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A High Temperature Fiber Optic Sensor (HTFOS) has been developed at NASA Glenn 

Research Center for aircraft engine applications. After fabrication and preliminary in-house 

performance evaluation, the HTFOS was tested in an engine environment at NASA 

Armstrong Flight Research Center.  The engine tests enabled the performance of the 

HTFOS in real engine environments to be evaluated along with the ability of the sensor to 

respond to changes in the engine’s operating condition.  Data were collected prior, during, 

and after each test in order to observe the change in temperature from ambient to each of 

the various test point levels.  An adequate amount of data was collected and analyzed to 

satisfy the research team that HTFOS operates properly while the engine was running.  

Temperature measurements made by HTFOS while the engine was running agreed with 

those anticipated.   

Nomenclature 

d1 = Outer diameter of a smaller diameter ceramic tube 

d2 =  Outer diameter of a larger diameter ceramic tube 

dn =   infinitesimal change in the refractive index 

dT = infinitesimal change in temperature 
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N = number of grating line spacings in a grating 

n = refractive index 

Pi,j  =  Pockel’s coefficient of the stress-optic tensor 

α =  coefficient of thermal expansion of the fiber material 

Δn = longitudinal periodic variation of the refractive index of the optical fiber core in a grating 

ΔT =  temperature change 

Δλ = full-width-half-maximum bandwidth of a grating 

    = shift in the Bragg wavelength due to temperature and pressure 

ε =   applied strain 

G = grating period 

λG = Bragg wavelength 

ν =   Poisson’s ratio 

    

 

I. Introduction 

lobal commercial aviation traffic is projected to exhibit continued future growth. While commercial aviation 

travel is extremely safe, if accident rates are not reduced there will be an increase in the overall number of 

aviation accidents due to the increased volume of air traffic. Therefore, reduction in the aviation accident rate is a 

high priority within the aviation community. 

 The Vehicle Systems Safety Technologies Project (VSST) of the NASA Aviation Safety Program provides 

knowledge, concepts and methods to avoid, detect, mitigate and recover from hazardous flight conditions, and to 

maintain vehicle airworthiness and health. To achieve these goals significant attention is given to the development 

of new sensor technologies and assessment of such hardware’s performance and reliability.  Development and 

performance evaluation of reliable sensor systems capable of operating in harsh engine environments represents one 

of the focused efforts of the VSST Project.  The Vehicle Integrated Propulsion Research (VIPR) series of engine 

tests, incubated in the VSST, is a means to test and evaluate emerging health management technologies in an aircraft 

engine environment. The VIPR testing includes both nominal and seeded fault engine operating scenarios, and 

enables evaluation of engine health management sensors and diagnostic algorithms. On-engine evaluation is a 

critical step in order for Integrated Vehicle Health Management (IVHM) technologies to mature from laboratory 

work and simulations to demonstrations needed for industry and military acceptance.  

 Among the sensors included in the VIPR engine tests is a fiber optic temperature sensor developed at NASA 

Glenn Research Center (GRC). The sensor itself is a fiber Bragg grating (FBG) formed by variations in the 

refractive index of the fiber core.  Fiber optic sensors are immune to electromagnetic interference, chemically stable, 

and have small size and weight. Changes in any of the parameters of light propagating in optical fibers, light 

intensity, polarization, and wavelength, can be used in sensing systems for measurement purposes.  However, since 

FBG-based sensors use variations in the wavelength of light that propagates through them as means to conduct the 

sensing, the resultant signals are immune to incidental light variations in the optical fiber. That feature makes the 

temperature measurements acquired by FBGs potentially much more stable and reliable than those acquired by 

conventional measurement techniques. 

 This paper, in addition to explaining the basic principles of fiber Bragg gratings, describes briefly various types 

of FBGs and focuses on the GRC-developed process to manufacture high temperature FBG-based sensors.  The 

paper also describes the considerations that played a role in the design, construction, and installation of the sensor.  

The paper culminates with a description of the VIPR tests and analysis of the results.  

 Testing of fiber optic temperature sensors as a part the VIPR effort permits, for the first time, the placing of 

FBG-based sensors in engine environments.  Successful test results elevates the technology development levels and 

help to understand any technology gaps that may limit the insertion of this new sensing technology into an aircraft 

engine. 

