NEPP Electronic Technology Workshop June 23-26, 2015

National Aeronautics and Space Administration

Single-Event Effects in Silicon Carbide Power Devices

Jean-Marie Lauenstein, Megan C. Casey, and Kenneth A. LaBel Code 561, NASA Goddard Space Flight Center

> Stanley Ikpe NASA Langley Research Center

Alyson D. Topper, Edward P. Wilcox, Hak Kim, and Anthony M. Phan ASRC Space & Defense

List of Acronyms

- **BJT** Bipolar Junction Transistor
- BVdss Drain-to-Source Breakdown Voltage
- **ESA** European Space Agency
- **ETW** Electronic Technology Workshop
- FY Fiscal Year
- **GE** General Electric
- GRC Glenn Research Center
- **GSFC** Goddard Space Flight Center
- I_D Drain current
- I_G Gate current
- JAXA Japan Aerospace Exploration Agency
- JEDEC (not an acronym)
- JESD JEDEC Standard
- JFET Junction Field Effect Transistor
- JPL Jet Propulsion Laboratory
- JSC Johnson Space Center
- LaRC Langley Research Center
- LBNL Lawrence Berkeley National

Laboratory 88-Inch cyclotron

- LET Linear Energy Transfer
- **MOSFET** Metal Oxide Semiconductor Field Effect Transistor
- NEPP NASA Electronic Parts and Packaging program
- RHA Radiation Hardness Assurance
- **SEB** Single-Event Burnout
- SEE Single-Event Effect
- SEGR Single-Event Gate Rupture
- SEP Solar Electric Propulsion
- TAMU Texas A&M University
- **TID** Total Ionizing Dose
- **VDMOS** vertical, planar gate doublediffused power MOSFET
- V_{DS} Drain-source voltage
- V_{GS} Gate-source voltage
- V_R Reverse-bias Voltage

NEPP Program Goals & Collaborations

- Assess SiC power devices for space applications
 - Develop relationships with SiC device manufacturers
 - Investigate SEE susceptibility of currently available products
 - Understand SEE mechanisms to enable radiation hardening
- Work presented here has been sponsored in part by:
 - NASA Electronics, Parts, and Packaging Program (primary sponsor)
 - NASA Solar Electric Propulsion Program
 - NASA High-Temperature Boost Power Processing Unit Project
- SiC integrated circuits are also under study
 - This work is not presented here

Why SiC?

High Breakdown Voltage (~ 10x vs. Si)

Low On-State Resistance (~ 1/100 vs. Si)

High Temperature Operation (200 °C)

High Thermal Conductivity (~ 10x vs. Si) Mass Savings Power Savings Cost Savings

NASA Interests in SiC

Program/Project	Primary Benefit	
Orion Spacecraft	Power	
Advanced Space Power Systems	Mass	
High-Temperature Boost Power Processing Unit	Extreme Environments	
Venus Mobile Explorer (concept mission)	Extreme Environments	

Images: NASA

A Closer Look at Mass Savings

 Solar Electric Propulsion mass savings by using 300 V solar arrays instead of 120 V arrays:

2457 kg

- With derating, require 400 V power MOSFETs
 - Silicon radiation-hardened MOSFETs have power penalty
- Higher voltages will result in additional mass savings
 - SiC is a potentially enabling technology

Mass savings from: Mercer, AIAA 2011-7252

Fig: Rei-artur, Creative Commons

FY15 Partnerships

 As the awareness of SiC power device vulnerability to heavy-ion induced single-event effects has grown, so too has the momentum to find a solution:

Status of SiC Power Devices for Space Applications

 Testing by NASA has been performed on a wide range of SiC power devices rated 650 V to 3300 V

Part Type	Number of Parts/Manufacturers	
Power MOSFET	7/4	
Diode	4/4	
JFET	2/1	
BJT	1/1	

 Additional testing has been performed by ESA, JAXA, and other non-government parties

