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List of Acronyms
BJT – Bipolar Junction Transistor
BVdss – Drain-to-Source Breakdown 

Voltage
ESA – European Space Agency
ETW – Electronic Technology Workshop
FY – Fiscal Year
GE – General Electric
GRC – Glenn Research Center
GSFC – Goddard Space Flight Center
ID – Drain current
IG – Gate current
JAXA – Japan Aerospace Exploration 

Agency 
JEDEC – (not an acronym)
JESD – JEDEC Standard
JFET – Junction Field Effect Transistor
JPL – Jet Propulsion Laboratory
JSC – Johnson Space Center
LaRC – Langley Research Center
LBNL – Lawrence Berkeley National 

Laboratory 88-Inch cyclotron
LET – Linear Energy Transfer
MOSFET – Metal Oxide Semiconductor 

Field Effect Transistor
NEPP – NASA Electronic Parts and 

Packaging program
RHA – Radiation Hardness Assurance
SEB – Single-Event Burnout
SEE – Single-Event Effect
SEGR – Single-Event Gate Rupture
SEP – Solar Electric Propulsion
TAMU – Texas A&M University 
TID – Total Ionizing Dose
VDMOS – vertical, planar gate double-

diffused power MOSFET
VDS – Drain-source voltage
VGS – Gate-source voltage
VR – Reverse-bias Voltage
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NEPP Program Goals & Collaborations

• Assess SiC power devices for space applications
– Develop relationships with SiC device manufacturers
– Investigate SEE susceptibility of currently available products
– Understand SEE mechanisms to enable radiation hardening

• Work presented here has been sponsored in part by:
– NASA Electronics, Parts, and Packaging Program (primary 

sponsor)
– NASA Solar Electric Propulsion Program 
– NASA High-Temperature Boost Power Processing Unit Project

• SiC integrated circuits are also under study 
– This work is not presented here
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Why SiC?
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High Breakdown Voltage
(~ 10x vs. Si)

Low On-State Resistance
(~ 1/100 vs. Si)

High Temperature Operation
(200 ⁰C)

High Thermal Conductivity
(~ 10x vs. Si)

Mass Savings
Power Savings
Cost Savings
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NASA Interests in SiC
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Images:  NASA

Program/Project Primary Benefit
Orion Spacecraft Power

Advanced Space Power Systems Mass
High-Temperature Boost Power 

Processing Unit
Extreme Environments

Venus Mobile Explorer (concept 
mission)

Extreme Environments
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A Closer Look at Mass Savings

• Solar Electric Propulsion mass savings by using 300 V 
solar arrays instead of 120 V arrays:

• With derating, require 400 V power MOSFETs
– Silicon radiation-hardened MOSFETs have power penalty

• Higher voltages will result in additional mass savings
– SiC is a potentially enabling technology
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2457 kg

Fig: Rei-artur, 
Creative Commons

Mass savings from: 
Mercer, AIAA 2011-7252
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FY15 Partnerships

• As the awareness of SiC power device vulnerability to 
heavy-ion induced single-event effects has grown, so 
too has the momentum to find a solution:
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Status of SiC Power Devices 
for Space Applications

• Testing by NASA has been performed on a wide range 
of SiC power devices rated 650 V to 3300 V

• Additional testing has been performed by ESA, JAXA, 
and other non-government parties
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Part Type Number of 
Parts/Manufacturers

Power MOSFET 7/4
Diode 4/4
JFET 2/1
BJT 1/1

Serendipitously SEE-hard commercial SiC
power devices are rare or non-existent 
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SEE Performance:  Power Diodes

• As VR increases, response to heavy ions goes from no 
effect to leakage current degradation to sudden 
catastrophic single-event burnout (SEB)
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Modified from: Kuboyama, et al., IEEE TNS, 2006

SEB

Degradation

No permanent
effects
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SEE Performance:  Power Diodes 
(cont’d)
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• Percentages are based on RATED breakdown voltage
• D1, D2, D3 = Schottky diodes; D4 = pn diode

Ion Device Max VR
No Degradation

Min VR
Sudden SEB

1289 MeV 
Ag

D1650V 150 (23%) 300 (46%)
D21200V 100-150 (8% - 13%) 500 (42%)
D31200V -- 500 (42%)

D41200V 350 (29%) 450-500 (38% - 42%)

1512 MeV 
Xe

D1650V 150 (23%) --
D21200V 150 (13% --

1233 MeV 
Xe D41200V 350 (29%) 450-475 (38% - 40%)

278 MeV 
Ne D31200V 600 (50%) 600 (50%)
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Degradation Not Unique to SiC

• Recent work by Megan Casey/GSFC on silicon Schottky
diodes reveals susceptibility of many diodes to heavy-
ion induced degradation in addition to SEB
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Si diode biased at 100% of rated value
Ion beam: 1233 MeV xenon
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Degradation Not Unique to SiC

• Recent work by Megan Casey/GSFC on silicon Schottky
diodes reveals susceptibility of many diodes to heavy-
ion induced degradation in addition to SEB
– Degradation is small compared to SiC diodes
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Si diode biased at 100%,  SiC at 30%, of rated values
Flux for SiC = 1/10 of flux for Si

Si diode:
Max IR = 1 mA
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SEE Performance:  Power MOSFETs

• All results shown here conducted at 0 VGS
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Ion Device Max VDS
No Damage

Degradation 
Currents During 

Run

Min VR
Sudden

SEB/SEGR

1233 MeV 
Xe

M11200V 40 ID ≥ IG 600 < SEB < 700
M21200V 50 ID > IG SEB > 500
M33300V 50 ID >> IG at 350 VDS 650 < SEB < 800
M41200V Not found ID > IG SEB > 500
M51200V 40 ID > IG 400 ≤ SEB < 600
M61200V 50<VDS<75 ID = IG; 

ID > IG at 425 VDS

475 < SEB < 500

1289 MeV 
Ag

M41200V 25<VDS<50 -- 100 < SEB < 600
M61200V 50<VDS<75 ID = IG at 225 VDS

ID > IG at 400 VDS

500 < SEB < 600

659 MeV 
Cu

M51200V 70 ID = IG 400 < SEB < 600
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SiC Power Devices: 
Collaborative Studies In Progress

• Ongoing efforts to understand degradation and SEE failure 
mechanisms include:
– Failure analysis work performed at NASA GRC on Schottky diodes
– Modeling studies in progress at Vanderbilt University
– Continued heavy-ion testing conducted by NASA GSFC & LaRC and 

ESA
• NASA Science and Technology Mission Directorate Early Stage 

Innovations NASA Research Announcement 
• Potential NASA SBIR Phase II-X effort on process and design 

changes on SEE hardening of power SiC MOSFETs and diodes
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Efforts reflect a coordinated commitment to 
enable SiC technology for space applications
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Conclusions and Path Forward
• The NEPP Program has been an early and constant supporter of 

SiC power device radiation hardness assurance 
• SiC devices show high TID tolerance, but low SEE tolerance
• Identification of a safe operating condition is extremely difficult 

‒ Degradation interferes with adequate sampling of the die with 
ions – many samples would be required

‒ Degradation may impact part reliability

• Most space applications will require SiC power devices that 
have been hardened to SEE

• Interest in hardening SiC power devices is growing:
– Manufacturers will require partnerships to help fund development 

efforts
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