 

II. Theory and Operation of Fiber Bragg Gratings 

Fiber Bragg gratings are passive fiber optic components commonly used in the communication industry for 

spectral filtering and re-routing of optical signals. FBGs are small in dimension, relatively low cost and exhibit good 

immunity to external electromagnetic interference and harsh ambient conditions.  They have replaced bulk optic 

mirrors and beam splitters in equipment, which increases system stability and portability. In-depth theoretical 
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analyses of the electromagnetic wave propagation through periodic structures in general 
1-3

 and FBGs in particular
4-6 

can be found elsewhere.   

 A typical FBG consists of a longitudinal periodic variation of the index of refraction in the core of an optical 

fiber.  The principle of operation of an FBG is illustrated in Fig. 1.   

    

 
 

Figure 1. Schematics of operation of fiber Bragg grating sensor system. 

 

As a broad spectrum of light propagates through a fiber with an FBG a small portion of that spectrum is reflected 

back by the grating.  The central wavelength of that portion of the spectrum is the Bragg wavelength, λB, and is 

determined by both the grating line spacing G and the effective refractive index n: 

 

                                                                (1) 

 

The strength of the light at the Bragg wavelength that reflects from the grating depends on the number, N, of 

individual gratings with the line spacing G, effective refractive index, n, and amplitude of the periodic variations of 

the core refractive index, Δn.  An approximate expression for the full-width-half-maximum bandwidth if a grating is 

shown below
7
: 
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Parameter S in Eq. (1) assumes values from 0.5 to 1.0 and depends mainly on the type of apodization used to 

minimize the power loss in the side lobes of the FBG spectrum 
8
.  Value 1.0 is used for the strongest gratings. 

Any changes in the environment in which the grating is placed into lead to changes either in the grating line 

spacing, G, or effective refractive index, n, or both, and consequently in the Bragg wavelength, λB. 

Thus, for instance, the effect of strain and temperature on the shift in the Bragg wavelength can be expressed using 

the following equation
9
: 
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Since Δλ is also a function of refractive indexes, their change with temperature would also lead to changes in the 

bandwidth of the FBG spectrum. 

III. Design, Manufacturing, and Calibration of HTFOS 

Fiber Bragg gratings are formed in silica fibers with photorefractive dopants during the exposure of the fibers to 

ultraviolet light 
10

.  Usually the dopant is germanium oxide. However other materials doped into silica have been 

reported to have similar responses to such exposures.  
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A. High Temperature Fiber Bragg Gratings 

Various types of FBGs have been developed over the last decade with various performance characteristics at 

elevated and high temperatures. The gratings have also been grouped into two major categories based on the way 

they are manufactured 
11, 12

.  One category identified as Type I gratings includes gratings manufactured by exposure 

of fiber doped with photorefractive material to moderate levels of either continuous or pulsed illumination of 

ultraviolet radiation.  That category has several sub-categories that depend on the dopant levels, hydrogen loading, 

presence of co-dopants, and nuances of the manufacturing process.  The other category, called Type II gratings, is 

produced by exposing fibers to very short pulses with intensity that exceeds the damage threshold.  A combination 

of processes that involve photorefractive changes in the fiber with high intensity femtosecond laser pulsing has also 

been reported. 

Among various types of fiber Bragg gratings, only two result in FBGs capable of withstanding temperatures on 

the order of 1000 ⁰C.  One type includes regenerated gratings
13

 which are a variation of Type I gratings and the 

other one includes Type II FBGs.   

Over the past decade, NASA Glenn has been involved in the development of high temperature sensors for engine 

applications using regenerative gratings. During that time, NASA Glenn developed a process to manufacture 

regenerative FBGs with high thermal stability by exposing Type I gratings to a slow annealing to temperatures 

above 900⁰C 
14

.  

B. Construction and Laboratory Calibration of Regenerating Gratings 

Construction of a high temperature fiber optic sensor, HTFOS, involves design, packaging, thermal annealing, 

and in-house post-annealing testing and calibration.  The first and second stages of the process are depicted in Fig. 2.  