Serendipitously SEE-hard commercial SiC power devices are rare or non-existent

SEE Performance: Power Diodes

 As V_R increases, response to heavy ions goes from no effect to leakage current degradation to sudden catastrophic single-event burnout (SEB)

Modified from: Kuboyama, et al., IEEE TNS, 2006

SEE Performance: Power Diodes (cont'd)

lon	Device	Max V _R No Degradation	Min V _R Sudden SEB	
	D1 _{650V}	150 (23%)	300 (46%)	
1289 MeV Ag	D2 _{1200V}	100-150 (8% - 13%)	500 (42%)	
	D3 _{1200V}		500 (42%)	
	D4 _{1200V}	350 (29%)	450-500 (38% - 42%)	
1512 MeV Xe	D1 _{650V}	150 (23%)		
	D2 _{1200V}	150 (13%		
1233 MeV Xe	D4 _{1200V}	350 (29%)	450-475 (38% - 40%)	
278 MeV Ne	D3 _{1200V}	600 (50%)	600 (50%)	

- Percentages are based on RATED breakdown voltage
- D1, D2, D3 = Schottky diodes; D4 = pn diode

Degradation Not Unique to SiC

 Recent work by Megan Casey/GSFC on silicon Schottky diodes reveals susceptibility of many diodes to heavyion induced degradation in addition to SEB

Degradation Not Unique to SiC

- Recent work by Megan Casey/GSFC on silicon Schottky diodes reveals susceptibility of many diodes to heavyion induced degradation in addition to SEB
 - Degradation is small compared to SiC diodes

Si diode biased at 100%, SiC at 30%, of rated values Flux for SiC = 1/10 of flux for Si

SEE Performance: Power MOSFETs

lon	Device	Max VDS No Damage	Degradation Currents During Run	Min V _R Sudden SEB/SEGR
1233 MeV Xe	M1 _{1200V}	40	I _D ≥ I _G	600 < SEB < 700
	M2 _{1200V}	50	Ι _D > Ι _G	SEB > 500
	M3 _{3300V}	50	I _D >> I _G at 350 V _{DS}	650 < SEB < 800
	M4 _{1200V}	Not found	Ι _D > Ι _G	SEB > 500
	M5 _{1200V}	40	_D > _G	400 ≤ SEB < 600
	M6 _{1200V}	50 <v<sub>DS<75</v<sub>	I _D = I _G ; I _D > I _G at 425 V _{DS}	475 < SEB < 500
1289 MeV Ag	M4 _{1200V}	25 <v<sub>DS<50</v<sub>		100 < SEB < 600
	M6 _{1200V}	50 <v<sub>DS<75</v<sub>	$I_D = I_G \text{ at } 225 \text{ V}_{DS}$ $I_D > I_G \text{ at } 400 \text{ V}_{DS}$	500 < SEB < 600
659 MeV Cu	M5 _{1200V}	70	$I_{\rm D} = I_{\rm G}$	400 < SEB < 600

All results shown here conducted at 0 V_{GS} •

SiC Power Devices: Collaborative Studies In Progress

- Ongoing efforts to understand degradation and SEE failure mechanisms include:
 - Failure analysis work performed at NASA GRC on Schottky diodes
 - Modeling studies in progress at Vanderbilt University
 - Continued heavy-ion testing conducted by NASA GSFC & LaRC and ESA
- NASA Science and Technology Mission Directorate Early Stage
 Innovations NASA Research Announcement
- Potential NASA SBIR Phase II-X effort on process and design changes on SEE hardening of power SiC MOSFETs and diodes

Efforts reflect a coordinated commitment to enable SiC technology for space applications

Conclusions and Path Forward

- The NEPP Program has been an early and constant supporter of SiC power device radiation hardness assurance
- SiC devices show high TID tolerance, but low SEE tolerance
- Identification of a safe operating condition is extremely difficult
 - Degradation interferes with adequate sampling of the die with ions – many samples would be required
 - Degradation may impact part reliability
- Most space applications will require SiC power devices that have been hardened to SEE
- Interest in hardening SiC power devices is growing:
 - Manufacturers will require partnerships to help fund development efforts