date	Page 24
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 16: The top/bottom of the Ultem bars are rastered and the sides are contoured *

Figure 17: Average change in dimension of the raster sides

Organization	Title/Subject	Number	Date	Page 25
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 18: Average change in dimension of the contour sides Note: Dimensions were measured with the calipers found in Appendix C

2.6.3 Strength & Deflection/ Stress & Strain

Table 5: Difference between the fill of the Solid and Gapped s	amples
--	--------

	Gapped Sample	Solid Sample
3D Print Fill Setting(in)	0.004	0.000

Note: For detailed labeling information, please see Sample Key Tables in Appendix A

Organization	Title/Subject	Number	Date	Page 26
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Specimen Number	1	2	3	Average	StDev
Max Load (lbs)	860.080	857.690	848.553	855.441	6.084
Displacement @ Max Load (in)	0.695	0.690	0.723	0.703	0.018
Load @ Break (lbs)	712.755	727.997	797.531	746.095	45.193
Displacement @ Break (in)	0.737	0.891	0.852	0.826	0.080
Time to Break (sec)	162.043	234.570	280.250	225.621	59.609
Max Stress	7740.720	7719.214	7636.973	7698.969	54.756
Strain	0.116	0.115	0.121	0.117	0.003

Table 6: Gapped control results matrix

Table 7: Solid control results matrix

Specimen Number	23	24	26	Average	StDev
Max Load (lbs)	1302.392	1259.811	1321.242	1294.482	31.470
Displacement @ Max Load (in)	0.617	0.600	0.640	0.619	0.020
Load @ Break (lbs)	1278.333	1227.759	1303.162	1269.751	38.427
Displacement @ Break (in)	0.654	0.633	0.677	0.655	0.022
Time to Break (sec)	171.925	143.247	130.657	148.610	21.150
Max Stress	11721.520	11338.300	11891.170	11650.330	283.227
Strain	0.103	0.100	0.107	0.103	0.003

Note: Figures 19, 20, and 21 indicate the Load vs Displacement analysis of the control samples.

Organization	Title/Subject	Number	Date	Page 27
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

SPHERES

Figure 20: Average Flexural Modulus of the gapped samples $E_{Flexural} = \frac{L^3 F}{4wh^3 d} = \frac{(6^3)F}{(4)(1)(1^3)d} = \frac{54F}{d} = \frac{54*650 \ lbs}{0.3 \ in} = 117 \ kpsi$

Organization	Title/Subject	Number	Date	Page 28
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 21: Average Flexural Modulus of the solid samples

 $E_{Flexural} = \frac{L^3 F}{4wh^3 d} = \frac{(6^3)F}{(4)(1)(1^3)d} = \frac{54F}{d} = \frac{54*650\ lbs}{0.2\ in} = 175.5\ kpsi$

Note: Figures 22, 23, and 24 indicate the Stress vs. Strain analysis of the control samples.

Organization	Title/Subject	Number	Date	Page 29
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	
				4

SPHERES

Figure 23: Average Tensile Modulus of the gapped samples

$$Tensile \ Modulus = \frac{Stress}{Strain} = \frac{7000 \ psi}{0.06} = 116.6 \ kpsi$$

Organization	Title/Subject	Number	Date	Page 30
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 24: Average Tensile Modulus of the solid samples

 $Tensile \ Modulus = \frac{Stress}{Strain} = \frac{12000 \ psi}{0.06} = 200 \ kpsi$

* See Appendix C for the Stratasys and Sabic data sheets.

Figure 25: Max average load for gapped and solid samples of each applicant

Organization	Title/Subject	Number	Date	Page 31
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 26: Average displacement for gapped and solid samples of each applicant

Table 8	: Comparison	of the I	Flexural	modulus	from	various	resources

Data Type	Flexural Modulus (kpsi)	Tensile Modulus (kpsi)	Notes
Sabic	423.0	498.0	 (1) Typical values only. Variations within normal tolerances are possible for various colors. All values are measured after at least 48 hours storage at 23°C/50% relative humidity. All properties, except the melt volume and melt flow rates, are measured on injection molded samples. All samples tested under ISO test standards are prepared according to ISO 294. (2) Only typical data for selection purposes. Not to be used for part or tool design. (3) This rating is not intended to reflect hazards presented by this or any other material under actual fire conditions. (4) Internal measurements according to UL standards. (5) Measurements made from laboratory test coupon. Actual shrinkage may vary outside of range due to differences in processing conditions, equipment, part geometry and tool design. It is recommended that mold shrinkage studies be performed with surrogate or legacy tooling prior to cutting tools for new molded article. (6) Needs hard coat to consistently pass 60 sec Vertical Burn.
Stratasys	362.6	322.0	ASTM D790 The performance characteristics of these materials may vary according to application, operating conditions, or end use. Each user is responsible for determining that the Stratasys material is safe, lawful, and technically suitable for the

Title/Subject	Number	Date	Page 32
ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	
	Title/Subject ULTEM 9085 Testing	Title/Subject Number ULTEM 9085 Testing SPH-04-XS-100	Title/SubjectNumberDateULTEM 9085 TestingSPH-04-XS-100June 17, 2015

			intended application, as well as for identifying the proper disposal (or recycling) method consistent with applicable environmental laws and regulations. The information presented in this document are typical values intended for reference and comparison purposes only. They should not be used for design specifications or quality control purposes. End- use material performance can be impacted (+/-) by, but not limited to, part design, end-use conditions, test conditions, color, etc. Actual values will vary with build conditions. Tested parts were built on Fortus 400mc @ 0.010" (0.254 mm) slice. Product specifications are subject to change without notice. * Build orientation is on side long edge.
NASA ARC Solid Control	175.5	200.0	non-standard test
NASA ARC Gapped Control	117.0	116.6	non-standard test

2.6.4 Break Characteristics/FOD

Table 9: Gapped sample break characteristics

Applicant	FOD < 2mm	FOD > 2mm	Notes	Sharp Edges
Control	Yes	No	Stayed together (Shredded fibers)/Ductile	Yes
Arathane 5750 A/B	Yes	Yes	Gentle (shredded fibers)/ Ductile	Yes
Hysol E-20HP	Yes	No	Unpredictable	Yes
ProBuild Marine	Yes	Yes	Energetic/Brittle	Yes
Loctite 5110	No	No	Very Gentle/Brittle	No
BJB TC-1614	Yes	Yes	Very Energetic/Brittle	Varies

Table 10: Solid sample break characteristics

Applicant FOD/S San	ze: FOD/size: of Pebble or Larger	Notes	Sharp Edges
------------------------	---	-------	-------------

Organization	Title/Subject	Number	Date	Page 33
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Control	Yes	Yes	Energetic/ Brittle	Yes
Arathane 5750 A/B	Yes	Yes	Energetic/ Brittle	Yes
Hysol E-20HP	Yes	No	Energetic/ Brittle	Yes
ProBuild Marine	Yes	Yes	Very Energetic/ Brittle	Yes
Loctite 5110	No	No	Very Gentle/ Brittle	No
BJB TC-1614	Varies	Varies	Very Energetic/ Brittle	No

Unpredictable Break: The type of break varied greatly from sample to sample.

Very Gentle Break: The sample failed and fractured but did not separate into two pieces.

Very Energetic Break: The sample broke violently, impacting the walls of the test volume with considerable force.

Stayed Together: The sample broke but was held together by a thin strand of material as seen on the following page.

Sharp Edges: Edges were caught during the White glove test

Figure 27: Gapped control sample post break *

3.0 SDP Enclosure Top Testing

The purpose of this test was to verify the simulations produced in SDP-PASR-001 by Aurora Flight Sciences (AFS) regarding the 3-D printed Ultem 9085 part being used for the Enclosure Top of the SPHERES Docking Port (SDP) onboard the International Space Station (ISS). As agreed with the NASA PSRP structural engineer at AFS, the SPHERES engineering team replicated a kick load (125 lb). The 125 lb kick load was determined by AFS as a "worst case scenario." In reality, the kick load required was 50 lb, as it conformed to the NASA ISS crew

Organization	Title/Subject	Number	Date	Page 34
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

system load standards described in the table below. The 3-D printed part was subjected to loading for 30 seconds, during which it was be observed for any deflection or other behavior, and was then evaluated for any structural flaws. AFS has also produced a simulation using SolidWorks, and this test aimed to verify the results of the simulation.

CREW SYSTEM OR STRUCTURE	TYPE OF LOAD	LOAD	DIRECTION OF LOAD		
Levers, Handles, Operating Wheels, Controls	Push or Pull concentrated on most extreme edge	222.6 N (50 lbf), limit	Any direction		
Small Knobs	Twist (torsion)	14.9 N-m (11 ft-lbf), limit	Either direction		
Exposed Utility Lines (Gas, Fluid, and Vacuum)	Push or Pull	222.6 N (50 lbf)	Any direction		
Rack front panels and any other normally exposed equipment	Load distributed over a 4 inch by 4 inch area	556.4 N (125 lbf), limit	Any direction		
Legend: ft = feet, m = meter, N = Newton, lbf = pounds force					

Table 11 Crew induced loads from SSP57000

The 3-D printed part held up the to the 125 lb load without any abnormalities. The interesting results of the test came from the four screws that fastened the Enclosure top to the Adapter Plate. The screws were tightened in accordance to the manufacturing procedures at a torque value of 8 in-lb. When the screws were taken out, radial cracks around the screw holes could be seen on the Ultem surrounding two of the four threaded inserts. These were most likely due to the seating of the threaded inserts against the outside of the Ultem. This could have been prevented with the selection of a different threaded insert.

Organization	Title/Subject	Number	Date	Page 35
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 28: Radial cracks around the threaded insert *

4.0 Conclusion

The objective of the three point beam test was to gain some insight into how 3-D printed materials behave under loads, as well as how the production 3-D printed parts can be improved. Although the intended purpose was not to reproduce test results found on the Stratasys data sheets, the comparison and discussion on why these results are different is important. The tests performed indicate that the geometry and size of the sample, as well as the size of gaps as a result of different fill settings have a large effect on deflection behavior of a given sample. The three point beam tests performed by Sabic (the sole distributor and manufacturer of raw Ultem) were conducted on injection molded samples as described in the 'Notes' of Table 8. Stratasys' test was performed using the ASTM D790 standard for three point loading test. The test performed at NASA Ames was unique. From the stress strain plots of gapped and solid samples of Ultem 9085, the results show that the solid samples broke under a higher load, but deflected

Organization	Title/Subject	Number	Date	Page 36
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

less. As a result, the flexural modulus for the solid samples was higher. These results prove the correlation of the size of the gaps between the extrusion paths and deflection properties. Essentially, the larger the gaps between extrusion paths determined by the 3-D print setting, the more deflection there is, because the gaps between the extrusion paths allow the material to deflect more. Table 8 shows the different flexural moduli for the different tests. As stated before, the flexural modulus is heavily dependent on geometry, so the comparison of flexural moduli between different tests is invalid. The NASA team expects a solid injection molded sample of Ultem 9085 to have a higher flexural modulus than a 3-D printed one. The SDP Enclosure Top testing confirmed the danger of over torqueing screws into Ultem 9085. It also emphasized the importance of selecting proper threaded inserts when designing a part.

5.0 InSPIRE II

InSPIRE II products are using 3-D printed Ultem 9085 and have addressed the concerns stated above. Modifications of the design were done early in development from lessons learned from the Slosh incident. These design improvements include locating screw holes farther from the edge.

The following design enhancements are incorporated in the InSPIRE II design:

- 1. An FEA structural analysis was performed on all 3-D printed Ultem components and local stress concentrations near countersunk screw holes identified and mitigated by adding material, moving holes, changing screw contact areas, changing build orientations etc.
- 2. Where appropriate, counterbore holes were implemented in lieu of countersunk holes to alleviate radial stresses.
- 3. The designer has experience in designing 3-D printed parts as part of the NASA Langley Research Center's N+3 program where a 14 ft, 230 lb wind tunnel model was designed, built and successfully tested in NASA's 14x22ft wind tunnel at 70 mph. The entire fuselage, wings and tail was fabricated from 3-D printed ABS-M30 plastic, adhering to NASA's strict wind tunnel model safety specifications.
- 4. Aurora has a close working relationship with Stratasys, the company who produces these FDM parts. This includes design iterations to optimize component design, support structure layout and build orientation for machinability, strength and robustness.
- 5. Stratasys performed in-house coupon testing of Ultem samples printed in various orientations, developing a comprehensive datasheet with the actual strength characteristics of 3-D printed Ultem as opposed to injection molded Ultem.

Organization	Title/Subject	Number	Date	Page 37
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

6. Thorough usage and testing at MIT has proven that the designs perform as expected without any structural issues.

Integration procedures were written to ensure that the assembly of the InSPIRE II vehicles shall abide by the imposed torque specifications within their documentation. This ensures proper levels of torque and process.

Currently MIT/AFS has a rapport with the 3-D printing manufacturing company. They requested a skilled CAD to CAM operator to adjust the settings to ensure the best product possible. While there are no established design and manufacturing rules, it is assumed human review will be superior to the default print settings.

6.0 Recommendations

During manufacturing operations, requirements may be instilled on the operator by the PI, such as single operator use, single machine use, and batch production coupons. Single material spool per production or additional batch coupons may be required. The final products should be handled accordingly and a copy of the printer logs should be delivered to the PI. The previous implementations are indented as preventative measures to improve product quality. Destructive coupon testing will serve as the main solution to prevent any further concerns with 3-D printed parts onboard the ISS. Many products within the aerospace industry designed for space flight application often require a coupon or sample to be analyzed, tested, or saved for future evaluation. Given that Ultem 9085 is a product dependent on processes, it is applicable to the same requirements as the other products with these similar traits of deviations in the products.

The SPHERES engineering team, together with the InSPIRE II payload developers, feel the best way to ensure the quality of the 3-D printed Ultem 9085-based product is to require a coupon (per batch) that will have to be proven. The proof required would be to identify the portion of the component receiving the highest stress, replicate that portion as a coupon as part of that batch, and destructively test the coupon. The resultant force for deflection and yield of the product would be matched against simulation. Additionally, the product would have to break with an established safety factor and match analysis simulation within an established range of expectation. Lastly, a final inspection looking for cracks will be performed prior to final packaging.

Organization	Title/Subject	Number	Date	Page 38
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

6.0 Appendices

Appendix A: Three Point Beam Testing

Sample Key Tables

SPHERES

36

Ultem 9085 Sample Impregnation Key

Coating/Impregnation Name	Solid Sample #	Sample ID	Gapped Sample #	Sample ID
Control – Unmodified	Solid Sample #1	23	Gapped Sample #1	1
	Solid Sample #2	24	Gapped Sample #2	2
	Solid Sample #3	26	Gapped Sample #3	3
Arathane 5750 A/B (LV)	Solid Sample #1	27	Gapped Sample #1	4
Description: Urethane based conformal coating indented for PCB	Solid Sample #2	28	Gapped Sample #2	5
encapsulation, Dip method with vacuum assistance.	Solid Sample #3	29	Gapped Sample #3	6
BJB TC-1614	Solid Sample #1	30	Gapped Sample #1	7
Description: Designed for 3d printed parted to seal porous to	Solid Sample #2	32	Gapped Sample #2	8
semi-porous materials. Dip method with vacuum assistance	Solid Sample #3	33	Gapped Sample #3	9
Hysol E-20HP	Solid Sample #1	34	Gapped Sample #1	10
Description: 2 part medium viscosity industrial grade epoxy.	Solid Sample #2	35	Gapped Sample #2	11
Epoxy 2:1 gun used then applied via brush/tool	Solid Sample #3	37	Gapped Sample #3	12
Hysol EA9396 ビブB 作ス	Solid Sample #1	35	Gapped Sample #1	13
Description: Low viscosity, 2 part epoxy. Dip method with	Solid Sample #2	39	Gapped Sample #2	14
vacuum assistance	Solid Sample #3	- 40	Gapped Sample #3	15
Loctite 5110	Solid Sample #1	41	Gapped Sample #1	16
Description: Low viscosity liquid sealant designed for electronic	Solid Sample #2	42	Gapped Sample #2	17
assemblies. Dip method with vacuum assistance	Solid Sample #3	43	Gapped Sample #3	18
Probuild Marine Epoxy	Solid Sample #1	44	Gapped Sample #1	19
Description: General purpose epoxy. Dip method with vacuum	Solid Sample #2	45	Gapped Sample #2	20
assistance	Solid Sample #3	46	Gapped Sample #3	21
Justhane #2		47	• • • • • • • • • • • • • • • • • • •	22
		18		35

Organization	Title/Subject	Number	Date
SPHERES National Lab	ULTEM 9085 Sample Impregnation Key	SPH-ULT-MT002	April 15, 2013

Organization	Title/Subject	Number	Date	Page 39
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Pre-Application dimension tables

SPHERES	SA
---------	----

Ultem 9085 Pre-Application Data Log

Sample #	Dimension: Left top-bottom (mm)	Dimension: Left side-side (mm)	Dimension: Center top-bottom (mm)	Dimension: Center side-side (mm)	Dimension: Right top-bottom (mm)	Dimension: Right side-side (mm)	Mass (grams)	Solid or Gapped	Photos Taken	Notes:
1	25,51	25.40	25.51	25.40	25,50	25.42	112.02	Gappel		
2	25,51	25,42	25.53	25.35	25.48	25.33	112.04	Guerseel		
3	25.50	25.40	25.48	25.38	25.49	25.40	112.32	Grapped		
4	25,46	25.32	25,46	25.32	25.46	25.40	114.11	Caronal		
5	25.60	25.43	25.55	25,36	25.54	25,40	111.62	Grapped		
6	25.47	25.41	25.48	25,37	25.51	25.41	113.93	Frand		
7	25,51	25,44	25.52	25.41	25.54	25,42	112.26	Gamprel		
8	25,50	25,42	25,50	25.38	25,49	25.40	114.30	Gapped		
9	25,48	25,42	25,49	25.40	25,48	25,38	114.22	Grapped		
10	25.52	25,40	25.52	25.40	25,52	25,41	112,10	Generancel	-	
11	25.51	25.50	25.49	25.38	25,49	25.37	113.75	Grappert		
12	25,50	25.43	25,51	25.41	25,48	25,40	113.45	Grand		
13	25,51	25.32	25.49	25,36	25,51	25.38	111.56	Granged		
14	25,51	25.37	25,53	25.37	25.52	25.39	111.97	Capped		
15	25.49	25.42	25,49	25.42	25,48	25.40	113,67	Gapper		
16	25.52	25.42	25.50	25,40	25,46	25.33	113.64	Gupped		
17	25,51	29.42	25,52	25.36	25,53	25.35	111.81	Grapped		
18	25.49	25.36	25.50	25,37	25.48	25,42	113,70	Capped		
19	25,58	25,41	25.55	25.40	25.54	25.42	111.62	(trapped		
20	25,52	25.40	25,50	25,40	25,52	25,40	111.61	Gapped		

