

Some General Principles in Cryogenic Design, Implementation, and Testing

Michael DiPirro (with material from Rob Boyle) NASA/Goddard Space Flight Center

GSFC· 2015

Outline

- **Opening remarks**
- The role of thermodynamics
- General design principles
- Properties of materials
- Producing "cold"
- Cryo-cooling in space
- **Instrumentation**
- Heat switches
- Superconductivity
- Sub-Kelvin cooling

- For the purposes of this talk, $T < 100$ K is cryogenic
	- Air liquefies
	- Certain metals and ceramics become suprconducting
	- Is out of the realm of our normal experience (arctic conditions are not cryogenic)
	- Heat capacities decrease from the Dulong & Petit (3/2 R) value
	- In general the physics becomes different from room temperature

The Logarithmic Temperature Scale

- Note use of absolute scale
- Each decade corresponds to different physics and different solutions to design problems – [example]
- Note that properties are not "constant" any more, so concepts like "average" temperature must take this into account

– [example]

Thermomdynamics is a Serious Subject!

Robert Boyle 1627-1691

Benjamin Thompson Count Rumford 1753-1814

Nicolas Léonard Sadi Carnot 1796-1832

J. Willard Gibbs 1839-1903

Heike Kamerlingh Onnes 1853-1926

Max Planck 1858-1947

James P. Joule 1818-1889

Rudolf Claussus 1822-1888

Gustav Robert Kirchhoff 1824-1887

William Thomson Lord Kelvin 1824-1907

Clerk Maxwell 1831-1879

Walther New nst 1864-1941

Peter Debye 1884-1966

Constantin Caratheodory 1873-1950

F.E. Simon 1893-1956

Albert Einstein 1879-1955

TFAWS 2015 – August 3-7, 2015

The Laws of Thermodynamics

- First Law of Thermodynamics (Conservation of Energy)
	- $-$ Energy in $=$ Work out
	- you can't get something for nothing
- Second Law of Thermodynamics (Entropy)
	- ∂Entropy ≥ (∂Energy/Temperature)
	- you can't break even
- Third Law of Thermodynamics (Absolute Zero)
	- Entropy -> 0 as Absolute Temperature -> 0
	- there's no use trying

Thermodynamics

- Thermodynamics is key to understanding cryogenic processes
- Refrigeration
	- 1st and 2nd laws of thermodynamics
- Approach to Absolute Zero
	- 3rd law of thermodynamics

Staging

- Intercepting heat in stages to reject heat at the highest possible temperature
- In general heat rejection goes as T²

Design: The "KISS" Principle

- Start with a design that can be calculated using "back of the envelope" methods
	- Make all components easy to analyze
	- The fewer items that are crucial in a design the better
		- Simpler analysis
		- Simpler construction
		- Simpler validation

Example

GSE motor driven photogrammetry cameras for JWST

- Original concept: camera housing to cool passively through incidental contact in motor and gears
	- Very difficult to model and verify performance
	- Lead to an extra potential heat source that had to be tracked
- Solution: make system "deterministic" by using thermal straps

• [Ron Ross Correlation]

Producing Cold: Cryogens and Cryocoolers

- Cryocoolers
- LN2, LHe, etc.

- Thermal Conductivity
- Thermal Absorptivity and Emissivity
- Strength and Brittleness Properties
- Electrical Conductivity
- Specific Heat
- Gases and Liquids

Conductivity Graph

• Thermal conductivity varies greatly between room T and low T

TFAWS 2015 – August 3-7, 2015

High Purity Metals

• At low temperature electrons have fewer phonons to scatter from, so the thermal conductivity goes up until defects and impurities dominate

- Electrons carry the heat in metals
- W-F is a relation between electrical and thermal conductivity

 $Rho = L_0T/K$

Where rho = resistivity, $T =$ absolute temperature, $K =$ thermal conductivity, and L_0 = Lorentz constant = 2.44 x 10⁻⁸ V²/K²

• Not applicable to superconductors

Emissivity and Absorptivity: Temp. and Wavelength Dependence

- The emissivity of most materials is temperature and wavelength dependent
	- Requires wavelength dependent analysis for radiation which is usually accomplished by creating a few wavelength bands in the analysis software

- The Lockheed Equation
- Degradation of MLI at lower T
	- Basically dominated by thru-layer conduction at low T
- Structural MLI
- Lateral conduction

DAK Emissivity vs. T

• Metals follow the Hagen-Ruebens relation to first order:

Suitable Materials for Cryo

- Austenitic stainless steels: 304, 304L, 316, 321, A286
- Aluminum alloys: 6061, 6063, 5083, 2219, 1100
- Copper: OFHC, ETP and phosphorous deoxidized
- Brass
- Fiber reinforced plastics: G –10 and G –11, CFRP
- Niobium & Titanium (frequently used in superconducting RF systems)
- Invar (Ni /Fe alloy)
- Indium (used as an O ring material)
- Kapton and Mylar (used in Multilayer Insulation and as electrical insulation
- Teflon (does not become brittle, but creeps)
- Quartz (used in windows) TFAWS 2015 – August 3-7, 2015 20

Unsuitable Materials for Cryo

- Martensitic stainless steels Undergoes ductile to brittle transition when cooled down.
- Cast Iron also becomes brittle
- Carbon steels also becomes brittle. Sometimes used in 300 K vacuum vessels but care must be taken that breaks in cryogenic lines do not cause the vacuum vessels to cool down and fail
- Rubber and most plastics
	- Plastic insulated wires are frequently OK as long as the wire is not repeatedly flexed which could lead to cracking of the insulation (check outgassing first)

- Molecular Heat Transfer
- Conduction
- Transition Region
- JWST example
- ASTRO-H example

Gifford McMahon Cycle

- Gifford -McMahon Refrigeration **Cycle**
	- Regenerator stores heat in compression phase, and releases heat in expansion phase
	- Compress while most of the gas is at warm end, and expand while most of the gas is at the cold end
	- Reverse the phase, and you have an expensive heater!
- Gifford -McMahon Refrigeration **Cycle**
	- Regenerator stores heat in compression phase, and releases heat in expansion phase
	- Compress while most of the gas is at warm end, and expand while most of the gas is at the cold end
	- Reverse the phase, and you have an expensive heater!