The optical fiber has a polyimide coating capable of withstanding temperatures up to 300⁰C.  A set of two ceramic 

tubes is used to construct a robust sensor unit with a smaller diameter tube being placed inside a larger one. The 

smaller tube has an outer diameter d1 and inner diameter sufficient to accommodate the polyimide coated fiber.  The 

fiber with an FBG is inserted in the smaller diameter tube in such a way that the grating is located close to one end 

of the tube.  The grating  is Type I grating written into a germane-silicate  fiber after subjecting the fiber to hydrogen 

loading at a couple thousand psi for several  days. A larger tube has outer diameter d2.  Diameters d1 and d2 are 

selected to accommodate the fiber optic (FO) connector.  The length of the smaller diameter tube is l1 and the larger 

diameter tube length is l2.  The smaller diameter tube protrudes beyond the larger tube by a length of (l1-l2). At the 

end of the process the FBG is located inside that protrusion.  The FO connector is a commercial grade FC/APC 

connector placed and secured at the other end of the sensor unit using a commercial grade high temperature optical 

epoxy.   

 

 
 

Figure 2.  First two stages of the HTFOS construction process: a) design and b) packaging. 

 

 

Once the HTFOS sensor was packaged, the annealing is conducted using a tube furnace.  The tip of the packaged 

sensor is inserted through the port in the back of the furnace in such way that just the end of the sensor unit is 

exposed to annealing temperatures up to about 1000⁰C.  The process is monitored to assure formation of a 

regenerated grating.  Figure 3 shows typical changes in the FBG reflectivity through the annealing process.   
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Figure 3. Characteristic FBG reflectivity profile associated with annealing to produce regenerated FBG. 

 

The last step in the manufacturing process is post-annealing testing and calibration.  The post-annealing testing is 

performed at maximum temperatures 150 – 250⁰C below the annealing temperatures to avoid any additional 

annealing of the sensor unit.  Each HTFOS unit underwent exposure to a continuing increase of temperature from 

room temperature to the maximum of 800⁰C. After reaching 800⁰C the unit was also exposed to one thermal cycling 

down to 500⁰C and back up to 800⁰C.  After that the unit was permitted to cool down to room temperature.   The 

thermal profile of post-annealing testing is shown in Fig. 4. The red line in Fig. 4a represents the temperature the 

HTFOS was subjected to as a function of time. The black line in that figure represents the corresponding values of 

the Bragg wavelength, λG. Figure 4b represents the hysteresis observed while the HTFOS unit was thermally cycled 

between 500 and 800⁰C. 

 
Figure 4. Post annealing testing of HTFOS: a) thermal profile;  b) hysteresis observed.  

 

Analysis of curves presented in Fig. 4 show that the calibration appears fairly linear over a range of temperatures 

from 350˚C to 750˚C.  However, in order to extend the calibration curve fit to a temperature range from 150˚C to 
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800˚C, a third order polynomial fit was used.  Both curve fits (linear and third order polynomial) are shown with in 

Fig. 5.  The third order polynomial calibration curve was ultimately used in the analysis of the VIPR2 test data. 

 

 
 

Figure 5. Calibration curves for HTFOS sensor with the linear fit (left) and third order polynomial fit (right).  

 

IV. Field Installation and Testing of HTFOS 

 

 An HTFOS system was developed at the NASA GRC specifically for the inclusion in the second phase of the 

VIPR engine tests, VIPR 2,  that were performed at the NASA Armstrong Flight Research Center, AFRC VIPR is a 

series of ground –based engine tests conducted on an Air Force Boeing C17 aircraft equipped with Pratt & Whitney 

F117 turbofan engines.  During VIPR 2 testing, the HTFOS was not installed on engine, but was instead installed on 

a rig located behind the engine know as Emission Sensing System, ESS, rig.  This enabled the HTFOS to measure 

the hot gas temperatures exiting the engine. 

A. Specific Design Considerations 

The design of the HTFOS intended for the engine tests was done with specific considerations in mind.  First, 

since the sensor unit was to be installed behind the engine with a significant part of the unit exposed to the high 

temperature exhaust plume the length of the entire unit was about 24”.  Such length permitted placing the 

temperature sensitive conventional optical connector away from the tip of the sensor which was designed to see 

engine exhaust operational temperatures.  Furthermore, since the sensor’s optical connector was attached to the 

optical fiber by an epoxy that has a working temperature limit of 200˚C special measures were taken to protect the 

connector by adding heat shielding sleeves. 