Organization	Title/Subject	Number	Date
SPHERES National Lab	ULTEM 9085 Pre-Application Data Log	SPH-ULT-MT001	April 11, 2013
		1 FRAME PROPERTY AND	

	SPHER	ES	NASS	
	Ultem 9085 Pre-Appli	cation Data Log		
Technician Full Name: Darry Leva.	Technician Initia Technician Initia	: <u> </u>	Date:	4-12-14
Technician Full Name:	Technician Initia	d:	Date:	
Operations Engineer (OE) Full Name: Roman	CE Initia	RA	Date:	04/11/2014

Crearization SPHERES National Lab ULTEM 9085 Pre-Application Data Log SPH-ULT-MT001 April 11, 2013

Organization	Title/Subject	Number	Date	Page 40
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

	SPHERES	NASA
--	---------	------

Ultem 9085 Pre-Application Data Log

Sample #	Dimension: Left top-bottom (mm)	Dimension: Left side-side (mm)	Dimension: Center top-bottom (mm)	Dimension: Center side-side (mm)	Dimension: Right top-bottom (mm)	Dimension: Right side-side (mm)	Mass (grams)	Solid or Gapped	Photos Taken	Notes:
21	25,50	25,43	25.50	25.41	25.50	25,42	113.46	Gapped		
22	25.48	25.44	25.49	25,40	25:49	25.41	113.46	Germand		
23	25,44	25,31	25.45	25137	25.48	25.40	132.11	Solid		
24	25.51	25.38	25,49	25.34	25,54	25.36	132.11	Solid		
25	25,51	25.34	25,52	25.30	25.52	25.35	113.31	Gumpel		
26	25.45	25.36	25.45	25,40	25.46	25.45	132.11	Solid		
27	25,47	25.44	25,48	25,40	25,47	25.40	133 46	Solid		
28	25,46	25,45	25.48	25,43	25.48	25.44	132.03	Solid		
29	25,51	25.28	25.50	25.24	25.50	25.25	131.14	Solid		
30	25.48	25.39	25,51	25.36	25.51	25 38	132.66	Solid		
31	25.53	25,29	25.54	25,27	25.54	25.31	113.73	Gened		
32	25,97	25,36	25.51	25.36	25.55	25.44	133.59	Solid	8	
33	25.49	25.41	25,48	25.38	25,47	25.40	133.37	Solid		
34	25,50	25.42	25.48	25,44	25.48	25.39	132.76	Solid		
35	25,50	25.42	25.47	25.35	25, 47	25.35	132,44	Solid		
36	25,52	25.25	25.51	25,17	25.50	25.20	113.74	Ganne		
37	25,48	25.40	25.56	25.41	25.49	25.43	132 32	Solid		
38	25,54	25.46	25,55	25.30	25.55	25.31	131.86	Solid		
39	25.48	25.42	25.47	25,44	2549	25,42	133.25	Solid		
40	25,50	25.43	25.50	25,41	25,48	25.43	132,28	Solid		

Organization Title/Subject Number Date ULTEM 9085 Pre-Application Data Log SPH-ULT-MT001 April 11, 2013

	SPHERES	NAST
	Ultem 9085 Pre-Application Data Log	
Technician Full Name: Dowy Lovasser	Technician Initial:	Date: <u>4-18-14</u>
Technician Full Name:	Technician Initial:	Date:
Operations Engineer (OE) Full Name: Rollert Hausbud	OE Initial: _AA	Date:_04[1 2.014

Organization Title/Subject Number Date
SPHERES National Lab ULTEM 5085 Pre-Application Data Log SPH-ULT-MT001 April 11, 2013

Organization	Title/Subject	Number	Date	Page 41
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

SPHERES	NASA

Ultem 9085 Pre-Application Data Log

Sample #	Dimension: Left top-bottom (mm)	Dimension: Left side-side (mm)	Dimension: Center top-bottom (mm)	Dimension: Center side-side (mm)	Dimension: Right top-bottom (mm)	Dimension: Right side-side (mm)	Mass (grams)	Solid or Gapped	Photos Taken	Notes:
41	25.52	25,35	25,48	25,40	25.51	25.43	132.00	Solid		
42	25.48	25.44	25 47	25,44	25.45	25.35	132.93	Solici		
43	25,53	25.42	25,47	25.41	25.48	25.39	132-21	Solid		
44	25,48	25.35	25.45	25.37	25. 48	25,91	132.13	Solid		
45	25,49	25.32	25.49	25,35	25,99	25.42	132.09	Solid		
46	25.49	25.39	25.49	25.39	25.49	35.41	132.24	Solid		
47	25.52	25.30	25.53	05,19	25.54	25.19	131.97	Solid		
48	25.49	25.41	25.49	25,92	25,99	25,90	132.82	Solid		
49	25:49	25.46	25,46	25.48	25.49	25.41	132.65	Solid		
50							-			

<i>4</i> 7	Organization SPHERES National Lab	Title/Subject ULTEM 9085 Pre-Application Data L	Number SPH-ULT-MT001	Date April 11, 2013	
		SPHERES	3	NASA	
	I	Ultem 9085 Pre-Applicati	on Data Log		
Technician Full Name:	x1 LeVassen.	Technician Initial:	12	Date: 2-11-1	4
Technician Full Name:		Technician Initial:		Date:	
reconcentren Herre:		rechnician initial:	. 10	Uate:	
Operations Engineer (OE) Full Nan	HE: ROBERT	AN SON OE Initial:	NV	Date: 04 [[2.0]	4

Organization Title/Subject Number Date
SPHERES National Lab ULTEM 9085 Pre-Application Data Log SPH-ULT-MT001 April 11, 2013

OrganizationTitle/SubjectNumberDateSPHERES National LabULTEM 9085 TestingSPH-04-XS-100June 17, 2015Page 42
--

Application Procedures

SPH-ULT-MT001

Rev. A

SPHERES Ultem 9085 Material Testing

Applications Procedures

March, 2014

National Aeronautics and Space Administration Ames Research Center Moffet Field, CA

Organization	Title/Subject	Number	Date	Page 43
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Organization

SPHERES National Lab

ULTEM 9085 Testing

Page 44

NASA SPHERES Written by: 3/25/2014 Date Daniel Andres Aguilar Martel Aerospace Engineering Student San Jose State University Date 3/25/2014 Sean David Christensen Aerospace Engineering Student San Jose State University Emmet John Fox Date Aerospace Engineering Student San Jose State University Approved by: 3/25/2014 Darryl William LeVasseur Date System Engineer II Metis Technologies Title/Subject Page 1 Organization Number Date SPH-ULT-MT001 SPHERES National Lab **Applications Procedures** March 25, 2013 Title/Subject Number Date

SPH-04-XS-100

June 17, 2015

Safety Equipment:

-Safety Glasses -Breathing Masks -Gloves

Procedure Steps:

- 1. Fully submerge samples in 99% isopropyl alcohol bath and agitate samples for a minimum of 10 seconds. Remove from alcohol bath and use a wire hanger through one of the holes located in the samples.
- 2. Hang samples vertically in oven (120 C) for 30 minutes.
- 3. Label each piece to identify the particular specimen by attaching a tag with a Ziploc color coded to the solid or gapped specimens by tagging through the hole in the specimen.
 - 3.1. Label Samples 1-42 with a Ziploc tag
 - 3.1.1. 1 21 solid
 - 3.1.2. 2 42 gapped
 - 3.1.3. Apply sharpie mark to top/front/left side as indicated in image:1 below
- 4. Place each sample into a single bag.
- 5. Weigh each piece and record the results into the Pre Application log
- 6. Measure the dimensions of each piece using calipers. Measure at 3 points (left, middle, right) and record the results into the Pre Application log.

Note: Left, middle, and right is with respect to the mark made in 3.1.3

- 7. Inspect and note each piece and record the results into the Pre Application log.
- 8. Photograph each specimen and record the results into the Pre Application log.

Figure.1: Sharpie mark location indicates samples top/front/left orientation

Organization SPHERES National Lab	Title/Subject ULTEM 9085 Testing	Number SPH-04-XS-100	Date June 17, 2015	Page 45
-----------------------------------	-------------------------------------	-------------------------	-----------------------	---------

Application Procedures

- 1. 6 samples- 3 of the solid core, and 3 of the gapped core shall have one of the application processes below applied according to manufacturer's recommendations.
- 2. Only 3 samples of a core type and application type may be worked on at one time to make sure no samples are mixed up once the identification label is removed. Apply the material/chemical/adhesive and then re-apply the label immediately post cure and re-bag individually.
- 3. Remove identification tag for process

Arathane 5750-A/B (LV)

<u>Applications</u>: Dip, Vacuum, Cure in oven

Work Time: @ 25°C (100g), 2 hours

Cure Time:

Recommended cure times*

	Gelation	Tack free	Full cure
Temp., °C	(min)	(hours)	(hours)
25	120	24	7 days
65	45	2	9
100	25	1.5	4
125	15	1	2

* Above data was generated on two coatings of 1.5 mil (3.8 x 10-2mm) each, dip-applied on epoxy laminate printed circuit boards. High component density boards may require slightly longer cure schedules. Maximum insulating resistance, interfacial adhesion, and protection from corrosion are obtained with heat curing.

Mix Ratio: By Weight:	Arathane 5750 A: 18 parts
	Arathane 5750 B (LV): 100 parts

<u>Required Materials and Machinery</u>: Plastic tub, Vacuum, Oven, Hanging rack

Procedure:

System Preparation:

- 1. The 3D printed part should be clean and free of grease, dirt, or other contaminants. Solvent cleaning is generally sufficient. Arathane 5750 A/B (LV) may be sprayed or applied by dipping.
- Exposure of Part A to low temperatures for prolonged periods may cause crystallization. Part A must be liquefied by heating to 50°C (120°F) maximum. DANGER! Do not heat above 50°C!
 Extreme Explosion and Fire Hazard.

Organization	Title/Subject	Number	Date	Page 46
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

- 3. Heat Part A until clear amber solution is achieved. Remove container from oven. Do not disturb contents. Allow to cool to 25-40°C in a controlled environment; do not force cool.
- 4. Measure height of the precipitate from outside of bottle. Do not use if level of precipitate is above 3/8 inches (0.6 cm), or if liquid remains cloudy or contains gelled particles. Contact our Customer Service Department with lot number, date received and condition of bottle.
- 5. Material is ready for use if level of precipitate is below 3/8 inches. Do not agitate. Slowly decant clear resin out of the bottle without disturbing the precipitate. Enough material has been packaged to allow for any precipitate and to assure sufficient Part A. For best results, filter Part A through nylon tricot, 10-25 micron size.
- 6. Use entire bottle so remaining material will not be contaminated with moisture. If this is not possible, any remaining material must be well blanketed with dry nitrogen or argon and the cap tightened securely. Store at 25-40°C for best long-term stability.

Mixing:

- 1. Container should be plastic, glass, or metal. Paper and wooden containers or utensils are not recommended because of high moisture content.
- 2. Weigh Part B into container first. Add Part A to container. (Do not use Part A if precipitate level is greater than 3/8 inches.)
- 3. Slow machine mixing or hand stirring will minimize air entrapment. Complete and thorough mixing of Parts A and B is essential for optimum end properties.
- 4. A brief vacuum may be applied to remove bubbles; however, some solvent will also be removed. Vacuum should be equipped with solvent trap to prevent damage to pump.

Dipping:

- 1. Arathane 5750 A/B (LV) must be thinned with 5750 Thinner to control coating thickness. Coating thickness depends upon amount of solvent added to reduce viscosity and dipping rate. To achieve a one to one and one-half (1 - 1.5) mil thickness (2.5-3.8 x 10-2mm) coat per dip, reduce mixed viscosity to approximately 100 cPs. (Refer to previous recommendations for reducing viscosity).
- 2. Allow mixture to stand 15-30 minutes for bubbles to dissipate. A suggested solvent blend is recommended above. Adjust dipping rate to achieve desired thickness. This allows for complete wetting of all surfaces and minimizes runoff during cure.

*Multiple applications two or more coats must be applied for optimum protection of parts. Allow enough time at curing temperature for each application to gel. Allow solvent to escape at ambient temperatures for 15-30 minutes prior to elevate temperature curing. This will minimize bubble entrapment. An alternative to air drying or curing between layers is to place 3D printed part in a 15-15mm Hg Vacuum for 5-10 minutes for a dense, bubble-free coating.

Organization	Title/Subject	Number	Date	Page 47
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

BJB TC-1614

<u>Applications</u>: Dip, Vacuum, Cure in oven

Work Time: (100-gram mass) @ 77F (25°C) 2 hours

<u>Cure Time</u>: 150 F (66 C) for 1.5 to 2 hours 250 F (121 C) for 2 hours 300 F (149 C) for 1 hour 350 F (177 C) for 1 hour

Mix Ratio: By Weight:Part A: 100 parts Part B: 20 parts By Volume: Part A: 100 parts Part A: 100 parts Part B: 23 parts

Required Materials and Machinery: Plastic tub, Vacuum, Oven, Hanging rack

Procedure:

- 1. Pre-warm A&B material in separate containers to 90°-100°F maximum (32°-37°C max) in a temperature controlled industrial oven. This will help to lower the viscosity and increase the absorption rate of epoxy into the part (never use a household oven that may be in contact with food).
- 2. You can also pre-warm the 3D printed part to aid in epoxy infiltration. 100°-120°F (37°-49°C) is a good range but refer to your 3D printed material recommendations for heat resistance in an effort to avoid distortion.
- 3. Place a small 3D printed part into a plastic tub and fill with an appropriate amount of epoxy. A tub that is too large will require more volumetric amounts of epoxy. Fully submerge part.
- 4. Allow the part to soak in the epoxy for roughly 20-25 minutes. A recommended optional procedure would be to place tub with soaking 3D Printed part into 100°-120°F (37°-49°C) oven in a leak-proof, metal container, and allow to soak for 15-20 minutes. Check part at 5 minute intervals to monitor viscosity levels and for any exothermic reaction. Larger batches of mixed epoxy will have a shorter reaction time.
- 5. Once part has soaked for allotted time, pull part out of tub and drain excess epoxy off of part.
- 6. Place part in vacuum for 5 10 minutes.
- 7. For larger parts, mix enough A&B together so you have sufficient material to brush an even coat over the part. Continue brushing drips and runs to keep part coated for 20-30 minutes. Then drain off excess epoxy and wipe down surface with clean, dry paper towels. Avoid using any solvents since it will affect the curing properties.
- 8. You can expedite curing of the epoxy in an oven at 100°-120°F (37°-49°C) and promote better physical properties of the finished material. You can also allow the epoxy to cure at room temperature but an elevated post cure will achieve the best results.
- 9. Hang part with wire over a cup or bucket to allow continued drainage of excess epoxy. Wipe off

Organization	Title/Subject	Number	Date	Page 48
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

any areas of pooled epoxy with a gloved finger or brush. Monitor any sags or drips for the next hour or until epoxy has gelled.

*Note: Mixing a large mass of epoxy can produce an increase in chemical reaction shortening work time and increasing exotherm (heat) as it sits. Do not leave a large, concentrated mass of epoxy in a container unattended. After soaking the part, it may be best to split up a large batch (over 200-300g) by draining the tub into 2-3 separate small containers and allow to harden.

Henkel Loctite 5110

Applications: Dip, Vacuum

Work Time: To be tested

<u>Cure Time</u>: 5 - 30 minutes, depending on temperature

Mix Ratio: None

<u>Required Materials and Machinery</u>: Plastic tub, Vacuum, Hanging rack

Procedure:

- 1. Typically, a basket of parts is submerged in sealant. Air is expelled out of the porosity under vacuum.
- 2. A pressure increase causes the sealant to flow into the pore. Ambient pressure is typical but may be augmented.
- 3. The basket is lifted and spins to reclaim excess sealant.
- 4. The parts basket is washed in water with agitation as necessary to achieve good cleaning.
- 5. Parts cure and dry at room temperature.
- 6. Use UV light to inspect part

*Note: Porosity sealants typically require catalyzation and must be handled with chemically compatible materials and equipment.

Hysol Loctite E-20HP

Applications: Brush, Cure in oven

Work Time: 20 minutes (@ 77F)

Cure Time: Varies by temperature

Title/Subject	Number	Date	Page 49
ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	
I	Title/Subject ULTEM 9085 Testing	Title/Subject Number ULTEM 9085 Testing SPH-04-XS-100	Title/SubjectNumberDateULTEM 9085 TestingSPH-04-XS-100June 17, 2015

Mix Ratio: By Weight: Resin: 100 parts Hardener: 55 parts By Volume: Resin: 2 parts Hardener: 1 part

Required Materials and Machinery: Applicator Gun, Mixing Nozzle, Brush, Oven, Hanging Rack

Procedure:

- 1. For high strength structural bonds, removal of surface contaminants such as paint, oxide films, oils, dust, mold release agents and all other surface contaminates.
- 2. Use gloves to minimize skin contact. DO NOT use solvents for cleaning hands.
- 3. Dual Cartridges: To use simply insert the cartridge into the application gun and start the plunger into the cylinders using light pressure on the trigger. Next, remove the cartridge cap and expel a small amount of adhesive to be sure both sides are flowing evenly and freely. If automatic mixing of resin and hardener is desired, attach the mixing nozzle to the end of the cartridge and begin dispensing the adhesive. For hand mixing, expel the desired amount of the adhesive and mix thoroughly. Mix approximately 15 seconds after uniform color is obtained. Bulk Containers: Mix thoroughly by weight or volume in the proportions specified in Properties of Uncured Material section. Mix vigorously approximately 15 seconds after uniform color is obtained.
- 4. Application to the substrates should be made within 20 minutes. Larger quantities and/or higher temperatures will reduce this working time.
- 5. Allow to cure at 25°C (77°F) for 24 hours for high strength. Heat up to 93°C (200°F), will speed curing.
- 6. Excess uncured adhesive can be cleaned up with ketone type solvents.

Organization	Title/Subject	Number	Date	Page 50
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	
	-		-	

ProBuild Marine Epoxy

Applications: Brush, Vacuum, Cure in oven

Work Time: 50 minutes @ 77F

Cure Time: 24 hours

Mix Ratio: By weight: Resin: 100 parts Hardener: 28 parts By volume: Resin: 3 parts Hardener: 1 part

<u>Required Materials and Machinery</u>: Brush, Vacuum, Oven, Hanging rack

Procedure:

- 1. Mixing Combine Part A and Part B in the correct ratio and mix thoroughly. THIS IS IMPORTANT! Heat buildup during or after mixing is normal. Do not mix quantities greater than 450 grams as dangerous heat buildup can occur causing uncontrolled decomposition of the mixed adhesive. TOXIC FUMES CAN OCCUR, RESULTING IN PERSONAL INJURY. Mixing smaller quantities will minimize the heat buildup.
- 2. Brush on a .020" .030" layer of Epoxy Surface Coat that is properly catalyze and thoroughly mixed. Allow to tack.
 - a. Customer preference may be to apply a single surface coat layer of .060", however applying a single coating at this thickness could result in pinholes on the surface of the mold.
 - b. Tack refers to a curing phase of the resin as follows; the resin will not stick to your finger when touched, but is soft enough to leave a fingerprint.
- 3. Allow to cure

Post Application

- 1. Re-weigh each piece and record the results into the Post-Application log.
- 2. Re-measure the dimensions of each piece using calipers at 3 points (left, middle, right) and record the results into the Post-Application log.
- 3. Inspect and note each piece with characteristics of the applied material if noteworthy.
- 4. Photograph each specimen.