Producing Low Temperatures in Space

- Radiation can only work so far practically
- [graph from earlier presentation]

Radiators in Space

- Some flight heritage at cryogenic temperatures (COBE, Landsat, Cassini/CIRS, MAP, Spitzer)
	- JWST will use radiative cooling
	- Successful test of Subscale Cryo-optical Thermal Testbed in support of ST-9 Large Space Telescope proposal
- Operate from room temperature (and above) to as low as 30 K
	- Depends strongly on mission design
- Passive heat rejection
	- Sunshade/earthshade provides shielding from incoming radiation
	- Radiator with a view of deep space connects to heat source (instrument, optics, part of spacecraft bus) by means of a thermal distribution system
		- Metal conductors
		- Loop heat pipes
	- Requires heaters/thermostats to regulate temperature
- Require stringent controls to meeting thermal budgets

Cryocoolers for Space Use

- Stirling Cycle
- Pulse Tubes
- Reverse Brayton Cycle
- Joule/Thomson Coolers

Space Cryocooler Performance

• Roughly T⁻² dependence on input power to cooling power ratio

Stirling Cycle

• Similar to GM cycle

- Identical function of regenerator in coldfinger
- Pressure cycle driven by oscillator rather than tanks, valves and a compressor
- Phase angle controlled electrically, mechanically, or pneumatically
- Easier to miniaturize than GM

- Similar to Stirling cycle
	- Identical function of regenerator in coldfinger, pressure cycle driven by oscillator
	- Phase angle controlled by resonant gas volume
	- Simpler mechanism than Stirling, but a whole new set of gascontrol challenges

Turbo alternator removes work from cold stage therefore increasing cooling

Joule Thomson Expansion

Gas must be precooled and not too high in pressure to produce cooling when expanded isenthalpically

• Content

Different Geometry - JWST Harness Radiator

• In general:

- Low heat of vaporization
- Can be pumped or pressurized to change boiling point
- Can freeze if too cold
- Low to zero contact angle, i.e., wets all surfaces
- Represents a large potential energy in a sealed container

Instrumentation and What is Important to Measure

- Thermometry, thermometry, thermometry
- Pressure for fluids
- Pressure for vacuum
	- Pressure reading depends on temperature

Thermometry

- Select thermometer type based on temperature range
	- Use 4 lead devices where high sensitivity and accuracy are required
		- Remove thermal emfs by reversing current
- Self heating can produce erroneous readings in thermistors
	- Function of power and temperature
		- Readout power applied = 10^{-9} T²

Thermometry Chart

CX-1010 CX-1030

 $10⁴$

 $10²$

Resistance (2) $10³$ CX-107

 $CX-10$

CX-1080

100

1000

- Cernox best < 70K
- Pt best for $>$ 70 K
- Si diodes good over wide range

500

Heat Switches-Gas Gap

- Differential contraction
- Motor driven
- Manual
- Magnetostrictive
- Piezoelectric

- Superconducting
- Magnetoresistive

- Quantum mechanical effect where electrons in certain conductors combine to form "Cooper pairs"
	- Transition point affected by temperature, current density, and magnetic field
- Characterized by zero electrical resistance and drop in thermal conductivity
	- Cooper pairs carry current and pass through the material without interacting
- Types of superconductors
	- Type I Generally pure metals, T_c < 10 K
		- Also can be used as a magnetic shield
	- Type II Alloys, some pure metals, $T_c < 20$ K
	- MgB2 Magnesium Diboride, T_c ~39 K
	- High Temperature Superconductors (HTS) Ceramics, $T_c < 110$ K

High Temperature Superconductivity

- Usually a ceramic consisting of RBCO, where R is a rare earth element, for instance YBCO, yttrium barium copper oxide
- Can make large/high field coils
- Joints have small amount of resistance so coil is not "persistent"
- Best performance is for bulk or flat tapes made with a thin film deposition
	- Round wire forms are now being explored

Making Use of Superconductivity

- i^2R-free coils for motors and actuators
- Low thermal conductance high current wiring

- Quantum behavior
- \bullet ³He and ⁴He
- Boundary Resistance

- ³He sorption coolers
- Dilution refrigerators
- Adiabatic demagnetization

³He Sorption

- Sorption Coolers use a getter to pump the vapor from a liquid reservoir
	- Geeter is recycled by heating and the gas is recondensed by a higher temperature stage

Dilution Refrigeration

- Diluting the lighter isotope ³He, in liquid ⁴He increases the entropy of the system and therefore cools
- Makes use of the non-zero solubility of ³He in ⁴He even at very low temperatures
- Can be made continuous by separating the ³He out of solution at higher temperature and then re-condensing it

Adiabatic Demagnetization

- $\overline{S}dT = M dH$ takes the place of $d(ST) = d(PV)$ in a cryocooler cycle
- Adiabatic demagnetization refrigeration follows a very Carnot-like cycle of constant S and constant T
	- Produces efficiencies close to Carnot
	- No moving parts for low temperature ADRs using gas-gap heat switches

Continuous ADR

Summary

- [quote about using problems to achieve even lower T]
- [quote of Anthony Leggett at LT-15 in Grenoble]