Second, because the sensor tip was to be positioned at the height of the engine exhaust the entire HTFOS had to 

be incorporated in the upper mast of the ESS rig.  The ESS rig itself consisted of two vertical masts, upper and 

lower, placed on a movable platform.  The movable platform also housed special translation stages to move both 

masts in the plane normal to the direction of the engine exhaust plume. Figure 6 shows schematically the location of 

the HTFOS (left) on the ESS rig behind the engine.  Also shown is a schematic of the ESS rig.   
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Figure 6. Schematics showing the location of HTFOS (left) on the ESS rig behind the engine. 

 

 The top of the upper mast had a bullet shaped head designed to accommodate pipes and hoses for gas emission 

sensing.  The HTFOS unit was fastened to a specially designed holding plate that fit inside the upper mast in a way 

that only the 0.5” long tip of the sensor unit was protruded above the head. That tip of the sensor unit was exposed 

directly to the hot gases exhausted from the engine during the tests. 

 Figure7 shows pictures of the HTFOS unit installed inside the upper mast, Fig. 7a, and the sensing tip of the unit 

protruding above the bullet-shaped head of the upper mast after its installation, Fig. 7b. 

 

 
 

Figure 7. Pictures of HTFOS unit: 

a) unit installed inside the upper mast; 

b) tip of the unit protruding above the bullet-shaped head of the upper mast. 
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The fiber at the bottom of Fig. 7a is shown protected by a heat protecting sleeve.  The sensing tip of the HTFOS is 

seen in Fig. 7b as a thin white stick prodruding for about 0.5” above a massive bullet-shaped metal structure.  

B. Signal processing 

 The HTFOS signal processing system was placed in a remotely located trailer and the data transmission and 

collection from the HTFOS to the signal processing system was done via a fiber optic cable.   The signal processing 

system included a superluminescent emitting diode, SLED, optical distribution board, optical spectrum analyzer, 

OSA, and computer with the LabView software.  The signal processing system and its connection with the HTFOS 

are shown in Fig. 8. 

 

 
 

Figure 8. Schematics of the signal processing system and its connection to the HTFOS. 

 

The SLED was a light source with a broad spectrum centered at about 1300 nm. The light from the SLED was 

sent through the optical distribution board and optical fibers toward the HTFOS secured in the upper mast of the 

ESS.  The optical distribution board was an assembly of single mode fiber optic components designed to send most 

of the optical power emitted by the SLED to the HTFOS and redirect most of the returned optical signal to the OSA.  

The OSA which normally displayed the spectrum of a detected signal was controlled by computer with the LabView 

software. The LabView software processed and recorded the signals detected by the OSA. 

C. Engine Tests 

The HTFOS acquired data over 3 days of VIPR 2 engine tests. During the tests, the ESS rig was positioned 

behind the engine as approximately depicted in Fig. 9.  The HTFOS was installed inside the ESS rig and protruding 

about 0.5” above the bullet-shaped top of the mast.  During VIPR 2 testing the engine was operated over a range of 

power settings which resulted in temperature changes of exhaust gases.  The temperature of the exhaust gases is 

measured by exhaust gas temperature, EGT, sensors installed in the engine.  The HTFOS was also recording the 

temperature readings of the exhaust gases through the values of the Bragg wavelength reflected by the FBG.  After 

completion of the tests the data from the HTFOS were processed and compared with the corresponding EGT data. 
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Figure 9.  Approximate position of the ESS rig behind the engine during the tests. 

 

The first engine run during VIPR 2 tests was a preservation oil burn-off run. That process occurs when the 

engine is run for the first time post-overhaul.  This produces a copious amount of oil vapor during the oil burn-off.  

Since the HTFOS system had its own power source that was not dependent upon the aircraft’s power systems, the 

HTFOS sensor was powered on for about a half hour before the engine test began. The changes in temperature read 

by the sensor were detected as changes in the wavelength. During the post-test data processing the wavelength 

readings were converted to temperature and compared with temperature readings from the EGT sensors. Figure 10 

shows the results.   Figure 10a on the left shows readings from the HTFOS during a period of time that included the 

time the engine was running during the preservation oil burn-off.  The engine run time is indicated on the figure by 

shaded section.  To the right, in Fig. 10b, the corresponding readings from the EGT sensors are presented.  