Organization	Title/Subject	Number	Date	Page 51
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	
	-			

Post-Application Processing

<u>Applicant</u>	Pre-Process	Post-Process
<u>BJB</u>	#13	#13.
<u>BJB</u>	#14 •	#14 •

Organization	Title/Subject	Number	Date	Page 52
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Organization	Title/Subject	Number	Date	Page 53
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Post-Application Dimension Tables

SPHERES	NASA
Ultem 9085 Post-Application Data Log	

Sample #	Dimension: Left top-bottom (mm)	Dimension: Left side-side (mm)	Dimension: Center top-bottom (mm)	Dimension: Center side-side (mm)	Dimension: Right top-bottom (mm)	Dimension: Right side-side (mm)	Mass Pre work (grams)	Mass Post work (grams)	Solid or Gapped	Photos Taken	Notes:
1											
2											
3											
4								-			
5											
6											
7											
8											
9										-	
10	25.56	25.57	25.84	25.55	25.87	25.69	116.95	116.81			Minimal work on left. Far face has some longitudinal defects. Right side - minimal work. Fix the hole
11	25.83	25.64	25.73	25.68	25.65	25.58	118.24	118.15			Minimal work on left. Minimal work on right. Fix right hole
12	25.51	25.47	25.46	25.66	25.52	25.45	116.58	116.56			Minimal work on left. Minimal work on right. Fix right hole
13	25.56	25.4	25.51	25.4	25.5	25.44	138.81	138.79			Bumps on left. Needs sanding on corners. Right side hole needs to be filed out.
14	25.5	25.4	25.49	25.4	25.49	25.44	138.99	138.49			Drip and bump on left. Minor wire residue on right.
15	25.53	25.43	25.48	25.43	25.47	25.53	140.37	140.15			Minor residue on left. Multiple bumps on right.
16	25.50	25.37	25.50	25.31	25.4+	25.33	121.04	21.04			
17	25.53	25.37	25.53	25.39	25,49	25.32		118.61			
18	25.51	25.35	25.47	25.38	25.49	25.43		121.06			
19	25.53	25.46	25.54	25.41	25.52	25.42	117.49	117.39			Right hole needs rework. Left end has residue bubble
20	25.54	25.6	25.51	25.39	25.51	25.47	116.07	116			Residue on right end. Work to be done on left

		Organization SPHERES National Lab	Title/Subject ULTEM 9085 Pre-Application Data Log	Number SPH-ULT-MT001	Date June 5, 2013	
			SPH	ERES		NASA
		L	Ultem 9085 Post-A	Application Da	ta Log	
chnician Full Name: _	Daniel	Aguilor	Technician Initial:	D.A		Date: 6/5/2014
chnician Full Name: _	Emmet F	ciz.	Technician Initial:	EF		Date:6/ 5/ 20141
chnician Full Name: _			Technician Initial:			Date:
perations Engineer (O	E) Full Name:	ROBERT HAN	いてのい OE Initial:	RH		Date: 06/05/2014

Organization Title/Subject Number Date SPHERES National Lab ULTEM 9085 Pre-Application Data Log SPH-ULT-MT001 June 5, 2013

Organization	Title/Subject	Number	Date	Page 54
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	
	OETEM SOOD TOSKING			

	SPHERES	NASA
--	---------	------

Ultem 9085 Post-Application Data Log

Sample #	Dimension: Left top-bottom (mm)	Dimension: Left side-side (mm)	Dimension: Center top-bottom (mm)	Dimension: Center side-side (mm)	Dimension: Right top-bottom (mm)	Dimension: Right side-side (mm)	Mass Pre work (grams)	Mass Post work (grams)	Solid or Gapped	Photos Taken	Notes:
21	25.48	25.42	25.47	25.4	25.51	25.45	117.73	117.72			Built up residue on right end. Has a few bumps on the left
22	24.45	25.64	25.5	25.61	25.46	25.5	126.11	125.82			Right Hole needs to be reworked. Bump on Left
23											
24											
25	25.54	25.41	25.43	25.42	25.52	25.56	123.7	123.53			Left hole needs work. Right edge has a lot of residue
26											0.0
27					1						
28											
29							-			-	
30											
31	25.48	25.5	25.49	25.44	25.47	25.2	122 42	122.25			Right halo poods work, Left tab has a huma
32	2.5.40	23.5	23.45	25.44	23.47	23.3	123.42	123.23			Right hole needs work. Left tab has a bump
33									-	-	
34	25.9	26	25.96	26.32	25.66	25.96	137.89	137.76			Both sides need minimal work. Fix right side hole
35	25.87	25.86	26.01	25.93	25.96	26.07	136.94	136.87			Minimal work on left. Minimal work on right. Fix hole
36						20.01		100101		-	winning work on left. Winning work on right. Fix hole.
37	25.88	25.73	26.09	26	25.71	25.96	137.15	137.01			Left side minimal work. Right side minimal work. Right hole needs work
38	25.6	25.32	25.57	25.32	25.52	25.42	146.21	145.73			Minor sanding on left. Bumps, bubbles, and drips on right.
39	25.5	25.41	25.56	25.46	25.59	25.59	147.31	146.96			Left end needs sanding. One bump on right end. Right hole needs to be filed out.
40	25.46	25.44	25.54	25.53	25.53	25.53	147.39	146.85			Minor sanding on left tab. Bumps and drips on right. Right hole is blocked.

Organization Title/Subject Number Date SPHERES National Lab ULTEM 9085 Pre-Application Data Log SPH-ULT-MT001 June 5, 2013

OrganizationTitle/SubjectNumberDateSPHERES National LabULTEM 9085 TestingSPH-04-XS-100June 17, 2015Page 55	
--	--

SPHERES	NASA
---------	------

Ultem 9085 Post-Application Data Log

Sample #	Dimension: Left top-bottom (mm)	Dimension: Left side-side (mm)	Dimension: Center top-bottom (mm)	Dimension: Center side-side (mm)	Dimension: Right top-bottom (mm)	Dimension: Right side-side (mm)	Mass Pre work (grams)	Mass Post work (grams)	Solid or Gapped	Photos Taken	Notes:
41	25,43	25.35	25.51	25.35	25.53	25.40		140.58			
42	25.49	25.38	25.52	25.33	25.52	25.32		140.32			
43	25.53	25.42	25.46	25.43	25.49	25.40		140.84			
44	25.41	25.44	25.43	25.46	25.46	25.4	134.13	133.94			Left tab residual drop. Right tab has small residue
45	25.44	25.4	25.44	25.43	25.43	25.48	133.87	133.76			Left edge has a bump. Imperfection in right hole due to wire
46	25.45	25.45	25.44	25.41	25.44	25.44	133.8	133.75			Right hole needs to be worked
47	25.58	25.44	25.51	25.27	25.54	25.23	135.93	135.78			Right hole needs work. Left tab bump
48	25.72	25.47	25.49	25.56	25.54	25.63	136.02	135.87			Left hole needs work. Right tab has bump
49	25.48	25.35	25.56	25.6	25.52	25.64	135.98	135.91			Left hole needs work. Right tab needs work. Right top edge needs work
50											

	Organization SPHERES National Lab	Title/Subject ULTEM 9085 Pre-Application Data Log	Number SPH-ULT-MT001	Date June 5, 2013	
		SPHE	IERES		NASA
L		Ultem 9085 Post-Ap	plication Data	Log	
Technician Full Name: Emmet Tox		Technician Initial:	EF		Date: 6/3/14
Technician Full Name: Daniel A guil	Gr	Technician Initial:	D.A		Date: 6/5/14
Technician Full Name:		Technician Initial:			Date:
Operations Engineer (OE) Full Name:R	BERT HANSO	مەرOE Initial:	RH	1	Date:OG 05 2014

Organization Title/Subject Number Date
SPHERES National Lab ULTEM 9085 Pre-Application Data Log SPH-ULT-MT001 June 5, 2013

Organization	Title/Subject	Number	Date	Page 56
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Finite Element Analysis

Description No Data

Simulation of ultem stick

Date: Wednesday, June 25, 2014 Designer: Solidworks Study name: Static ARC EEL Analysis type: Static

Table of Contents

Description 1
Assumptions2
Model Information2
Study Properties
Units4
Material Properties4
Loads and Fixtures5
Connector DefinitionsError! Bookmark not define
Contact InformationError! Bookmark not defined
Mesh Information6
Sensor Details Error! Bookmark not defined.
Resultant Forces7
Beams Error! Bookmark not defined.
Study Results8
Conclusion Error! Bookmark not defined.

35 SOLI

SOLIDWORKS Analyzed with SolidWorks Simulation

Organization	Title/Subject	Number	Date	Page 57
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Assumptions

Model Information

55 SOLIDWORI	KS Analyzed with SolidWork	ks Simulation	Simulation	of ultem stick 2
Organization	Title/Subject	Number	Date	Page 58
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Split Line2		Mass:0.346804 lb	C:\Users\Gabriel\Desktop\ Ultem
	Solid Body	Volume:7.16537 in^3 Density:0.0484 lb/in^3 Weight:0.346569 lbf	Stuff\FW3D_Print_NAS A_Ames_Testing\ultem stick.SLDPRT Jun 23 11:05:58 2014

Study Properties

Study name	Static ARC EEL
Analysis type	Static
Mesh type	Solid Mesh
Thermal Effect:	On
Thermal option	Include temperature loads
Zero strain temperature	77 Fahrenheit
Include fluid pressure effects from SolidWorks Flow Simulation	Off
Solver type	FFEPlus
Inplane Effect:	Off
Soft Spring:	Off
Inertial Relief:	Off
Incompatible bonding options	Automatic
Large displacement	On
Compute free body forces	Off
Friction	Off
Use Adaptive Method:	Off
Result folder	SolidWorks document (c:\users\gabriel\appdata\local\temp)

Organization	Title/Subject	Number	Date	Page 59
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Units

Unit system:	English (IPS)
Length/Displacement	in
Temperature	Fahrenheit
Angular velocity	Rad/sec
Pressure/Stress	psi

Material Properties

Model Reference	Prop	erties	Components
	Name: Model type: Default failure criterion: Yield strength: Tensile strength: Elastic modulus; Poisson's ratio: Mass density: Thermal expansion coefficient:	Ultem Isotropic (6) Linear Elastic Isotropic Max von Mises Stress 12700 psi 12700 psi 104714 psi 0.44 0.0484 lb/in^3 2.03704e-005 /Fahrenheit	SolidBody 1(Split Line2)(ultem stick)
Curve Data:N/A			

Organization	Title/Subject	Number	Date	Page 60
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Loads and Fixtures

Fixture name	Fi	ixture Image		Fixture Details	
Fixed-2			Type: Fixed Geometry		e(s) Geometry
Resultant Forces					
Componen	ts	Х	Y	Z	Resultant
Reaction force	e(lbf)	-1285.12	531.198	0.462297	1390.58
Reaction Momen	t(lbf.in)	0	0	0	0
Fixed-3				Entities: 1 edg Type: Fixed	e(s) Geometry
Resultant Forces					
Componen	ts	X	Y	Z	Resultant
Reaction force	e(lbf)	1292.24	537.291	0.909232	1399.48
Reaction Momen	t(lbf.in)	0	0	0	0

Load name	Load Image	Load Details	Function Curve
Force-2		Entities: 1 edge(s) Reference: Face< 1 > Type: Apply force Values:, 1269.75, lbf Phase Angle: 0 Units: deg	The curve -1

S	KS Analyzed with SolidW	orks Simulation	Simu	lation of ultem stick	5
Organization SPHERES National Lab	Title/Subject ULTEM 9085 Testing	Number SPH-04-XS-100	Date June 17, 2015	Page 61	

Mesh Information

Mesh type	Solid Mesh
Mesher Used:	Curvature based mesh
Jacobian points	4 Points
Maximum element size	0 in
Minimum element size	0 in
Mesh Quality	High

Mesh Information - Details

Total Nodes	74979
Total Elements	50990
Maximum Aspect Ratio	4.4843
% of elements with Aspect Ratio < 3	99.9
% of elements with Aspect Ratio > 10	0
% of distorted elements(Jacobian)	0
Time to complete mesh(hh;mm;ss):	00:00:02
Computer name:	10NASAT

SOLIDWORKS Analyzed with SolidWorks Simulation

Organization	Title/Subject	Number	Date	Page 62
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Resultant Forces

Selection set	Units	Sum X	Sum Y	Sum Z	Resultant
Entire Model	lbf	7.11572	1068.49	1.37153	1068.51
Reaction Morr	ients				
Reaction Mon Selection set	Units	Sum X	Sum Y	Sum Z	Resultant

SOLIDWORKS Analyzed with SolidWorks Simulation

Organization	Title/Subject	Number	Date	Page 63
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Study Results

Name	Туре	Min	Max
Displacement1	URES: Resultant Displacement	0 in Node: 387	0.622447 in Node: 95

25 SOLID

SOLIDWORKS Analyzed with SolidWorks Simulation

Organization	Title/Subject	Number	Date	Page 64
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Name	Туре	Min	Max
Strain1	ESTRN: Equivalent Strain	0.000153842 Element: 6228	0.211564 Element: 9294

SOLIDWORKS Analyzed with SolidWorks Simulation

Organization	Title/Subject	Number	Date	Page 65
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Destructive Sample Testing

SPH-ULT-MT001

Rev. A

SPHERES Ultem 9085 Material Testing

Destructive Sample Testing

June, 2014

National Aeronautics and Space Administration Ames Research Center Moffet Field, CA

Organization	Title/Subject	Number	Date	Page 66
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Written by:

Daniel Andres Aguilar Martel Aerospace Engineerin

San Jose State University

Sean David Christensen Aerospace Engineering Student San Jose State University

Emmet John Fox Aerospace Engineering Student San Jose State University

Approved by:

A

Darryl William LeVasseur System Engineer II Metis Technologies

6/10/2014

Date

Org	anization National Lab Destruc	Title/Subject tive Sample Testing S	Number Date SPH-ULT-MT001 June 10, 2014	Page 1
Organization	Title/Subject	Number	Date	Page 67
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

6/10/2014 Date

014 Date

110/2014

Date

Safety Equipment:

-Safety Glasses

Procedure steps:

1. **Prepare the Testing Apparatus**

1.1. Verify that the 5000 lb load cell on the Southwark Emery has been installed.

Figure 1: Image of the 5000 lb load cell

Load Cell	Tolerance
5000 lb	+/- 1 lb

- 1.2. Connect the computer which will record the data from the test.
- 1.3. Set the pressure gauge on the Southwark Emery to "medium" (12,000 lb max).

Figure 2 & 3: (Left) Force indicator set to 12,000lb max load. (Right) Image of the pressure gauge knob set to "medium".

Organization	Title/Subject	Number	Date	Page 68
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

- 1.4. Set up the safety plywood on the sides of the test section to prevent specimen particulates from escaping the confined test volume.
- 1.5.
- 1.5.1. Place the Rubbermaid collection tub on the base of the Southwark Emery testing platform.
- 1.5.2. Place the acrylic alignment jig assembly on the collection tub.
- 1.5.3. Insert the black support fixture inside the rectangular acrylic cutout. Center, align, and fasten the acrylic alignment jig to the base plate using two allen wrench bolts.

Figure 4 & 5: (Left) Alignment jig placed on the collection tub. (Right) Black support fixture placed inside the alignment jig.

1.6. Place the specimen to be tested on the fixed black support structure. To ensure the sample is centered and seated properly on the support, use the acrylic end jig on one side of the sample so that 0.5 inches overhangs on both sides of the supports

Organization	Title/Subject	Number	Date	Page 69
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 6 & 7: (Left) Specimen on the black support fixture. (Right) End jig centers the specimen on the black support fixture. Packing tape on the supports aligns the specimen on the supports.

1.7. Lower the loading pin onto the sample leaving a spacing of 0.001 inches between the pin and sample. This can be done by sliding a piece of paper between the pin and sample (shim test).

Figure 8: Paper shim test

Shim Test Spacing	.001 inch
-------------------	-----------

- 1.8. Set up the Nikon camera on a tripod behind the glass on the backside of the test section.
- 1.9. Attach the GoPro to the glass on the nearside using the suction cup.

Organization	Title/Subject	Number	Date	Page 70
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	Page 70

Figure 9: GoPro mounted with suction cup on safety glass

1.10. Place the black and white live feed camera at the base of the fixed black support structure on the near side of the test section. Set up the LED lights around the black support fixture to provide the necessary lighting for the cameras.

Figure 10: Black and white camera with LED lighting

1.11. Zero the displacement on the Southwark Emery

Organization	Title/Subject	Number	Date	Page 71
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 11: Zero the measuring device

2. Commence with testing procedures

- 2.1. Start the video cameras.
- 2.2. Use a cue card to identify which sample is being tested.

Figure 12: Example of a video cue card

- 2.3. Verify the computer is reading the data.
- 2.4. Using a displacement rate of 0.005 inch/sec, lower the loading pin until the sample breaks.

Displacement Rate	0.005 inch/sec
-------------------	----------------

- 2.5. Save the testing data
- 2.6. Stop video recording
- 2.7. End of test.

3. Post Break

- 3.1. Visually inspect the sample for break characteristics.
- 3.2. As the next sample is being prepared, remove the broken pieces of Foreign Object Debris (FOD) using a brush and sweep them to the front left corner of the

Organization	Title/Subject	Number	Date	Page 72
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

collection tub. Sweep the FOD contents into the respective Ziploc bag.

Figure 13: Image of the collection tub corner flap used to sweep FOD into Ziploc bag

- 3.3. Clean the collection tub for the next sample using an air hose.
- 3.4. Repeat break procedure for every sample.

Strength and Deflection Tables and Graphs

Control

Specimen Number	1	2	3	Average	StDev
Max Load (lbs)	860.080	857.690	848.553	855.441	6.084
Displacement @ Max Load (in)	0.695	0.690	0.723	0.703	0.018
Load @ Break (lbs)	712.755	727.997	797.531	746.095	45.193
Displacement @ Break (in)	0.737	0.891	0.852	0.826	0.080
Time to Break (sec)	162.043	234.570	280.250	225.621	59.609
Max Stress	7740.720	7719.214	7636.973	7698.969	54.756
Strain	0.116	0.115	0.121	0.117	0.003

Table 12: Gapped control samples.

Organization	Title/Subject	Number	Date	Page 73
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Table	13:	Solid	control	samples.
-------	-----	-------	---------	----------

Specimen Number	23	24	26	Average	StDev
Max Load (lbs)	1302.392	1259.811	1321.242	1294.482	31.470
Displacement @ Max Load (in)	0.617	0.600	0.640	0.619	0.020
Load @ Break (lbs)	1278.333	1227.759	1303.162	1269.751	38.427
Displacement @ Break (in)	0.654	0.633	0.677	0.655	0.022
Time to Break (sec)	171.925	143.247	130.657	148.610	21.150
Max Stress	11721.520	11338.300	11891.170	11650.330	283.227
Strain	0.103	0.100	0.107	0.103	0.003

Figure 27: Strength and deflection curves for the control samples.

Organization	Title/Subject	Number	Date	Page 74
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 28: Average Flexural modulus for gapped control samples.

$$E_{Flexural} = \frac{L^3 F}{4wh^3 d} = \frac{(6^3)F}{(4)(1)(1^3)d} = \frac{54F}{d} = \frac{54*650\ lbs}{0.3\ in} = 117\ ksi$$

Figure 29: Average Flexural modulus for solid control samples.

$$E_{Flexural} = \frac{L^3 F}{4wh^3 d} = \frac{(6^3)F}{(4)(1)(1^3)d} = \frac{54F}{d} = \frac{54*650\ lbs}{0.2\ in} = 175.5\ ksi$$

Organization	Title/Subject	Number	Date	Page 75
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Arathane 5750-A/B (LV)

Specimen Number	22	25	31	Average	StDev
Max Load (lbs)	885.216	857.979	848.917	864.038	18.893
Displacement @ Max Load (in)	0.786	0.778	0.708	0.757	0.043
Load @ Break (lbs)	839.523	819.034	784.066	814.207	28.042
Displacement @ Break (in)	1.044	0.841	0.767	0.884	0.144
Time to Break (sec)	191.747	166.385	174.228	177.453	12.985
Max Stress	7966.946	7721.813	7640.257	7776.339	170.033
Strain	0.131	0.130	0.118	0.126	0.007

Table 14: Gapped samples with Arathane 5750.

Table 15: Solid samples with Arathane 5750.

Specimen Number	47	48	49	Average	StDev
Max Load (lbs)	1270.091	1270.597	1303.726	1281.471	19.275
Displacement @ Max Load (in)	0.534	0.607	0.616	0.586	0.045
Load @ Break (lbs)	1254.364	1265.756	1298.073	1272.731	22.674
Displacement @ Break (in)	0.544	0.621	0.633	0.600	0.048
Time to Break (sec)	110.815	115.440	93.041	106.432	11.825
Max Stress	11430.820	11435.370	11733.530	11533.240	173.474
Strain	0.089	0.101	0.103	0.098	0.007

Organization	Title/Subject	Number	Date	Page 76
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	
				4

Figure 30: Strength and deflection curves for samples with Arathane 5750-A/B (LV).

Figure 31: Average Flexural modulus for gapped samples with Arathane 5750-A/B (LV).

$$E_{Flexural} = \frac{L^3 F}{4wh^3 d} = \frac{(6^3)F}{(4)(1)(1^3)d} = \frac{54F}{d} = \frac{54 * 1250 \ lbs}{0.6 \ in} = 112.5 \ ksi$$

Organization	Title/Subject	Number	Date	Page 77
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 32: Average Flexural modulus for solid samples with Arathane 5750-A/B (LV).

$$E_{Flexural} = \frac{L^3 F}{4wh^3 d} = \frac{(6^3)F}{(4)(1)(1^3)d} = \frac{54F}{d} = \frac{54*1400\ lbs}{0.4\ in} = 189\ ksi$$

BJB TC-1614

Table	16:	Gapped	samples	with	BJB	TC-1614.
-------	-----	--------	---------	------	-----	----------

Specimen Number	13	14	15	Average	StDev
Max Load (lbs)	1541.034	1856.965	1486.366	1628.122	200.060
Displacement @ Max Load (in)	0.314	0.546	0.287	0.382	0.142
Load @ Break (lbs)	1541.034	1851.565	1486.366	1626.322	196.972
Displacement @ Break (in)	0.314	0.558	0.287	0.387	0.149
Time to Break (sec)	70.040	132.358	65.112	89.170	37.483
Max Stress	13869.310	16712.690	13377.290	14653.090	1800.544
Strain	0.052	0.091	0.048	0.064	0.024

Organization SPHERES National Lab	Title/Subject ULTEM 9085 Testing	Number SPH-04-XS-100	Date June 17, 2015	Page 78	
--------------------------------------	-------------------------------------	-------------------------	-----------------------	---------	--

Specimen Number	38	39	40	Average	StDev
Max Load (lbs)	1321.716	1415.870	1535.886	1424.491	107.345
Displacement @ Max Load (in)	0.233	0.258	0.278	0.256	0.022
Load @ Break (lbs)	1321.716	1415.870	1535.886	1424.491	107.345
Displacement @ Break (in)	0.233	0.258	0.278	0.256	0.022
Time to Break (sec)	68.119	53.577	64.536	62.077	7.576
Max Stress	11895.450	12742.830	13822.970	12820.420	966.102
Strain	0.039	0.043	0.046	0.043	0.004

Table 17: Solid samples with BJB TC-1614.

Figure 33: Strength and deflection curves for samples with BJB TC-1614.

Organization	Title/Subject	Number	Date	Page 79
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	
	g			

Figure 34: Average Flexural modulus for gapped samples with BJB TC-1614.

$$E_{Flexural} = \frac{L^3 F}{4wh^3 d} = \frac{(6^3)F}{(4)(1)(1^3)d} = \frac{54F}{d} = \frac{54*1700 \ lbs}{0.3 \ in} = 306 \ ksi$$

Figure 35: Average Flexural modulus for solid samples with BJB TC-1614.

$$E_{Flexural} = \frac{L^3 F}{4wh^3 d} = \frac{(6^3)F}{(4)(1)(1^3)d} = \frac{54F}{d} = \frac{54 \times 1850 \ lbs}{0.3 \ in} = 333 \ ksi$$

Organization	Title/Subject	Number	Date	Page 80
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Hysol E-20HP

			<u>,</u>	1	r
Specimen Number	10	11	12	Average	StDev
Max Load (lbs)	1006.509	983.871	962.676	984.352	21.921
Displacement @ Max Load (in)	0.618	0.790	0.805	0.738	0.104
Load @ Break (lbs)	949.875	877.337	948.463	925.225	41.478
Displacement @ Break (in)	0.665	0.883	0.815	0.788	0.111
Time to Break (sec)	141.510	251.901	152.407	181.939	60.833
Max Stress	9058.582	8854.842	8664.0835	8859.169	197.285
Strain	0.103	0.132	0.134	0.123	0.017

Table A7: Gapped samples with Hysol E-20HP.

Table 18: Solid samples with Hysol E-20HP.

Specimen Number	34	35	37	Average	StDev
Max Load (lbs)	1326.721	1328.293	1336.499	1330.504	5.251
Displacement @ Max Load (in)	0.580	0.548	0.646	0.591	0.050
Load @ Break (lbs)	1314.928	1320.829	1327.659	1321.139	6.371
Displacement @ Break (in)	0.600	0.553	0.683	0.612	0.066
Time to Break (sec)	148.173	102.707	148.482	133.121	26.339
Max Stress	11940.493	11954.636	12028.492	11974.540	47.255
Strain	0.097	0.091	0.108	0.099	0.008

Organization	Title/Subject	Number	Date	Page 81
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 36: Strength and deflection curves for samples with Hysol E-20HP.

Figure 37: Average Flexural modulus for gapped samples with Hysol E-20HP.

$$E_{Flexural} = \frac{L^3 F}{4wh^3 d} = \frac{(6^3)F}{(4)(1)(1^3)d} = \frac{54F}{d} = \frac{54*800 \ lbs}{0.3 \ in} = 144 \ ksi$$

Organization	Title/Subject	Number	Date	Page 82
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 38: Average Flexural modulus for solid samples with Hysol E-20HP.

$$E_{Flexural} = \frac{L^3 F}{4wh^3 d} = \frac{(6^3)F}{(4)(1)(1^3)d} = \frac{54F}{d} = \frac{54*1550\ lbs}{0.4\ in} = 209.25\ kst$$

Henkel Loctite 5110

Specimen Number	16	17	18	Average	StDev
Max Load (lbs)	283.619	313.656	222.192	273.156	46.621
Displacement @ Max Load (in)	0.187	0.193	0.138	0.173	0.030
Load @ Break (lbs)	250.646	291.742	187.831	243.406	52.333
Displacement @ Break (in)	0.239	0.237	0.174	0.216	0.037
Time to Break (sec)	46.391	77.200	77.381	66.991	17.840
Max Stress	2552.570	2822.903	1999.730	2458.401	419.588
Strain	0.031	0.032	0.023	0.029	0.005

Table 19: Gapped samples with Henkel Loctite 5110.

Organization	Title/Subject	Number	Date	Page 83
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Table 20: Solid samples with Henkel Loctite 5110.

Specimen Number	41	42	43	Average	StDev
Max Load (lbs)	268.072	313.183	294.930	292.062	22.692
Displacement @ Max Load (in)	0.102	0.109	0.113	0.108	0.006
Load @ Break (lbs)	195.115	269.871	258.429	241.138	40.266
Displacement @ Break (in)	0.146	0.154	0.154	0.151	0.005
Time to Break (sec)	89.999	66.217	64.470	73.562	14.262
Max Stress	2412.644	2818.650	2654.373	2628.556	204.231
Strain	0.017	0.018	0.019	0.018	0.001

Figure 39: Strength and deflection curves for samples with Henkel Loctite 5110.

Organization SPHERES National Lab	Title/Subject ULTEM 9085 Testing	Number SPH-04-XS-100	Date June 17, 2015	Page 84
-----------------------------------	-------------------------------------	-------------------------	-----------------------	---------

Figure 40: Average Flexural modulus for gapped samples with Henkel Loctite 5110.

$$E_{Flexural} = \frac{L^3 F}{4wh^3 d} = \frac{(6^3)F}{(4)(1)(1^3)d} = \frac{54F}{d} = \frac{54 * 200 \ lbs}{0.1 \ in} = 108 \ ksi$$

Figure 41: Average Flexural modulus for solid samples with Henkel Loctite 5110

$$E_{Flexural} = \frac{L^3 F}{4wh^3 d} = \frac{(6^3)F}{(4)(1)(1^3)d} = \frac{54F}{d} = \frac{54*350\ lbs}{0.1\ in} = 189\ ksi$$

OrganizationTitle/SubjectNumberDateSPHERES National LabULTEM 9085 TestingSPH-04-XS-100June 17, 2015Page 85
--

ProBuild Marine

Specimen Number	19	20	21	Average	StDev
Max Load (lbs)	778.371	871.923	649.708	766.667	111.569
Displacement @ Max Load (in)	0.239	0.326	0.215	0.260	0.058
Load @ Break (lbs)	778.371	871.923	649.708	766.667	111.569
Displacement @ Break (in)	0.239	0.326	0.215	0.260	0.058
Time to Break (sec)	38.689	65.294	29.677	44.553	18.519
Max Stress	7005.342	7847.307	5847.369	6900.006	1004.122
Strain	0.040	0.054	0.036	0.043	0.010

Table 21: Gapped samples with ProBuild Marine.

Table 22: Solid samples with ProBuild Marine.

Specimen Number	44	45	46	Average	StDev
Max Load (lbs)	1308.953	1351.687	1061.878	1240.839	156.451
Displacement @ Max Load (in)	0.450	0.491	0.311	0.417	0.094
Load @ Break (lbs)	1284.487	1350.310	1061.878	1232.225	151.151
Displacement @ Break (in)	0.463	0.495	0.311	0.423	0.098
Time to Break (sec)	131.412	111.948	46.544	96.635	44.458
Max Stress	11780.580	12165.179	9556.905	11167.555	1408.057
Strain	0.075	0.082	0.052	0.070	0.016

Organization	Title/Subject	Number	Date	Page 86
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

$$E_{Flexural} = \frac{L^3 F}{4wh^3 d} = \frac{(6^3)F}{(4)(1)(1^3)d} = \frac{54F}{d} = \frac{54 \times 1400 \ lbs}{0.4 \ in} = 189 \ ksi$$

Organization	Title/Subject	Number	Date	Page 87
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 44: Average Flexural Modulus for solid samples with ProBuild Marine

Figure 45 Average max load for gapped and solid samples of each applicant

Organization	Title/Subject	Number	Date	Page 88
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 46 Average displacement for gapped and solid samples of each applicant

Stress vs. Strain Graphs

Figure 47: Stress vs. Strain curves for control samples

Organization	Title/Subject	Number	Date	Page 89
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 48: Average Tensile Modulus of the gapped control samples

Figure 49: Average Tensile Modulus of the solid control samples

 $Tensile \ Modulus = \frac{Stress}{Strain} = \frac{12000 \ psi}{0.06} = 200 \ kpsi$

Organization	Title/Subject	Number	Date	Page 90
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Arathane 5750-A/B (LV)

Figure 50: Stress vs. Strain curves for samples with Arathane 5750-A/B (LV)

Figure 51: Average Tensile Modulus for gapped samples with Arathane 5750-A/B (LV)

 $Tensile \ Modulus = \frac{Stress}{Strain} = \frac{2000 \ psi}{0.02} = 100 \ kpsi$

Organization	Title/Subject	Number	Date	Page 91
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 52: Average Tensile Modulus for solid samples with Arathane 5750-A/B (LV)

$$Tensile \ Modulus = \frac{Stress}{Strain} = \frac{8000 \ psi}{0.04} = 200 \ kpsi$$

Figure 53: Stress vs. Strain curves for samples with BJB TC-1614

Organization	Title/Subject	Number	Date	Page 92
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 54: Average Tensile Modulus for gapped samples with BJB TC-1614

 $Tensile \ Modulus = \frac{Stress}{Strain} = \frac{18000 \ psi}{0.06} = 300 \ kpsi$

Figure 55: Average Tensile Modulus for solid samples with BJB TC-1614

$$Tensile \ Modulus = \frac{Stress}{Strain} = \frac{16000 \ psi}{0.05} = 320 \ kpsi$$

Organization	Title/Subject	Number	Date	Page 93
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Hysol E-20HP

Figure 56: Stress vs. Strain curves for samples with Hysol E-20HP

Figure 57: Average Tensile Modulus for gapped samples with Hysol E-20HP

 $Tensile \ Modulus = \frac{Stress}{Strain} = \frac{8000 \ psi}{0.06} = 133.3 \ kpsi$

Organization	Title/Subject	Number	Date	Page 94
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 58: Average Tensile Modulus for solid samples with Hysol E-20HP

$$Tensile \ Modulus = \frac{Stress}{Strain} = \frac{12000 \ psi}{0.05} = 200 \ kpsi$$

Henkel Loctite 5110

Figure 59: Stress vs. Strain curves for samples with Henkel Loctite 5110

Organization Title/Subject SPHERES National Lab ULTEM 9085 Tes	Number ing SPH-04-XS-100	Date June 17, 2015	Page 95
--	-----------------------------	-----------------------	---------

Figure 60: Average Tensile Modulus for gapped samples with Henkel Loctite 5110

Figure 61: Average Tensile Modulus for solid samples with Henkel Loctite 5110

$$Tensile \ Modulus = \frac{Stress}{Strain} = \frac{2000 \ psi}{0.01} = 200 \ kpsi$$

Organization	Title/Subject	Number	Date	Page 96
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

ProBuild Marine

Figure 62: Stress vs. Strain curves for samples with ProBuild Marine

Figure 63: Average Tensile Modulus for gapped samples with ProBuild Marine

$$Tensile \ Modulus = \frac{Stress}{Strain} = \frac{7000 \ psi}{0.04} = 175 \ kpsi$$

Organization	Title/Subject	Number	Date	Page 97
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Figure 64: Average Tensile Modulus for solid samples with ProBuild Marine

 $Tensile \ Modulus = \frac{Stress}{Strain} = \frac{4000 \ psi}{0.02} = 200 \ kpsi$

Organization	Title/Subject	Number	Date	Page 98
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	
of HEREO National Eas	OETEN SOOS TESTING	0111-04-20-100	oune 17, 2015	-

Breaking Notes

SPHERES Ultem 9085 Sample Notes
Sample #
broke at 116016 with a Smax of 0.24 inch. The sample broke in two pieces and Hew across the room.
Sample # 7
First Breaklof the day Used as a trial run to dial-in the procedures.
Break: 111516 Smax

Organization SPHERES National Lab U	Title/Subject ULTEM 9085 Testing	Number SPH-04-XS-100	Date June 17, 2015	Page 99
-------------------------------------	-------------------------------------	-------------------------	-----------------------	---------

6/16/14
SPHERES Ultem 9085 Sample Notes
Sample #
Broke around ~ 85016
Smax around 2 0.75 in
"Shredded Wheaties" NO \$700
Giappeel
Sample # 11:22am
Gapped Sontrol Sample
$\frac{\text{break load}}{\text{break S}} = 0.83 \text{ in}$
"Shredded wheaties" No FOD
· · · · · ·

OrganizationTitle/SubjectNumberDateSPHERES National LabULTEM 9085 TestingSPH-04-XS-100DateDate

	SPHERES Ultem 9085 Sample Notes
	Sample # 1:34am
	Gapped control sample
	$\frac{Break}{Break} = 83515}{Break} = 0.85 m$
	"Shredded wheaties" No FOD
	Sample #_ 23_ 11:46am
	Solid Control Sumple
	Break / Joan - 1300 lb Break 5 = 0.67 in
	explosive break Multiple FOD
0	* Sample collected dust and dust when it escaped the confined test volume

Organization	Title/Subject	Number	Date	Page 101
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Γ

	SPHERES Ultem 9085 Sample Notes
	Sample #_ 24 11:54 am
	Solid Control Sample
	Break load = 126016 Break $8 = 0.6594$ in
	explosive break Minimal fod - groins of sand size
	* sample collected dust & dirf when it escaped the confined test volume
	Sample # 26 12:04 pm
	Solid control Sample
	Break /oach = 132016 Break S = 01700 0.68m
	explosive break - hid not escape test volume MIMIMICA FOD - grains of sand size
0	

Organization	Title/Subject	Number	Date	Page 102
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

\bigcirc	SPHERES U	Item 9085 Sample Notes	
	Sample #	1:25 pr	1
	BJB gappe	el sample	
	Break load = Break & =	15351b 0.320 m	
	Very explosive b FOD was p	reak	
	* Sample colle escaped the	cteel dust & dirt u confined test vo	then it
	Sample #	1:32 pm)
	BJB gappe	ed sample	
	Break load = Break 5 =	1830 lb 0,565 in	
	Very energetic 1 FDD every	where	
0	* multiple samp test volume and	les flew out of the callected dust, dirt, a	confined reil.