 

 
 

Figure 10. Measurements acquired during the preservation oil burn-off run: 

a) wavelength readings from the HTFOS, 

b) temperature readings from the EGT sensors. 

 

The comparison of results from the HTFOS and EGT shows that the HTFOS data exhibit a significantly slower 

response to a rapidly changing temperature.  That is attributed to a presence of the massive bullet-shaped top of the 

ESS rig upper mast which acted as a thermal buffer preventing the HTFOS from responding fast to changes in 

engine exhaust gas temperature.   The HTFOS also provided temperature data for the entire duration of the test 

including the time prior to engine start and after engine shutdown.  Furthermore, the HTFOS sensor operation was 

found to be uninhibited by the oil burn-off process. 
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The second and third days of VIPR 2 testing entailed operating the test engine under both nominal and faulty 

operating scenarios. The evaluated fault scenarios include seeded faults manually introduced into the engine’s 

station 2.5 bleed valve and 14
th

 stage bleed valve. During the tests, engine measurement data were acquired while 

the engine was operated over a range of power settings. The EGT and HTFOS measurement data acquired on the 

second and third days of VIPR 2 testing are shown in Figs. 11a and 11b, respectively. 

 

 
 

 
Figure 11. Temperature obtained from the EGT (upper plots) and the HTFOS (lower plots)  

during the 2
nd

  (plot a) and 3
rd

 (plot b) days of VIPR 2 testing.  
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The upper plots in both figures represent the EGT temperature readings and the lower plots show the 

corresponding wavelength readings from the HTFOS.  Also, red arrows on the lower plots indicate an introduction 

of a bleed fault and the green arrows indicate its removal.  The time intervals between the introduction and removal 

of the faults are approximately indicated by shaded areas.   

The results obtained during the 2
nd

 and 3
rd

 days of testing have shown a good similarity between the two plots 

corresponding to the temperature readings from the EGT and the wavelength readings from the HTFOS.  The 

HTFOS has also shown a similar responsivity to the introduction and removal of faults as the EGT sensors do. It has 

responded properly to fault insertions and removals in both the station 2.5 bleed valve and the 14th stage bleed 

valve. During the normal operating scenarios the HTFOS responses to changing engine operating temperatures are 

also similar to those acquired by the EGT sensors.   

Somewhat slower responses of the HTFOS to rapid changes in the engine operating conditions are also observed, 

especially in the “stair-step” sections of the plot.   As was mentioned earlier in the paper, this slower dynamic 

response could be attributed to the thermal mass of the massive bullet-shaped top of the upper mast.  Furthermore, 

HTFOS wavelength plots exhibit some hysteresis (i.e., measured values are different stepping up in power vs. 

stepping down in power for same fan speed settings). That may be caused by the thermal mass of the sensor unit 

itself. 

V. Conclusion 

The VIPR 2 testing of the high temperature fiber optic sensor (HTFOS) in real engine exhaust environments was 

highly successful. These tests demonstrated that the HTFOS was capable of surviving the engine exhaust plume 

environment and tracked the exhaust temperature very well. The HTFOS, through the wavelength of light reflected 

by the grating, was able to detect changes in the exhaust gas temperature.  Furthermore, during the post-test 

processing the changes in the wavelength were correlated to the corresponding changes in engine operating 

condition. The results of the tests also showed that the HTFOS temperature data compared well with the data from 

EGT sensors.  

The tests have enabled a step forward in the development of HTFOS technology.  Also, they have helped to 

identify technology gaps and future technology development needs.  One of them is the need to miniaturize the 

sensor holding structure.  However any efforts to make the ceramic rods that house the fiber shorter will bring the 

optical connector and the rest of the system closer to the hot area where the sensing tip is located.  During the VIPR 

2 tests this issue was avoided by making the length of the fiber holding ceramic rod sufficiently long. The length of 

rods used during the tests was about 20 inches. That design removed the connector at the end of the rod and the fiber 

attached to it from the hot zone and put it in a relatively benign thermal environment.  The future development of the 

HTFOS should include miniaturization and proper design of the sensor structure to assure a thermal stability of all 

components in the high temperature zone. 

Another near term gap is miniaturization of the signal processing electronics and making it compatible with the 

aircraft environment.  Those technology gaps should be addressed in the design of HTFOS systems for future on-

engine applications.  
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