Organization	Title/Subject	Number	Date	Page 103
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

sample # 15 bJB gapped sample break load = 1490 lb break 3 = 0.240 in explosive break FeD was substantial * Sample flew out of confined test a sample # 38 bJB solid sample biech load = 1330 lb break 5 = 0.249 in Very explosive break	
bJB gapped sample Break load = 1490 lb Break 3 = 0,290 in explosive break Fob was substantial * Sample flew out of confined test u sample # 38 [:50 pm bJB solid sample Dienk load = 1330 lb Break 5 = 0,249 in Very explosive break	
Break load = 1490 lb Break 3 = 0,290 in explosive break For was substantial * Sample flew out of confined test u sample # 38 [1:50 pm B5B solid sample Bieak load = 1330 lb Break 5 = 0,249 in Very explosive break	
explosive break For was substantial * sample flew out of confined test a sample # 38 [1:50 pm 658 solid sample Dieak load = 1330 lb Break 5 = 0.249 in Very explosive break	
* Sample flew out of confined test i sample #	
sample # Jisopm 	olume
<u>B5B</u> solid sample <u>Break load = 1330 lb</u> <u>Break 5 = 0.249 in</u> <u>Very explosive break</u>	
Break load = 1330 lb Break 5 = 0.249 in Very explosive break	
Very exposure break	
For minimal - grainor Sand /rue	e
the stayed within test chamber	

Organization	Title/Subject	Number	Date	Page 104
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

\bigcirc	SPHERES Ultem 9085 Sample Notes
	Sample # 39
	\$56 solid Sample
	Break /oael = 141016 Break 5 = 0.2616
	explosive break FOD everywhere
	the Sample Flew out of
	sample # 40 BSB solid sumple
	Break locul = 152516 Break 5 = 0.2968 in
	Very energetic break I small piece of Fold
0	or sample did not fly out but due bounce around the test volume quite a bit.

Organization	Title/Subject	Number	Date	Page 105
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

S750 gapped 2:16pm 2:16pm 2:16pm 2:16pm 2:25pm Controlled break FOD 2:25pm 2:		
5750 gapped 2 = ggolb = 1.05 in controlled break POD 2:25 pm 5750 gapped = 86515 = 0.84 in ontrolled break in "water" FOD	Sample #22	2:100pm
2 = 990 lb = 1.05 in controlled break p FOD 2:25 pm 5750 gapped = 865 15 = 0.84 in ontrolled break in "water" FOD	Asathane 5750 gapped	1
controlled break FOD 2:25 pm 5750 gapped = 86515 = 0.84 m ontrolled break in "water" FOD	Break load = 89016 Break 5 = 1.05 in	
$2^{125} pm$ 5750 gapped = 86515 = 0.84 m ontrolled break m "water" FoD	gentle controlled break NO FOD	
5750 gapped = 86515 = 0.84 in ontrolled break in "water" For		
5750 gapped = 86515 = 0.84 in ontrolled break in "water" FOD		
5750 gapped = 86515 = 0.84 in ontrolled break in "water" FOD	95	1175
= 86515 = 0.84 in ontrolled break in "water" FOD	Sample # 25	2:25 pm
ontrolled break	Sample # 25 Arathane 5750 gapped	2:25 pr
	Sample # 25 Arathane 5750 gapped Break Load = 86515 Break S = 0.84 in	2:25 pr
	Sample # 25 Arathane 5750 gapped Break Load = 86515 Break S = 0.84 m	2

Organization	Title/Subject	Number	Date	Page 106
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

SPHERES Ultem 9085 Sample Notes	
Sample #	2:31 pm
Arathane 5750 gapped	
Break Loud = 85015 Break S = 0.77 in	
gentlebreak NO FOD	
Sample #7	2:38 pm
Arathane 5750 solid	
Break bad = 1280 b Break S = 0.540 in	
explosive break	
EDDULSIZED TUD	n na series (Serie Provident)

Organization	Title/Subject	Number	Date	Page 107
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

\cap	SPHERES Ultem 9085 Sample Notes
	Sample # 48
	Arathane 5750 Solid
	Break load = 12901b Break $S = 0.618$ m
	Explosive break FOD everywhere
	K sample escaped the confined test volume collected dust of dirt
	Sample # 49 2:51pm
	Arathane 5750 solul
	Break bad = 1305 15 Break 5 = 0.6638 in
	Explosive break FOD substantial
	A Sample escaped the test dolvine collected
\bigcirc	,÷

Organization	Title/Subject	Number	Date	Page 108
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

	SPHERES Ultem 9085 Sample Notes	
	Sample # 3:0	pm
	EZOHP gapped sample Break load = 100016 Break & = 0.650 in'	
	explosive break 1 tiny FOD - grain of said Sturged within the dark intera	
	Sample # 3:06 pr	Ч
	E-20HP gapped sample	
	Break load = 100016 99016 Break S = 0.90in 0.88 in	
	gentle controlled break NO FOD	
0		

Organization	Title/Subject	Number	Date	Page 109
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

SPHERES Ultem 9085 Sample Notes
Sample #_ 12
E-20 HP gapped Sample
Break load = 95516 Break 8 = 0.815 in
gentle break minimal For
Stayed in confined space
· · · · · · · · · · · · · · · · · · ·
Sample #343*, 21 pm
E-20 HP Solid sample
Break 10ad = 1340 lb Break 5. = 0,620 kg in
explosive brack Multiple FOD - Simall granular pieces
Stayed in confined space

Organization	Title/Subject	Number	Date	Page 110
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Γ

	SPHERES Ultem 9085 Sample Notes
	Sample #353; 28 pm
	E-ZDHP solid sample
	Break load = 134016 Break 5 = 0.55 in
	explosive breake minimal FOD - small granulur preces
	Sample # 37 2:34pm
	E-20 HP solid sample
	Break loud = 134516 Break 3 = 0.68 in
	explosive break I piece of FOD - small pebble
\bigcirc	Stayed within test volume

Organization SPHERES National Lab	Title/Subject ULTEM 9085 Testing	Number SPH-04-XS-100	Date June 17, 2015	Page 111	
--------------------------------------	-------------------------------------	-------------------------	-----------------------	----------	--

SPHERES UIT	em 9085 Sample	<u>Notes</u>
Sample #		3:45 pm
Poobuild Marine	gapped	Sample
Break load = 7	6016	
- Dreak 3 = 0.2	4 In	
explosive break	K	A
minnal FO	D - cla	in break
stayed in co	onfined spe	icc
<u> </u>	V	
	elser 1 "	2
Sample # \$	K rate	3:49
Probuid Marine	gapped	Sample
Break load = 4	370 16	
Break & = c	0.34 in	
explosive break		
minimal Fol	s - small	peble
stayed in cant	s - small	peble

Organization	Title/Subject	Number	Date	Page 112
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

SPHERES Ultem 9085 Sample Notes
Sample # 2(
Probuild Marine gapped sample
Break load = 61515 Break 5 = 0.23 m
explosive break
Starged in contined space
Sample # 3:59
probuild Marine solid sample
Break load = 131016 Break 5 = 0.48 m
Very explosive break
Stayed in confined space

Organization SPHERES National Lab	Title/Subject ULTEM 9085 Testing	Number SPH-04-XS-100	Date June 17, 2015	Page 113	
--------------------------------------	-------------------------------------	-------------------------	-----------------------	----------	--

SPHERES Ultem 9085 Sample Notes Sample #_____45 4:05 pm Probuld Marine, Solid Sample Break load = 1330 15 5 = 0,49 m Break large FOD # Stayed in confined space Sample #_____ 4:11pm Probild Manuel Solid Scempte Break load = 103514 Break & = 0,315 in very explosive NO FOD stayed in confined speace

Organization SPHERES National Lab	Title/Subject ULTEM 9085 Testing	Number SPH-04-XS-100	Date June 17, 2015	Page 114	
--------------------------------------	-------------------------------------	-------------------------	-----------------------	----------	--

Appendix B: SDP Enclosure Top Test

SPH-SDP-PRO Rev. A

National Aeronautics and Space Administration Ames Research Center Moffet Field, CA

Organization	
SPHERES National Lab	

SPHERES NASA Written by: 7/30/2014 miller Daniel Andres Aguilar Martel Date Aerospace Engineering Student San Jose State University Date Sean David Christensen Aerospace Engineering Student San Jose State University 7/30/2014 Emmet John Fox Date Aerospace Engineering Student San Jose State University Approved by: Dong the <u>30/14</u> Date Darryl William LeVasseur System Engineer II Metis Technologies Organization SPHERES National Lab Date July 30, 2014 Title/Subject Number SPH-SDP-PRO Page 1

Organization Title/Subject Number Date Page 116 SPHERES National Lab ULTEM 9085 Testing SPH-04-XS-100 June 17, 2015

SDP Enclosure Top Test

Procedure

Materials:

- SDP-SP-102-SDP Enclosure Top
- Custom machined SDP Adapter Plate
- Calipers
- Loctite 242
- Four #4-40 ³/₈" 18-8 stainless steel button-head socket cap screws
- Weight disks (125 lb total)
- Cameras

Safety Equipment:

-Safety Glasses -Gloves

1. <u>Pretest procedures</u>

- 1.1. Place the 3-D printed Ultem 9085 Enclosure Top in the SDP Adapter Plate
- 1.2. Make sure it is seated properly by checking for screw hole alignment.
- 1.3. Using Loctite 242 (medium strength liquid), applying a very small drop to the first two treads on the tip of the screw. Ensure that only about a quarter of these threads are covered.
- 1.4. Fasten the Enclosure Top to the SDP Adapter Plate using the four #4-40 screws that are 18-8 stainless steel button-head socket cap screws, 4-40 thread, 3/8" length, torqued to 8.0 in-lbs using the torque screw driver.
- 1.5. Allow to cure for 24 hours.

Figures 1, 2, and 3: SDP Enclosure Top getting attached to the SDP Adapter Plate.

2. <u>Prepare the Testing Apparatus</u>

Organization	Title/Subject	Number	Date	Page 117
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

- 2.1. Set up the cameras to record the test.
- 2.2. Clean the flat Contact Disk with Isopropyl Alcohol and Kimwipes to prevent contamination of the 3-D printed Ultem 9085 Enclosure Top.
- 2.3. Place the testing platform on the flat table as seen below.

Figure 4: Testing Platform set on a flat table.

2.4. Place the machined SDP Adapter Plate with the attached 3-D printed Ultem 9085 Enclosure Top onto the Testing Platform.

Figure 5: SDP Adapter Plate with attached 3-D printed Ultem 9085 Enclosure Top on the Testing Platform.

3. <u>Commence with testing procedures</u>

3.1. Start the video cameras.

Table 1: Measurements of the weights taken on the EEL Shadowgraph.

Organization	Title/Subject	Number	Date	Page 118
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Name	Weight
Flat Disk	7.99 lbs
Large weights: 25 lb weights (x2)	50.00 lbs
Smaller weights: 2 lb weights (x8) 1 lb weight (x1)	17.01 lbs
Total Weight	125.00 lbs

Note: Be sure to stack the weight using minimal acceleration when placing each weight down. Make sure all weights are in place within 60 seconds of stacking the first plate. Also be sure to place the weights parallel to the testing surface.

- 3.1.1. Begin by placing the Contact Disk on top of the SDP Enclosure Top so that the 125 lb load is evenly distributed.
- 3.1.2. Next set a 50 lb weight on top of the Contact Disk.

Figure 6: A 50 lb weight set on top of the Contact Disk.

- 3.1.3. Stack another 50 lb weight on top of the previous 50 lb weight so that it sits snuggly in the protruding center so that they interlock.
- 3.1.4. Set a 2 lb weight on top of the protruding center of the second 50 lb weight. Perform this step eight times so that each of the 2 lb weights interlock with one another.
- 3.1.5. Set the 1 lb weight on the top of the stack of 2 lb weights so that it

Organization	Title/Subject	Number	Date	Page 119
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

interlocks.

Figure 7: The final stack of 125lbs will appear like this.

- 3.2. Leave the weights in place for 30 sec.
- 3.3. Carefully remove the weights off the Enclosure Top one-by-one.
- 3.4. Stop the video recording.

4. <u>Post Break</u>

- 4.1. Visually inspect the sample for deformation, deflection and other abnormalities not previously observed.
- 4.2. Measure and record the dimensions of the Enclosure Top on document SPH-SDP-LOG to check for any discrepancies.

5. <u>Results</u>

The SDP part withstood the 125 lb load with no abnormalities. It did not deform, and a small increase in mass posttest was simply due to the Loctite residue that can be seen in the figure below. After the test was completed, the screws were backed out using the torque screw driver. A torque value of around 5 in-lb was found to be sufficient to remove the screws. Cracks radiating from the threaded inserts were found on two of the

Organization	Title/Subject	Number	Date	Page 120
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

four screws, most likely due to the initial torqueing of the screw.

Figure 8: Radial cracks around the threaded insert

Organization	Title/Subject	Number	Date	Page 121
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Appendix C: Data Sheets

Ultem 9085

Stratasys

ULTEM[™] 9085 resin is a flame-retardant high-performance thermoplastic for digital manufacturing and rapid prototyping. It is ideal for the transportation industry due to its high strength-to-weight ratio and its FST (flame, smoke and toxicity) rating. This unique material's certifications make it an excellent choice for the commercial transportation industry – especially aerospace, marine and ground vehicles. Combined with a Fortus[®] 3D Production System, ULTEM 9085 resin allows design and manufacturing engineers to produce fully functional parts that are ideal for advanced functional prototypes or end use without the cost or lead time of traditional tooling.

Mashaniaal Properties!	Test Method	English		Metric	
mechanical Properties [®]	rest Method	XZ Orientation	ZX Orientation	XZ Orientation	ZX Orientation
Tensile Strength, Yield (Type 1, 0.125", 0.2"/min)	ASTM D638	6,800 psi	4,800 psi	47 MPa	33 MPa
Tensile Strength, Uitimate (Type 1, 0.125", 0.2"/mln)	ASTM D638	9,950 psi	6,100 psi	69 MPa	42 MPa
Tensile Modulus (Type 1, 0.125", 0.2"/min)	ASTM D638	312,000 psl	329,000 psl	2,150 MPa	2,270 MPa
Tensile Elongation at Break (Type 1, 0.125*, 0.2*/min)	ASTM D638	5.8%	2.2%	5.8%	2.2%
Tensile Elongation at Yield (Type 1, 0.125", 0.2"/min)	ASTM D638	2.2%	1.7%	2.2%	1.7%
Flexural Strength (Method 1, 0.05"/min)	ASTM D790	16,200 psl	9,900 psi	112 MPa	68 MPa
Flexural Modulus (Method 1, 0.05"/min)	ASTM D790	331,000 psl	297,000 psl	2,300 MPa	2,050 MPa
Flexural Strain at Break (Method 1, 0.05*/min)	ASTM D790	No break	3.7%	No break	3.7%

Organization	Title/Subject	Number	Date	Page 122
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	
Organization	Title/Subject	Number	Date	Page 122
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Sabic

SPHERES

سابک عناله ک

ULTEM[™] Resin 9085 Americas: COMMERCIAL

High flow Polyetherimide blend. Meets FAR 25.853 and OSU 65/65 with low toxicity, smoke and flame evolution.

TYPICAL PROPERTIES	TYPICAL VALUE	Unit	Standard	
MECHANICAL				
Tensile Stress, yld, Type I, 0.2 in/min	12100	psi	ASTM D 638	
Tensile Stress, brk, Type I, 0.2 in/min	10700	psi	ASTM D 638	
Tensile Strain, yld, Type I, 0.2 in/min	7	%	ASTM D 638	
Tensile Strain, brk, Type I, 0.2 in/min	72	%	ASTM D 638	
Tensile Modulus, 0.2 in/min	498000	psi	ASTM D 638	
Flexural Stress, yld, 0.05 in/min, 2 in span	20000	psi	ASTM D 790	
Flexural Modulus, 0.05 in/min, 2 in span	423000	psi	ASTM D 790	
Tensile Stress, yield, 5 mm/min	88	MPa	ISO 527	
Tensile Stress, break, 5 mm/min	71	MPa	ISO 527	
Tensile Strain, yield, 5 mm/min	6.7	%	ISO 527	
Tensile Strain, break, 5 mm/min	50	%	ISO 527	
Tensile Modulus, 1 mm/min	3050	MPa	ISO 527	
Flexural Stress, yield, 2 mm/min	90	MPa	ISO 178	
Flexural Modulus, 2 mm/min	2750	MPa	ISO 178	

Organization	Title/Subject	Number	Date	Page 123
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Applicant MSDS and TDS

Arathane 5750-A/B (LV)

Advanced Materials Electrical Insulation Materials HUNTSMAN

DATA SHEET

Arathane[®] 5750-A/B (LV)

Urethane Conformal Coating

Arathane 5750-A/B (LV) is a translucent, soft, repairable, two-component urethane system designed specifically for insulating printed circuit boards and electronic components.			
Arathane 5750-A/B (LV) exhibits excellent reversion resistance under heat and high humidity conditions. As a cured coating, this material displays very low outgassing properties critical for applications in outer space and high vacuum environments.			
Protective coating for printed wiring boards			
Dip, spray, and spread applications			
Low outgassing			
Repairable			
Low modulus			
Mil spec MIL-I-46058C approved			
IPC CC 830 Amendment 1 Type UR class 3 approved			

Organization	Title/Subject	Number	Date	Page 124
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Typical Properties*	Arathane 5/50 A	50		
	Viscosity, cPs	50		
	Specific gravity, g/cm ²	1.21		
	Flash point, open cup, °C	7		
	Percent solids	90 ± 3		
	As supplied form	Amber Liquid		
	Arathane 5750 B (LV)	· · ·		
	Viscosity, cPs	600		
	Specific gravity, g/cm3	0.92		
	Flash point, open cup, °C	17		
	Percent solids	82 ± 3		
	As supplied form	Translucent Liquid		
	* Typical properties are based on Huntsman's test methods. Copies are available upon request.			
Packaging & Storage	Arathane 5750-A/B (LV) are flamm	nable liquids. These materials are moisture		
sensitive and should be stored in a dry place and, whenever por tightly closed original containers at 25°-40°C. Under these cond will be 6 months from the day of shipping. Partial containers sho using dry nitrogen or argon. Contact Customer Service for pack				
System Preparation	grease, dirt, or other contaminants. Although solvent cleaning is generally sufficient, if excess flux is evident, techniques such as vapor degreasing may produce better cleaning. Arathane 5750 A/B (LV) may be sprayed or applied by dipping.			
	For Teflon [™] coated wires and other Teflon [™] surfaces, abrade with non- chlorinated steel wool and etch with sodium before applying customized adhesion agents or primers. Allow all coated surfaces to dry completely prior to applying Arathane 5750 A/B (LV).			
	Exposure of Part A to low temperatures for prolonged periods may cause crystallization. Part A must be reliquified by heating to 50°C (120°F) maximum. DANGER! Do Not heat above 50°C! Extreme Explosion and Fire Hazard.			
	Heat Part A until clear amber solution is achieved. Remove container from oven. Do not disturb contents. Allow to cool to 25-40°C in a controlled environment; do not force cool.			
	Measure height of the precipitate f precipitate is above 3/8 inches (0.6 gelled particles. Contact our Cust date received and condition of bot	from outside of bottle. Do not use if level of 6 cm), or if liquid remains cloudy or contains omer Service Department with lot number, tle.		
	Material is ready for use if level of agitate. Slowly decant clear resin precipitate. Enough material has t and to assure sufficient Part A. Fo tricot, 10-25 micron size.	precipitate is below 3/8 inches. Do not out of the bottle without disturbing the been packaged to allow for any precipitate or best results, filter Part A through nylon		

Organization	Title/Subject	Number	Date	Page 125
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Use entire bottle so remaining material will not be contaminated with moisture. If this is not possible, any remaining material must be well blanketed with dry nitrogen or argon and the cap tightened securely. Store at 25-40°C for best long-term stability.

Mixing Container should be plastic, glass, or metal. Paper and wooden containers or utensils are not recommended because of high moisture content.

Weigh Part B into container first. Add Part A to container. (Do not use Part A if precipitate level is greater than 3/8 inches.)

Slow machine mixing or hand stirring will minimize air entrapment. Complete and thorough mixing of Parts A and B is essential for optimum end properties.

A brief vacuum may be applied to remove bubbles; however, some solvent will also be removed. Vacuum should be equipped with solvent trap to prevent damage to pump.

Mix ratios		Parts by weight	
	Arathane 5750 A	18	
	Arathane 5750 B (L V)	100	

Processing	Initial viscosity, cPs		1	550	
	Pot life at 25°C (100g), hours			2	
	Recommended cure times*				
		Gelation	Tack free	Full cure	
	Temp., °C	(min)	(hours)	(hours)	
	25	120	24	7 days	
	65	45	2	9	
	100	25	1.5	4	
	125	15	1	2	

* Above data was generated on two coatings of 1.5 mil (3.8 x 10⁻²mm) each, dip-applied on epoxy laminate printed circuit boards. High component density boards may require slightly longer cure schedules. Maximum insulating resistance, interfacial adhesion, and protection from corrosion are obtained with heat curing.

Organization	Title/Subject	Number	Date	Page 126
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	Page 126

Spraying	Some spray systems are able to apply the high-solids Arathane 5750 A/B (LV) as received to provide up to 8 mils thickness per pass.				
	For most conventional spray systems, a viscosity of 100-250 cP is desired. To dilute Arathane 5750 A/B (LV) for optimum spraying viscosity, use 5750 Thinner.				
	 Suggested procedure for reducing viscosity of Arathane 5750 A/B (LV): To 100 pbw of Arathane 5750 B (LV) add 20 pbw of 5750 Thinner, mix well. 				
	 To above mixture add 18 pbw of Arathane 5750 A, mix well. 				
	 Spray equipment manufacturers: Zicon, Mount Vernon, NY – airless inert carrier system Binks, Franklin Park, IL – conventional air system DeVilbiss, Toledo, OH – conventional air system 				
Dipping	Arathane 5750 A/B (LV) must be thinned with 5750 Thinner to control coating thickness. Coating thickness depends upon amount of solvent added to reduce viscosity and dipping rate. To achieve a one to one and one-half (1 – 1.5) mil thickness (2.5-3.8 x 10-2mm) coat per dip, reduce mixed viscosity to comparing the to the total solution.				
	viscosity).				
	Allow mixture to stand 15-30 minutes for bubbles to dissipate. A suggested solvent blend is recommended above. Adjust dipping rate to achieve desired thickness. This allows for complete wetting of all surfaces and minimizes run- off during cure.				
Multiple applications	Two or more coats must be applied for optimum protection of parts. Allow enough time at curing temperature for each application to gel. Allow solvent to escape at ambient temperatures for 15-30 minutes prior to elevated temperature curing. This will minimize bubble entrapment. An alternative to air drying or curing between layers is to place board in a 15-15mm Hg Vacuum for 5-10 minutes for a dense, bubble-free coating.				
Removal	Note: Cured Arathane 5750 A/B (LV) conformal coating may be removed from the printed circuit board using the following mechanical or chemical methods.				
Mechanical removal	Due to the soft, flexible nature of cured Arathane 5750 A/B (LV), it may be easily cut with a sharp knife and then scraped or peeled from component leads, solder pads, and devices. Desolder and remove components, lightly sand down rough edges of intact coating, and wipe repair area clean with fresh isopropyl alcohol. Allow to dry 15 minutes. Replace component and solder in place. Wipe clean all solder flux with cloth dipped in isopropyl alcohol and				

Organization	Title/Subject	Number	Date	Page 127
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

	 Mix fresh Arathane 5750 A/B (LV) per instructions and apply to repair area with a clean, dry, acid brush or equivalent, making sure that fresh coating overlaps the intact coating. The repaired board may be put back into service after a 4 hour cure at 100°C (or alternative cure schedule). Note: This procedure is not advised for other than field or temporary repair. Using a sharp knife to scrape the coating may also cause damage to the printed circuit board, circuitry, or other components. The cured coating may be burned through directly with a soldering iron if only the solder joints are involved. Any coating on the leads may be easily sliced with a razor knife to facilitate part removal. Remove the burned residue and sand smooth rough burned edges of intact coating. Wipe away debris and solder new part in place. Remove dirt/resin flux with clean cloth dipped in isopropyl alcohol. Dry for 30 minutes at 65–80°C before recoating. Mix fresh Arathane 5750 A/B (LV) and apply a thin coat over repair area. Make sure to overlap original coating. Cure 4 hours at 100°C (or see alternative cure schedules). Note: Toxic gases from burning cured urethane systems may be evolved. Perform this procedure only in well-ventilated areas.
Chemical removal	Use our Arathane 5750 Stripper for selective or total removal of cured
	compound. Important: Laboratory tests indicate that if suggested procedures are followed, there will be little or no adverse effects to the printed circuit board or components. However, since each application is different, users should test a representative board that has been coated and fully cured to determine deleterious effects of stripper.
Localized chemical removal	Prepare printed circuit board by masking off area to remain intact. If possible, dam up repair area beyond component level to prevent 5750 Stripper from spreading to unwanted areas.
	Using an acid brush, apply generous amounts of 5750 Stripper over components in repair area. Do not allow to dry. Keep applying stripper until coating starts to swell and flake off (approximately 5–10 minutes). While keeping repair area saturated, periodically brush away loosened coating. If necessary, a blunt tool may be used to remove thick sections of coating. After 20 minutes exposure to stripper, drain board and allow to dry. Scrape away any loose coating close to or under components. If further cleaning is necessary, apply fresh stripper and repeat process for an additional 15 minutes.
	Follow same procedure for underside of board. Remove masking/damning materials and replace defective parts. When removing part, scrape away any coating remaining beneath it prior to replacing. Remove flux and wash area with deionized water. Dry with isopropyl alcohol and dry board 2 hours at 80°C. Apply fresh Arathane 5750 A/B (LV) and follow recommended cure schedules.
Total coating removal	Place board into a container of 5750 Stripper. Agitation will increase stripper
	efficiency. For safety reasons, use 5750 Stripper at room temperature. (Heating up to 50°C in a laboratory hood environment will reduce time to remove coating.) Leave board in 5750 Stripper bath for 15 minutes. The coating will swell and start to fall off the board. Brush board with stiff brush periodically while in bath. Remove and inspect board and brush or scrape away any remaining coating. For excessively thick areas, an additional

Organization	Title/Subject	Number	Date	Page 128
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

	soak/brushing in fresh 5750 Stripper may be ne removed, replace defective components. Clear and isopropyl alcohol washes. Dry board for 2 much remaining coating as possible, although a adversely affect board performance. New Aratt encapsulate the old coating to seal and protect Follow directions for applying and curing Aratha Note: Effectiveness of 5750 Stripper will decre amber color or other contaminants become visi equipment. Keep away from flame and sparks.	cessary. When coating is a board with deionized water hours at 80°C. Remove as any unremoved coating will not hane 5750 A/B (LV) coating will the board and components. ane 5750 A/B (LV). ase with use. Do not use if ble. Use only explosion-proof	
Physical Properties	Hardness, Shore A*	50	
(typical values)	Tensile strength, psi (N/mm ²)	350 (2.4)	
(cypical values)	Elongation, %	150	
	Tg, °C	< -70	
	Fungus resistance	Non-nutrient	
	Maximum continuous use temperature, °C	130	
	Flame resistance	Self-extinguishing	
	Flexibility	No cracking/crazing	
	Outgassing at 10 ^{-®} Torr		
	Total Mass loss, %	0.41	
Electrical Properties	Insulation resistance, Ω	> 1.0 x 10 ¹⁵	
(typical values)	Volume resistivity, ohms-cm		
())	@ 25°C	9.3 X 10 ¹⁵	
	@ 95°C	2.0 X 10 ¹³	
	Dielectric strength,		
	3mil thickness, V/mil	> 1,500	
	7.5 x 10 mm thickness, V/mil	> 59,000	
	Dielectric constant	2.5 (2.0)	
	@ 25°C, 1 KHZ (100 KHZ)	2.5 (3.0)	
	Q 100°C, 1 KHZ (100 KHZ)	3.6 (3.2)	
	@ 25°C 1 KHz (100 KHz)	0.022 (0.025)	
	@100°C, 1 KHz (100 KHz)	0.024 (0.027)	
	Percent change in Q resonance, %		
	1 KHz (50 KHz)	4.5 (3.1)	
	Moisture resistance, Ω	8.2 x 10 ¹¹	

OrganizationTitle/SubjectNumberSPHERES National LabULTEM 9085 TestingSPH-04-XS-100	Date June 17, 2015	Page 129
--	-----------------------	----------

Handling/Safety Precautions	Mandatory and recommended industrial hygiene procedures should be followed whenever our products are being handled and processed. For additional information please consult the corresponding material safety data sheets
	Arathane 5750 A/B (LV) Warning! Flammable. Contains organic isocyanate. Causes severe eye and skin irritation and possible eye burns. Vapor or mist harmful if inhaled. Harmful if swallowed. May cause allergic respiratory reaction.
	Work in a well ventilated area and use clean, dry tools for mixing and applying. For two component systems, combine the resin and hardener according to mix

ratio. Mix together thoroughly and use immediately after mixing. Material temperature should not be below 65°F (18°C) when mixing.

Organization	Title/Subject	Number	Date	Page 130
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

First Aid	In case of contact:
	Eyes: Immediately flush with water for at least 15 minutes. Call a physician.
	Skin: Immediately wash with mild soap and water.
	Inhalation: Remove person to fresh air. Administer oxygen or artificial respiration if necessary. Call a physician.
	Ingestion: If conscious, give plenty of water to drink. Call a physician.
	Other: Referral to physician is recommended if there is any question about the seriousness of an injury
Important	The following shall supersede any provision in Buyer's forms, letters and papers. THERE IS NO WARRANTY OR CONDITION, WHETHER EXPRESS OR IMPLIED BY ANY STATUTE OR OTHERWISE, INCLUDING WARRANTIES AND CONDITIONS OF MERCHANTIBILITY OR OF FITNESS FOR A PARTICULAR PURPOSE, FOR THE PRODUCT OR PRODUCTS REFERRED TO HEREIN. TECHNICAL ADVICE FURNISHED BY THE SELLER SHALL NOT CONSTITUTE A WARRANTY OR CONDITION, STATUTORY OR OTHERWISE, WHICH IS EXPRESSLY DISCLAIMED, ALL SUCH ADVICE BEING GIVEN AND ACCEPTED AT BUYER'S RISK. While the information contained herein is believed to be accurate, Seller makes no representations as to the reliability of the results or as to the results of Buyer or as inducements to infringe any relevant patent, now or hereafter in existence. Testing for intended use is the sole responsibility of Buyer. The product(s) has not been tested for, and is therefore not recommended for, uses for which prolonged contact with mucous membranes, abraded skin, or blood is intended, or for uses for which implantation within the human body is intended. UNDER NO CIRCUMSTANCES SHALL SELLER BE LIABLE FOR INCIDENTAL, CONSEQUENTAL OR OTHER DAMAGES FROM ALLEGED NEGLIGENCE, BREACH OF WARRANTY OR CONDITION, STRICT LIABILITY OR ANY OTHER LEGAL THEORY, ARISING OUT OF MANUFACTURE, SALE, USE OR HANDLING OF THE PRODUCT OR PRODUCTS REFERRED TO HEREIN. The sole remedy of Buyer and the sole liability of Seller for any claims shall be limited to Buyer's purchase price of the product(s), which ever is less.
Note	Arathane [®] is a registered trademark of Huntsman LLC or an affiliate thereof in one

or more countries, but not all countries.

Huntsman Advanced Materials Americas Inc. 281 Fields Lane Brewster, New York 10509 Tel.: (914) 785-3000 Fax: (914) 785-3472

Arathane 5750-A/B (LV) January, 2004

Organization	Title/Subject	Number	Date	Page 131
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

BJB TC 1614

EPOXY RESIN SYSTEMS

"Dedicated to QUALITY, SERVICE, SAFETY, and INNOVATION"

TC-1614 A/B high solids content epoxy penetrating sealing and coating resin system

PRODUCT DESCRIPTION:

TC-1614 A/B is an unfilled high solids content epoxy resin system. It is designed to seal porous to semi-porous substrates developing remarkable strength. As the penetrative depth increases the TC-1614 A/B also has exceptional adhesive characteristics and is capable of continued use at temperatures up to 350°F. It can be used at temperatures up to 400°F intermittently.

PRODUCT HIGHLIGHTS:

- Easy to use and apply
- Penetrates and seals porous surfaces with excellent adhesion
- Works great for sealing FDM and SLS parts
- Withstands temperatures in excess of 350°F.

PHYSICAL PROPERTIES:

Hardness, Shore D ASTM D2240	
Density, (g/cc) ASTM D792	
Cubic Inches per Pound	
Color/Appearance	Opaque yellow
Tensile Strength, (psi) ASTM D638	
Tensile Modulus, (psi) ASTM D638	3.2 x 10 ⁵
Elongation, (%) ASTM D638	5
Flexural Strength, (psi) ASTM D790	
Flexural Modulus, (psi) ASTM D790	3.8 x 10 ⁵
Shrinkage, (in/in) linear (12" x ½" x ½")	0.008
Izod Impact, (ft-lb/in) ASTM D256	0.44

Note: Reported physical properties based on elevated temperature cured test specimens.

Organization	Title/Subject	Number	Date	Page 132
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

HANDLING PROPERTIES:

Mix Ratio (by	weight):
Part A	
Part E	
Mix Ratio (by	volume):
Part A	
Part E	

Quality Management System Registered to ISO 9001:2008

TC-1614 A/B Page 1 of 3 Date: 12/18/2013 For more information call BJB Enterprises, Inc. (714) 734-8450 Fax (714) 734-8929 www.bjbenterprises.com

HANDLING PROPERTIES (continued):

Specific Gravity @ 77°F (25°C):	
Part A	
Part B	
Viscosity, (cps) @ 77°F (25°C) Brookfield:	
Part A	
Part B	
Mixed	
Work Time, (100-gram mass) @ 77°F (25°C)	2 hours
Gel Time	2.5 hours
Demold Time @ 77°F (25°C)	
*Application Procedures – see page 3	

POST CURING:

All physical property results are based upon post-curing this system. The following procedure provides the best results:

150° F (66° C) for 1.5 to 2 hours 250° F (121° C) for 2 hours 300° F (149° C) for 1 hour 350° F (177° C) for 1 hour

Allow to cool in the oven. This procedure provides further stabilization and eliminates possible thermal shocks for cavity tools that are temporarily clamped together for curing purposes.

PACKAGING:

5-Gallon Kits	40 lbs.	Α,	8 lbs	В
Drum Kits	00 Ibs. /	A, 8	30 Ibs.	В

STORAGE:

Store in a cool dry place. Unopened containers will have a shelf life of 12 months from date of shipment when properly stored at room temperatures. Purge opened containers with dry nitrogen before re-sealing.

SAFETY PRECAUTIONS:

Use in a well-ventilated area. Avoid contact with skin using protective gloves and protective clothing. Repeated or prolonged contact on the skin may cause an allergic reaction. Eye protection is extremely important. Always use approved safety glasses or goggles when handling this product.

Organization	Title/Subject	Number	Date	Page 133
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

IF CONTACT OCCURS:

- Skin: Immediately wash with soap and water. Remove contaminated clothing and launder before reuse. It is not recommended to remove resin from skin with solvents. Solvents only increase contact and dry skin. Seek qualified medical attention if allergic reactions occur.
- Eyes: Immediately flush with water for at least 15 minutes. Call a physician.
- Ingestion: If swallowed, call a physician immediately. Remove stomach contents by gastric suction or induce vomiting only as directed by medical personnel. Never give anything by mouth to an unconscious person.

Refer to the Material Safety Data Sheet before using this product.

Quality Ma	nagement		
System Re	gistered	TC-1614 A/B Page 2 of 3	Date: 12/18/2013
10 150 900	1:2008	For more information call BJB Enterprises, Inc. (714) 734-8450 Fax (714) 734-892	9
_			

NON-WARRANTY "Except for a warranty that materials substantially comply with the data presented in Manufacturer's latent bulletin describing the product (the basis for this substantial compliance is to be determined by the standard quality control tests generally performed by Manufacturer's latentials are sold "AS IS" and without any warranty express or implied as to merchantality, fitness for a particular propose, patter, trademack or copyright infiningement, or on so as only other matter. In no event shall Manufacturer's latentity of damages are claimed."

Organization SPHERES National Lab UI	Title/Subject JLTEM 9085 Testing	Number SPH-04-XS-100	Date June 17, 2015	Page 134
--------------------------------------	-------------------------------------	-------------------------	-----------------------	----------

Product Application Procedure for 3D Printed Parts

Material: TC-1614 Epoxy

Purpose of Procedure: To impregnate rigid, porous 3D Printed Parts with epoxy. Infusing epoxy into the surface is a beneficial procedure to increase strength, improve handling qualities and in some parts improve aesthetics. Some systems will absorb more material than others.

Procedure:

- Pre-warm A&B material in separate containers to 90°-100°F maximum (32°-37°C max) in a temperature controlled industrial oven. This will help to lower the viscosity and increase the absorption rate of epoxy into the part (never use a household oven that may be in contact with food).
- You can also pre-warm the 3D printed part to aid in epoxy infiltration. 100°-120°F (37°-49°C) is a good range but refer to your 3D printed material recommendations for heat resistance in an effort to avoid distortion.
- Place a small 3D Printed Part into a self-sealing (zipper lock) plastic bag and fill with an appropriate amount
 of epoxy. A bag that is too large will require more volumetric amounts of epoxy. Squeeze out as much of the
 extra air in the bag to assure part is fully submerged and coated with epoxy then seal bag.
- Allow the part to soak in the epoxy for roughly 20-25 minutes. A recommended optional procedure would be
 to place bag with soaking 3D Printed part into 100°-120°F (37°-49°C) oven in a leak-proof, metal container,
 and allow to soak for 15-20 minutes. Check part at 5 minute intervals to monitor viscosity levels and for any
 exothermic reaction. Larger batches of mixed epoxy will have a shorter reaction time.
- Once part has soaked for allotted time, pull part out of bag and drain excess epoxy off of part.
- For larger parts, mix enough A&B together so you have sufficient material to brush an even coat over the part. Continue brushing drips and runs to keep part coated for 20-30 minutes. Then drain off excess epoxy and wipe down surface with clean, dry paper towels. Avoid using any solvents since it will affect the curing properties.

*Note that mixing a large mass of epoxy can produce an increase in chemical reaction shortening work time and increasing exotherm (heat) as it sits. Do not leave a large, concentrated mass of epoxy in a container unattended. After soaking the part, it may be best to split up a large batch (over 200-300g) by draining the bag into 2-3 separate small containers and allow to harden.

- Hang part with wire over a cup or bucket to allow continued drainage of excess epoxy. Wipe off any areas of
 pooled epoxy with a gloved finger or brush. Monitor any sags or drips for the next hour or until epoxy has
 gelled.
- You can expedite curing of the epoxy in an oven at 100°-120°F (37°-49°C) and promote better physical
 properties of the finished material. You can also allow the epoxy to cure at room temperature but an elevated
 post cure will achieve the best results.

Organization	Title/Subject	Number	Date	Page 135
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

-

Hysol E-20HP

1001 Trout Brook Crossing Rocky Hill, CT 06067-3910 Telephone: (860) 571-5100 FAX: (860) 571-5465

HTTP://KRAYDEN.COM 1-800-448-0406

Technical Data Sheet

Hvsol[®] Product E-20HP formerly Durabond E-20HP

Industrial Version, April 2004

PRODUCT DESCRIPTION

LOCTITE[®] Hysol[®] Product E-20HP is a toughened, mediumviscosity, industrial grade epoxy adhesive with a medium work life. Once mixed, the two-component epoxy cures at room temperature to form a tough, off-white, bondline that provides high peel resistance and high shear strengths. The fully cured epoxy is resistant to a wide range of chemicals and solvents, and acts as an excellent electrical insulator.

TYPICAL APPLICATIONS

The high performance epoxy provides excellent bond strengths to a wide variety of plastics and metals. Ideal for general purpose industrial assemblies. Used as adhesive for bonding dry concrete or limestone for architectural applications.

PROPERTIES OF UNCURED MATERIAL

Resin	Typical			
	Value	Range		
Chemical Type	Epoxy			
Appearance	Pale yellow liquid			
Specific Gravity @ 25°C	1.00	0.9 to 1.1		
Viscosity @ 25°C, mPa.s (cP)	65,000	40,000 to 90,000		
Flash Point (TCC), °C (°F)	>93 (>200)			
Hardener	Турі	al		
	Value	Range		
Chemical Type	Amine	-		
Appearance	Yellow liquid			
Specific Gravity @ 25°C	1.10	1.0 to 1.2		
Viscosity @ 25°C, mPa.s (cP)	7,000	5,500 to 8,000		
Flash Point (TCC), °C (°F)	>93 (>200)			
Mixture	Typical Value			
Appearance	Off-white			
Specific Gravity @ 25°C	1.03			
Mix Ratio (R:H) by Weight	100 to 55			
by Volume	2 to 1			

TYPICAL CURING PERFORMANCE Cure speed

The graph below shows the shear strength developed over time on abraded, acid etched aluminum lap shears with an average bondline gap of 3 to 9 mils and tested according to ASTM D-1002

Curing Properties

(@ 25°C unless noted)	l ypical Value
Working Life, minutes	20
Tack Free time, minutes	40

TYPICAL PROPERTIES OF CURED MATERIAL

(@ 25°C unless noted)	
Physical Properties	Typical Value
Dielectric Strength, Volts/Mil	500
Tensile Strength ASTM D638, psi	5,700
Tensile Elongation ASTM D-638, %	8
Hardness ASTM D-1706, Shore D	80
Glass Transition Temperature, Tg, °C	60

PERFORMANCE OF CURED MATERIAL

Shear Strength vs Substrate		
(Substrates cured for 5 days @ 22°C)		
Substrate	Typical	Value
Lapshear	N/mm ²	(psi)
Grit-Blasted Steel	22.6	3270
Aluminum (Abraded/Acid Etched, 3 to 9 mil gap)	28.2	4090
Aluminum (Anodized)	17.4	2530
Stainless Steel	22.0	3190
Polycarbonate	3.9	560
Nylon	1.8	260
Wood (Fir)	11.4	1660
Block Shear	N/mm ²	(psi)
PVC	7.9	1140
ABS	10.4	1510
Epoxy	28.6	4140
Acrylic	2.0	290
Glass	32.3	4690

Concrete Strength by ASTM C881/C882-99

Hot Strength

Substrate:

E-20 HP passes the requirements of a type IV epoxy. During testing the concrete fractured prior to the adhesive failing. The test was modified as we do not recommend it be used on wet surfaces.

TYPICAL ENVIRONMENTAL RESISTANCE

ASTM D-1002 Test procedure : Abraded, acid etched aluminum Bondline gap, mils: 3 to 9 Cure procedure: 12 hours at 65°C & 4 hours at 22°C

Organization	Title/Subject	Number	Date	Page 136
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

TYPICAL CURING PERFORMANCE Cure speed

The graph below shows the shear strength developed over time on abraded, acid etched aluminum lap shears with an average bondline gap of 3 to 9 mils and tested according to ASTM D-1002.

modified as we do not recommend it be used on wet surfaces.

TYPICAL ENVIRONMENTAL RESISTANCE Hot Strength

Hot Strength	
Test procedure :	ASTM D-1002
Substrate:	Abraded, acid etched aluminum
Bondline gap, mils:	3 to 9
Cure procedure:	12 hours at 65°C & 4 hours at 22°C

Tested at temperature.

NOT FOR PRODUCT SPECIFICATIONS. THE TECHNICAL DATA CONTAINED HEREIN ARE INTENDED AS REFERENCE ONLY. PLEASE CONTACT LOCTITE CORPORATION QUALITY DEPARTMENT FOR ASSISTANCE AND RECOMMENDATIONS ON SPECIFICATIONS FOR THIS PRODUCT. ROCKY HILL, CT FAX: +1 (860)-571-5473 DUBLIN, IRELAND FAX: +363-(1)-461 - 9969

Organization	Title/Subject	Number	Date	Page 137
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Heat Aging

Cured for 5 days at 22°C on steel with no induced gap, aged at temperature indicated and tested at 22°C.

Chemical / Solvent Resistance

Cured for 5 days at 22°C on steel with no induced gap, aged under conditions indicated and tested at 22°C.

Joivent	remp.	/s mual oberiger retained at		
	-	500 hr	1000 hr	
Air	87°C	-	137	
Motor Oil (10W-30)	87°C	164	171	
Unleaded Gasoline	87°C	108	82	
Water/Glycol (50%/50%)	87°C	121	125	
Salt/Fog ASTM B-117	22°C	-	73	
95% Relative Humidity	38°C	-	100	
Condensing Humidity	49°C	-	90	
Water	22°C	-	81	
Acetone	22°C	76	95	
Isopropyl Alcohol	22°C	87	125	

GENERAL INFORMATION

This product is not recommended for use in pure oxygen and/or oxygen rich systems and should not be selected as a sealant for chlorine or other strong oxidizing materials.

For safe handling information on this product, consult the Material Safety Data Sheet, (MSDS).

Directions for use

1 For high strength structural bonds, removal of surface

TDS Hysol E-20HP, August 2001

- For maximum bond strength apply adhesive evenly to both surfaces to be joined.
- Application to the substrates should be made within 20 minutes. Larger quantities and/or higher temperatures will reduce this working time.
- Join the adhesive coated surfaces and allow to cure at 25°C (77°F) for 24 hours for high strength. Heat up to 93°C (200°F), will speed curing.
- Keep parts from moving during cure. Contact pressure is necessary. Maximum shear strength is obtained with a 3-9 mil bond line.
- Excess uncured adhesive can be cleaned up with ketone type solvents.

Storage

Product shall be ideally stored in a cool, dry location in unopened containers at a temperature between 8°C to 28°C (46°F to 82°F) unless otherwise labeled. Optimal storage is at the lower half of this temperature range. To prevent contamination of unused product, do not return any material to its original container. For further specific shelf life information, contact your local Technical Service Center.

Data Ranges

The data contained herein may be reported as a typical value and/or range. Values are based on actual test data and are verified on a periodic basis.

Note

The data contained herein are furnished for information only We cannot assume and are believed to be reliable. responsibility for the results obtained by others over whose methods we have no control. It is the user's responsibility to determine suitability for the user's purpose of any production methods mentioned herein and to adopt such precautions as may be advisable for the protection of property and of persons against any hazards that may be involved in the handling and use thereof. In light of the foregoing, Loctite Corporation specifically disclaims all warranties expressed or implied, including warranties of merchantability or fitness for a particular purpose, arising from sale or use of Loctite Corporation's products. Loctite Corporation specifically disclaims any liability for consequential or incidental damages of any kind, including lost profits. The discussion

Organization	Title/Subject	Number	Date	Page 138
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Ciremical / solvent resistance Cured for 5 days at 22°C on steel with no induced gap, aged under conditions indicated and tested at 22°C.

Solvent	Temp.	% Initial Stre	% Initial Strength retained at		
		500 hr	1000 hr		
Air	87°C	-	137		
Motor Oil (10W-30)	87°C	164	171		
Unleaded Gasoline	87°C	108	82		
Water/Glycol (50%/50%)	87°C	121	125		
Salt/Fog ASTM B-117	22°C	-	73		
95% Relative Humidity	38°C	-	100		
Condensing Humidity	49°C	-	90		
Water	22°C	-	81		
Acetone	22°C	76	95		
Isopropyl Alcohol	22°C	87	125		

GENERAL INFORMATION

This product is not recommended for use in pure oxygen and/or oxygen rich systems and should not be selected as a sealant for chlorine or other strong oxidizing materials.

For safe handling information on this product, consult the Material Safety Data Sheet, (MSDS).

Directions for use

- For high strength structural bonds, removal of surface contaminates such as paint, oxide films, oils, dust, mold release agents and all other surface contaminates.
- Use gloves to minimize skin contact. DO NOT use solvents for cleaning hands.
- 3. Dual Cartridges: To use simply insert the cartridge into the application gun and start the plunger into the cylinders using light pressure on the trigger. Next, remove the cartridge cap and expel a small amount of adhesive to be sure both sides are flowing evenly and freely. If automatic mixing of resin and hardener is desired, attach the mixing nozzle to the end of the cartridge and begin dispensing the adhesive. For hand mixing, expel the desired amount of the adhesive and mix thoroughly. Mix approximately 15 seconds after uniform color is obtained. Bulk Containers: Mix thoroughly by weight or volume in the proportions specified in Properties of Uncured Material section. Mix vigorously approximately 15 seconds after uniform color is obtained.

contamination of unused product, do not return any material to its original container. For further specific shelf life information, contact your local Technical Service Center.

Data Ranges

The data contained herein may be reported as a typical value and/or range. Values are based on actual test data and are verified on a periodic basis.

Note

The data contained herein are furnished for information only and are believed to be reliable. We cannot assume responsibility for the results obtained by others over whose methods we have no control. It is the user's responsibility to determine suitability for the user's purpose of any production methods mentioned herein and to adopt such precautions as may be advisable for the protection of property and of persons against any hazards that may be involved in the handling and use thereof. In light of the foregoing, Loctite Corporation specifically disclaims all warranties expressed or implied, including warranties of merchantability or fitness for a particular purpose, arising from sale or use of Loctite Corporation's products. Loctite Corporation specifically disclaims any liability for consequential or incidental damages of any kind, including lost profits. The discussion herein of various processes or compositions is not to be interpreted as representation that they are free from domination of patents owned by others or as a license under any Loctite Corporation patents that may cover such processes or compositions. We recommend that each prospective user test his proposed application before repetitive use, using this data as a guide. This product may be covered by one or more United States or foreign patents or patent applications.

Organization	Title/Subject	Number	Date	Page 139
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Henkel Loctite 5110

PRODUCT DESCRIPTION

LOCTITE[®] 5110[™] provides the following product characteristics:

errenere errenere.			
Technology	Acrylic		
Chemical Type	Methacrylate monomers		
Appearance (uncured)	Transparent liquid ^{ues}		
Fluorescence	Positive under UV light ^{um}		
Emulsification	Disperses in water - does not seperate as oily layer		
Components	One component - requires no mixing		
Viscosity	Low		
Cure	Anaerobic		
Application	Sealing		

LOCTITE[®] 5110™ is a low viscosity liquid sealant designed for sealing interfacial leak paths in rigid electronic assemblies. It may also be used to enhance dielectric strength or seal porosity in passive materials. LOCTITE[®] 5110™ sealant is typically applied with a vacuum impregnation process that removes air from the internal void and then saturates the part with liquid sealant. Excess liquid sealant is rinsed from the outside of the part with an aqueous solution effectively leaving no surface build up. In the absence of circulating air, the liquid rapidly polymerizes to form a tough thermoset polymer that permanently seals gaps in the assembly. Parts processed with LOCTITE® 5110[™] are sealed internally but remain cosmetically and dimensionally unchanged. Typical applications include sealing or unitizing overmolded electrical components against leakage of air, water, coolants, oils and other fluids. Connectors, high temperature coils, and lamination stacks in brushless motors, solenoids, and sealed enclosures have been sealed successfully. As a good insulator, LOCTITE[®] 5110[™] may also be used to improve the dielectric strength across gaps between high voltage conductors.

Technical Data Sheet

LOCTITE[®] 5110™

April 2006

Compressive Modulus, ISO 604	N/mm³ (psi)	1,790 (260,000)
Flexural Modulus , ASTM D790	N/mm² (psi)	1,740 (250,000)
Electrical Properties		
Volume Resistivity, IEC 60093, Ω·cm		9×1013
Dielectric Breakdown Strength, IEC 60243-	1, kV/mm	39.4
Dielectric Constant, IEC 60250:		
100Hz		4.0
1 kHz		4.0
1 MHz		3.8

TYPICAL ENVIRONMENTAL RESISTANCE

Data shown herein should not be used in place of actual part testing. Sealing performance depends as much upon the surrounding substrate as it does upon the sealant. The parent material provides substantial protection against oxygen and pressure loads. Smaller pores, longer leak paths and lower differential pressures yield better durability. The testing described herein provides standard comparisons of LOCTITE[®] sealants on a consistent interface. *Predicting the performance of real world applications using extrapolations from this data is not recommended*. The performance of any sealant should be experimentally validated against the specific demands of a particular application, preferably using actual production methods.

Durability Performance

Standard test pieces were sealed with LOCTITE[®] 5110[™] and subjected to accelerated life testing under adverse conditions. The test specimen was 3.2 mm thick FC0208 sintered powder metal of 6.8 g/mL density (12% porous substrate). Samples were tested at 4 atmospheres internal pressure. Leak rates were measured using volume/time at pressure under water. Initial leak rates were over 10,000 mL/minute.

Organization	Title/Subject	Number	Date	Page 140
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

TYPICAL PROPERTIES OF UNCURED MATERIAL

Specific Gravity @ 25 °C	1.09
Surface Tension, ASTM D 1590, dynes/cm	42.3
Flash Point - See MSDS	
Viscosity, Brookfield - RVT, 25 °C, mPa-s (cP):	
Spindle 2, speed 50 rpm	36 to 66LMS

TYPICAL PROPERTIES OF CURED MATERIAL Physical Properties

inysidan ropenies	
Coefficient of Thermal Expansion, K ⁻¹	7.94×10*
Density @ 25 °C, g/cm³	1.21
Shore Hardness, ISO 868, Durometer D	89
Design Limit, Continuous Temperature, °C	205
Design Limit, Temperature Exposure less than 24	232
hours, °C	

High Temperature Resistance

At temperatures above 160 °C, organic polymers may react with available oxygen. In porosity, the surrounding substrate typically protects the sealant from air. Oxidation may cause the sealant to discolor without compromising the seal. Exterior surfaces are affected first; therefore, cross-sections that are thicker than 3.2 mm enjoy proportionately higher resistance. Applications that include working fluids other than oxygenated air resist elevated temperatures better.

Conditioning	Environment	% Leak
4100 hours salt fog	40 °C, Condensing	0
1000 Thermal Cycles	-40 °C to + 121 °C, 2 hour period	0.1
Acid Exposure	24 hours in pH 1 sulfuric acid	0
Caustic Exposure	24 hours in pH 13 sodium hydroxide	0
Hot Strength	100 psi air, part @ 176 °C	0

GENERAL INFORMATION

This product is not recommended for use in pure oxygen and/or oxygen rich systems and should not be selected as a sealant for chlorine or other strong oxidizing materials.

For safe handling information on this product, consult the Material Safety Data Sheet (MSDS).

Directions for use

Porosity sealants typically require catalyzation and must be handled with chemically compatible materials and equipment.

Use of process equipment designed, built and maintained to LOCTITE[®] standards is recommended to ensure consistent performance. Consult a LOCTITE[®] Porosity Sealing Specialist for specific application assistance, process development and equipment selection.

			% of ini	tial leak	
Environment	°C	500 h	1000 h	2000 h	4100 h
21% Oxygenated Air (control)	23	0	0	0	0
Unleaded gasoline	23	0	0	0	0
Motor oil (10W-30)	121	0	0	0	0
ATF (Dexron III)	121	0	0	0	0
Water/glycol 50/50	121	0	0	0	0
Brake Fluid (Dot 3)	121	0	0	0	0
21% Oxygenated Air	121	*0.0	*0.0	*0.0	*0.0

* 0.0% signifies a leak that is too small to quantify (<0.01%)

Loctite Material Specification

LMS dated June 30, 2005. Test reports for each batch are available for the indicated properties. LMS test reports include selected QC test parameters considered appropriate to specifications for customer use. Additionally, comprehensive controls are in place to assure product quality and consistency. Special customer specification requirements may be coordinated through Henkel Quality.

Storage

Store product in the unopened container in a dry location. Storage information may be indicated on the product container labeling.

Optimal Storage: 8 °C to 21 °C. Storage below 8 °C or greater than 28 °C can adversely affect product properties. Material removed from containers may be contaminated during use. Do not return product to the original container. Henkel Corporation cannot assume responsibility for product which has been contaminated or stored under conditions other than those previously indicated. If additional information is required, please contact your local Technical Service Center or Customer Service Representative.

Conversions

 $\begin{array}{l} (^{\circ}C \times 1.8) + 32 = ^{\circ}F \\ kV/mm \times 25.4 = V/mil \\ mm / 25.4 = inches \\ \mum / 25.4 = mil \\ N \times 0.225 = lb \\ N/mm \times 5.71 = lb/in \\ N/mm^2 \times 145 = psi \\ MPa \times 145 = psi \\ N\cdotm \times 8.851 = lb/in \\ N\cdotm \times 0.738 = lb/ft \\ N\cdotmm \times 0.142 = oz/in \\ mPa/s = cP \end{array}$

Organization	Title/Subject	Number	Date	Page 141
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

- Typically, a basket of parts is submerged in sealant. Air is expelled out of the porosity under vacuum.
- A pressure increase causes the sealant to flow into the pore. Ambient pressure is typical but may be augmented.
- 3. The basket is lifted and spins to reclaim excess sealant.
- The parts basket is washed in water with agitation as necessary to achieve good cleaning.
- 5. Parts cure and dry at room temperature.

Anaerobic Cure Mechanism

Liquid LOCTITE[®] 5110[™] cures in the absence of freely available oxygen. Surface bleedout normally associated with hot water cure is eliminated.

Cure rate depends on the part temperature, dimension and chemical activity of the surrounding porosity. In general, parts can be pressure tested within 5 to 30 minutes after processing.

Waste Rinse Water Disposal

Waste rinse water generated during the porosity sealing process can, in general, be adequately handled by conventional biological treatment methods. Since both the circumstances of use and local environmental requirements vary, waste disposal recommendations are location specific. Depending on the particular parameters, a LOCTITE[®] Porosity Sealing Specialist can characterize effective waste disposal options for a wide range of solutions from passive handling to zero discharge.

Note

The data contained herein are furnished for information only and are believed to be reliable. We cannot assume responsibility for the results obtained by others over whose methods we have no control. It is the user's responsibility to determine suitability for the user's purpose of any production methods mentioned herein and to adopt such precautions as may be advisable for the protection of property and of persons against any hazards that may be involved in the handling and use thereof. In light of the foregoing, Henkel Corporation specifically disclaims all warranties expressed or implied, including warranties of merchantability or fitness for a particular purpose, arising from sale or use of Henkel Corporation's products. Henkel Corporation specifically disclaims any liability for consequential or incidental damages of any kind, including lost profits. The discussion herein of various processes or compositions is not to be interpreted as representation that they are free from domination of patents owned by others or as a license under any Henkel Corporation patents that may cover such processes or compositions. We recommend that each prospective user test his proposed application before repetitive use, using this data as a guide. This product may be covered by one or more United States or foreign patents or patent applications.

Organization	Title/Subject	Number	Date	Page 142
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

DESCRIPTION

ProBuild Marine Epoxy Systems are convenient, easy-to-use, 100% solids systems developed solely for building, repairing or restoring any type of marine vessel. The versatility of the ProBuild epoxy systems make them ideal for use in standard wet lay-up, vacuum bagging or resin infusion operations with a wide range of reinforcements. These systems can also be mixed with a variety of fillers for fairing, filleting or bonding applications. ProBuild marine epoxy systems consist of one base resin and a selection of four separate hardeners to suit your application needs. These systems are all mixed at convenient 3:1 volumetric mix ratios and can be metered through our calibrated push pumps or various types of dispensing equipment, which eliminates the need for scales or guesswork associated with other types of peoxy systems. In addition to the high strength and durability of the ProBuild epoxy systems, the low viscosity allows for better wet-out resulting in lighter, stronger, void-free parts without experiencing run out on vertical surfaces. The unique chemistry of the ProBuild systems provides maximum physical properties, reduces curing exotherm and minimizes blush, making these systems more trouble free than ever for the marine craftsman and architect. For long term performance and lower maintenance, try one of the ProBuild systems today.

ProBuild Marine Epoxy Systems:

ProBuild Resin: High performance resin specifically formulated for use with any of the following hardeners to produce the highest quality marine laminating system:

Fast & Cold Weather Hardener (cures at temps down to 5°C/40°F)	
Medium Hardener	
Slow Hardener	
Tropical Hardener	

BENEFITS

- Above or Below Water Line Applications
- Convenient volumetric mix ratios
- · Can be used in various applications including laminating, bonding, fairing, wood coating or sealing
- Unique chemistry resulting in higher physical properties while minimizing blush
- Ideal for use with a variety of reinforcements including fiberglass, Kevlar and carbon fiber
- · Excellent wet-out and air release attributes resulting in less resin usage, saves money
- 100% Solids No Solvents
- UV Stabilized

Organization	Title/Subject	Number	Date	Page 143
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

HANDLING CHARACTERISTICS @ 25°C/77°F	FAST	MEDIUM	<u>SLOW</u>	TROPICAL
Mix Ratio (parts by weight)	. 100R/28H	. 100R/28H	100R/28H	100R/28H
Mix Ratio (parts by volume)	.3R/1H	.3R/1H	3R/1H	3R/1H
Mixed Viscosity (Brookfield)	.900-1100 cps	.900-1100 cps	.900-1100 cps	460 cps
Pot Life	.14 minutes	.34 minutes	50 minutes	125 minutes
Mixed Density	.9.3 lbs/gal	.9.3 lbs/gal	9.3 lbs/gal	.9.3 lbs/gal
Mixed Density	.0.040 lbs/in ³	.0.040 lbs/in ³	0.040 lbs/in ³	0.040 lbs/in ³
Specific Gravity	.1.11 grams/cc .	. 1.11 grams/cc	1.11 grams/cc	1.11 grams/cc
Sanding Time	.5-7 hours	.12-16 hours	24 hours	24 hours
Color	Lt Amber	Lt Amber	Lt Amber	Lt Amber
Complete Cure	.7 days	.7 days	7 days	7 days
V.O.C	.none	. none	none	none
Shelf Life R & H (in original unopened containers)	.2 years	. 2 years	2 years	2 years

Page 2 of 2 ProBuild Tech

PRODUCT BULLETIN CONT.

PHYSICAL PROPERTIES (Cast Bar)	FAST	MEDIUM	<u>SLOW</u>	TROPICAL
Tensile Strength (ASTM D-638.94b)	.7,643 psi	6,631 psi	8,543 psi	8,954 psi
Tensile Elongation (ASTM D-638.94b)	.1.74%	1.34%	1.98%	1.73%
Tensile Strength* (ASTM D-638.94b)	.33,171 psi	30,269 psi	.31,910 psi	25,900 psi
Flexural Strength (ASTM D-790.92)	.12,876 psi	10,422 psi	10,330 psi	12,820 psi
Flexural Strength* (ASTM D-790.92)	.20,936 psi	34,896 psi	30,690 psi	26,070 psi
Flexural Modules (ASTM D-790.92)	.520,500 psi	523,500 psi	529,500 psi	542,900 psi
Compressive Strength (ASTM D-695.91)	.17,761 psi	17,789 psi	17,461 psi	14,660 psi
Impact Strength (ASTM D-256.93a)	.6.86 in-lbf/in	4.25 in-lbf/in	4.45 in-lbf/in	8.76 in-lbf/in
Heat Deflection Temp (ASTM D-648.82)	.54°C/129°F	49°C/121°F	47°C/118°F	46°C/115°F
Ultimate Tg by DSC (cured 12 hours @ 75°C)	.na	na	86.8°C/188°F	na
Moisture Absorption (ASTM D-570.81)	.0.36%	0.38%	0.37%	0.31%

(*)Denotes testing conducted on a 6 ply/10oz laminate

Organization	Title/Subject	Number	Date	Page 144
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Measuring Devices

Interface Load Cell 5K lb Data Sheet

SPECIFICATIONS			
PARAMETERS	1111	MODEL 1111	1121
		CAPACITY	
U.S. Models (lbf)	1K. 2K	5K, 10K	25K. 50K
Metric Models (kN)	5, 10	25, 50	100, 250
ACCURACY - (MAX ERROR)		C	S
Static Error Band-% FS	+0.02	+0.03	+0.03
Nonlinearity-% FS	+0.03	+0.04	±0.04
Hysteresis-% FS	+0.02	+0.04	±0.04
Nonrepeatability-% R0	+0.01	+0.01	+0.01
Creep, in 20 min-%	±0.025	±0.025	±0.025
Side Load Sensitivity-%	±0.1	±0.1	±0.1
Eccentric Load Sensitivity-%/in	±0.1	±0.1	±0.1
TEMPERATURE			
Compensated Range-"F	15 to115	15 to 115	15 to 115
Compensated Range-°C	-10 to 45	-10 to 45	-10 to 45
Operating Range-"F	-65 to 200	-65 to 200	-65 to 200
Operating Range–°C	-55 to 90	-55 to 90	-55 to 90
Effect on Zero-%R0/°F - MAX	±0.0004	±0.0004	±0.0004
Effect on Zero-%R0/°C - MAX	±0.0007	±0.0007	±0.0007
Effect on Output-%/°F - MAX	±0.0008	±0.0008	±0.0008
Effect on Output-%/°C - MAX	±0.0015	±0.0015	±0.0015
ELECTRICAL		6	£
Rated Output-mV/V (Nominal)	2.0	4.0	4.0
Excitation Voltage–VDC MAX	20	20	20
Bridge Resistance-Ohm (Nominal)	350	350	350
Zero Balance-% RO	±1.0	±1.0	±1.0
Insulation Resistance–Megohm	5000	5000	5000

Organization	Title/Subject	Number	Date	Page 145
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

SPHERES

MECHANICAL			
Safe Overload-% CAP	±150	±150	±150
Deflection @ RO-inch	0.002	0.004	0.004
Deflection @ RO-mm	0.05	0.10	0.10
Base Part Number (Ref)	B101	B102	B103
Natural Frequency-kHz	4.5, 6.4	4.3, 6.1	4.1, 4.6
Weight-Ib	3.3	7.3	21.5
Weight-kg	1.5	3.3	9.8
Connector	PC04E-10-6P	PC04E-10-6P	PC04E-10-6P
Calibration	Compression	Compression	Compression

incerface

ADVANCED FORCE MEASUREMENT

LOAD CELL CALIBRATION CERTIFICATION

TEST CONDITIONS	200 %KU					
TEMPERATURE:	74 °F HUMIC	DITY: 33%	EXCITATION	10 VDC		
TRACEABILITY FORCE STANDAI STANDARD INDIC TEST INDICATOF	RD: STD-22 ATOR: BRD10 8: BRD30	2 NIST#: 68 6 NIST#: 68 0 NIST#: 68	31/281224-11 56414 56414	DUE: 15-SE	P-2015	
SHUNT CALIBRATIO	N	*		×.		
	Shunt (+/01%)	Outp	Straight I ut Conver	Line sion Conn	ections*	
TENSION COMPRESSION	30.0 KOhm 30.0 KOhm	2.90143 mV -2.90223 mV	NV 3.5206 NV 3.5203	Klbf -Ou Klbf -Out	to +Exc	8.2412
	*For models wired v are actually to these	with +Sense, - Sense or a leads in place of +Exc	-SCal leads, resistor or -Exc or -Out respectiv	ely.		
PERFORMANCE			/			
	Rated Output	SEB Out	out Nonlinea	rity Hyster	esis	SEB
TENSION COMPRESSION	4.12036 mV/V 4.12299 mV/V	4.12065 mV	-0.009 % -0.028 %	FS 0.024 9	6FS ±0.012 6FS ±0.020	2 %FS) %FS
STATIC ERROR B/ straight line through	ND (SEB) The band of m zero OUTPUT. It include	aximum deviations of the strength of the strength of NONLIN	he ascending and desc NEARITY, HYSTERES	ending calibration poi S, and nonreturn to M	nts from a best fit INIMUM LOAD.	

Organization	Title/Subject	Number	Date	Page 146
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

SPHERES

TEST LOAD APPLIED (Klbf)	RECORDED RE Tension	EADINGS (mV/V) Compression
0	.00000	.00000
1	.82382	82385
2	1.64776	-1.64806
3	2.47191	-2.47277
4	3.29616	-3.29772
5	4.12036	-4.12299
2	1.64876	-1.64933
0	.00010	00008

Interface Inc. certifies that all calibration measurements are traceable to NIST. Estimated uncertainty of measurements is 0.040% RDG. Results relate to serial 468166 only. DO NOT REPRODUCE THIS REPORT except in full or with Interface Inc. written approval.

TECHNICIAN :

Benjamin O'Ram

CALIBRATION DATE : 05-JUN-2013

Harbor Freight 6" Digital Caliper

Organization	Title/Subject	Number	Date	Page 147
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

SPHERES

Description

PITTSBURGH

This digital caliper's stainless steel construction allows you to get metric or SAE decimal readings even in harsh conditions. The easy-to-read digital display allows you to measure and convert from SAE to metric quickly and easily. Features include an automatic shut-off and a storage case for easy transport. This digital caliper is ideal for getting exact measurements of width and thickness of your project!

- · Use for inside, outside, depth and step measurements
- Accurately measure within +/- 0.001 in. or 0.03mm
- Measures up to 6 in.
- Jaw depth: 1-9/16 in. (outside jaws) / 11/16 in. (inside jaws)
- · Large high resolution LCD display
- · Smooth stainless steel construction

Organization	Title/Subject	Number	Date	Page 148
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Specifications

Name	6 in. Digital Caliper
SKU	47257
Brand	Pittsburgh
Accuracy	+/- 0.001 in. or 0.03mm
Battery type	Silver oxide
Battery(s) Included (y/n)	Yes
Material	Steel
Quantity	1
Range (in./mm)	0-6 in., 0-150mm
Resolution (in.)	0.0005 in.
SAE or Metric	SAE & Metric
Battery size	SR44
Shipping Weight	0.73 lb.
Size(s) Throat depth (in.)	6 in. 1-9/16 in. (outside jaws) / 11/16 in. (inside jaws)
Accessories Included	batteries and storage case
Warranty	90 Day
Available Only on Web	No

Organization	Title/Subject	Number	Date	Page 149
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

Shadograph

Figure C1: The Shadograph

Figure C2: Calibration information for the shadograph

Capacity	75 lbs
Readability	0.01 lb

7.0 References

[1] "Arathane 5750," Krayden [http://krayden.com/arathane-5750-lv/ Accessed 4/4/2014.]

[2] Bagsik, A., and Schöppner, V., "Mechanical Properties of Fused Deposition Modeling Parts Manufactured with Ultem 9085", Annual Technical Conference, Boston, 2011, pp. 1294-1298.

[3] Davies, I., and Dong, C., "Flexural and Tensile Moduli of Unidirectional Hybrid Epoxy Composites Reinforced by S-2 glass and T700S Carbon Fibres", Materials and Design, Vol. 54, 2014, pp. 893-899.

Organization	Title/Subject	Number	Date	Page 150
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

[4] Espalin, D., Arcaute, K., Anchondo, E., Adame, A., Medina, F., Winker, R. Hoppe, T., and Wicker, R., "Analysis of Bonding Methods for FDM-Manufactured Parts," 21st Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, 2010, pp. 37-47.

[5] Fischer, M., and Schöppner, V., "Some Investigations Regarding the Surface Treatment of Ultem*9085 Parts Manufactured with Fused Deposition Modeling", 24th International SFF Symposium - An Additive Manufacturing Conference, 2013, pp. 805-815.

[6] Hopman, C., and Klein, J., "Determination of Strain Rate Dependent Material Data for FEA Crash Simulation of Polymers using Digital Image Correlation." Computational Materials Science, Vol. 100, 2015, pp. 181–190.

[7] "Loctite 5110 Porosity Sealant," Henkel. [http://www.henkelna.com/product-search-1554.htm?nodeid=8797949788161. Accessed 4/4/2014.]

[8] "Loctite E-20HP Hysol Epoxy Structural Adhesive, Fast Setting," Henkel.
[http://www.henkelna.com/product-search-1554.htm?nodeid=8797912727553 Accessed 4/4/2014.]

[9] "Modulus of Elasticity," Instron. [http://www.instron.us/wa/glossary/Modulus-of-Elasticity.aspx Accessed 5/13/2014.]

[10] Meng, M., Le, H., Rizvi, M., Grove, S., 3D FEA Modelling of Laminated Composites in Bending and Their Failure Mechanisms. Composite Structures. Vol. 119, 2015, pp. 693-708.

[11] Mujika, F., and Carbajal, N., Arrese, A., Mondragon, I., "Determination of Tensile and Compressive Moduli by Flexural Tests." Polymer Testing. Vol. 25, 2006, pp. 766-771.

[12] Opperman, R. [ropperman@aurora.aero]. "3D Printed UDP Enclosure Top Testing." Private e-mail message to Emmet Fox, [emmet.j.fox@nasa.gov]. 29 July 2014.

[13] Powers, E. C., "Outgassing Data for Selecting Spacecraft Materials," NASA, December 2014. [http://outgassing.nasa.gov. Accessed 4/22/14.]

[14] "ProBuild Marine Epoxy Laminating Resin," Axson Technologies.[http://www.adtechplastics.com/p-83-probuild-marine-epoxy-laminating-systems.aspx. Accessed 4/4/2014.]

Organization	Title/Subject	Number	Date	Page 151
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	

[15] Sideridis, E., and Papadopoulos, G. A., "Short-beam and three-point-bending tests for the study of shear and flexural properties in unidirectional-fiber-reinforced epoxy composites", Journal of Applied Polymer Science Vol. 93, 2004. [http://onlinelibrary.wiley.com/doi/10.1002/app.20382/pdf. Accessed 5/23/14.]

[16] "SPHERES: Mission Overview," NASA. [http://www.nasa.gov/spheres/mission.html Accessed 3/22/2014].

[17] "Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials,"ASTM International. [http://www.astm.org/Standards/D790.htm. Accessed 7/20/2014.]

[18] "TC-1614 A/B: High Solids Content Epoxy Penetrating Sealing and Coating Resin System," BJB Enterprises. [http://www.bjbenterprises.com/tc-1614-a-b/ Accessed 4/4/2014.]

[19] "Ultem 9085: 3D Print High-Performance Parts in Tan or Black," Stratasys. [http://www.stratasys.com/materials/fdm/ultem-9085 Accessed 3/20/2014.]

[20] "Ultem Resin," Sabic. [https://www.sabic-

ip.com/gep/Plastics/en/ProductsAndServices/ProductLine/ultem.html Accessed 4/23/14.]

[21] Yagnik, D., "Fused Deposition Modeling – A Rapid Prototyping technique Product Cycle Time Reduction cost effectively in Aerospace Applications," International Conference on Advances in Engineering & Technology, 2014, pp. 69-91.

Organization	Title/Subject	Number	Date	Page 152
SPHERES National Lab	ULTEM 9085 Testing	SPH-04-XS-100	June 17, 2015	