LISSAJOUS Orbit Control for the Deep Space Climate Observatory Sun-Earth L1 Libration Point Mission

AAS 15-611

Craig Roberts

Sara Case
John Reagoso
a. i. solutions, Inc.

This work was performed under NASA contract \# NNG14VC09C.

Agenda for DSCOVR Lissajous Orbit Control

- DSCOVR Lissajous Orbit Overview
- DSCOVR Stationkeeping
- SEZ Avoidance Maneuvers
- 6-month Z-control
- 3-month Z-control
- SEZ Avoidance Considerations
- SEZ Avoidance Fuel Budget
- SEZ Avoidance and Stationkeeping

DSCOVR Lissajous Orbit Requirements

- DSCOVR Lissajous Orbit sized such that orbit track never extends beyond 15 degrees from Earth-Sun line (as seen from Earth)
- Requiring delta-V maneuvers, control orbit to obey a Solar Exclusion Zone (SEZ) cone of half-angle 4 degrees about the Earth-Sun line
- Spacecraft should never be less than 4 degrees from solar center as seen from Earth
- Following Lissajous Orbit Insertion (LOI), DSCOVR should be in an opening phase that just skirts the 4-degree SEZ
- Maximizes time to the point where a closing Lissajous will require avoidance maneuvers to keep it out of the SEZ
- Stationkeeping maneuvers should take no more than 15 minutes

DSCOVR: Numerically Integrated Lissajous Orbit

Lissajous opening: evolution over 5 years from insertion on 7 June 2015

DSCOVR: View from NEP including ACE, WIND, SOHO

DSCOVR Lissajous Orbit Stationkeeping

- Collinear LPOs are inherently unstable; stationkeeping maneuvers needed at intervals to prevent escape
- Delta-Vs needed to correct perturbative effects grow exponentially with time
- Doubling time constant is ~ 16 days
- SK maneuvers impart a positive or negative change to orbital energy to prevent orbital decay and subsequent escape, either Earth-ward or Sun-ward, respectively
- SK maneuvers can be designed in variety of ways; discussed are techniques developed, studied or used for ACE, SOHO, and WIND, and will be used for DSCOVR
- Delta-V direction along the RLP frame $+X$ or $-X$ axis
- Delta-V direction along the RLP frame $+Y$ or $-Y$ axis
- Techniques work also if delta-V is directed off-axis
- For DSCOVR, off-axis variants could be up to ~12 degrees off respective axis
- Depending on chosen technique, DSCOVR may need to be slewed to burn attitude to align given thruster set with delta-V direction
- Slews could be up to 180 degrees

DSCOVR: ‘X-control’ Stationkeeping Schematic

DEP = DSCOVR Earth Point attitude (body +X-axis (HGA bore-sight) points to Earth

DSCOVR: 'Y-control’ Stationkeeping (RLP XZ View)

SEZ Avoidance Maneuvers

- SEZ avoidance technique is known quantity; was used for ACE
- DSCOVR Lissajous track will violate the 4 deg SEZ in late 2019 if SEZ avoidance not implemented
- To avoid violation, an SEZ avoidance strategy should begin by the rev prior to the rev that would violate
- Location of these maneuvers: at or very near to the RLP z-dot $=0.0 \mathrm{~km} / \mathrm{s}$ point (northern and southern extremum points of the orbit)
- Use one of two main strategies:
- Maneuver once per rev, always at the same extremum point (~6 month intervals)
- Maneuver twice per rev, once at each extremum point (~ 3 mo. intervals)
- Delta-V cost is proportional to A_{z}; for this orbit, about 26 TO $27 \mathrm{~m} / \mathrm{sec} /$ year
- A burn of ~ 13 to $14 \mathrm{~m} / \mathrm{sec}$ every 6 months
- A burn of ~ 6.5 to $7 \mathrm{~m} / \mathrm{sec}$ every 3 months
- Delta-V direction is normal to ecliptic plane
- Toward South Ecliptic Pole (SEP) for burns on North side of orbit
- Toward North Ecliptic Pole (NEP) for burns at south side of orbit
- ACE experience: 5 successful SEZ burns from 11/1999 to 7/2001
- SEZ abolished by Science Working Team in latter 2001 to save fuel for very long extended mission

DSCOVR Lissajous with "Frozen Phase" Segment

First Z-control
Burn at $+Z$
extremum
on
$4 / 28 / 2019$
ΔV_{Z} negative toward SEP
2-stage
targeting achieves -Z position then the $+Z$ position at RLP XZ plane
Repeat at each return to +Z extremum

DSCOVR: Frozen Lissajous Showing Precluded Phase Segments

Dotted trace indicates precluded segments of the Orbit

DSCOVR: 6-Month Z-control Design through 4 Cycles

Results for Case Controlling to SEV Angle ≥ 4.1 degrees

\#	Event	UTC Epoch	Delta-V (m/sec)	Elapsed Days from LOI	Elapsed Time Between Z-control burns
1	SK-1	7 April 2019	+0.166	1399.8	n/a
2	Z-control \#1	28 April 2019	-10.53	1421.1	0
3	Z-control \#2	23 Oct 2019	-13.89	1599.7	178.6
4	Z-control \#3	13 April 2020	-12.72	1772.6	172.9
5	SK-2	18 Sept 2020	-0.077	1928.8	n/a
6	Z-control \#4	10 Oct 2020	-14.38	1951.3	178.7
	Maneuver	Reference Frame	Targeting Variable	Goal Variable	
	SK	RLP	$\Delta \mathrm{Vx}$	$\mathrm{Vx}=0.0 \pm 0.0001$	$\mathrm{km} / \mathrm{sec}$
	Z-control	RLP	$\Delta \mathrm{V}$	$\mathrm{Z}=+112,000 \pm 1$	00 km*
*at Northern Z-axis extremum					
AAS/AIAA ASC 2015: AAS 15-611 9-13 August 2015					

Uncontrolled Orbit and 6-Month Z-Control SEV Angles

Red Trace: uncontrolled orbit
Blue Trace: 6-Month Z-control

DSCOVR 5-Year Lissajous SEV Angle Evolution

DSCOVR: 3-Month Control Superimposed on 6-Month Control

Demonstrates equivalency of 6-month control and 3-month control

DSCOVR: 3-Month Z-control Design through 5 Cycles

Results for Case Controlling to SEV Angle ≥ 4.0 degrees

\#	Event	UTC Epoch	Delta-V $(\mathrm{m} / \mathrm{sec})$	Elapsed Days from LOI	Elapsed Time Between Z-control burns
1	SK-1	7 April 2019	+0.110	1399.8	-
2	Z-control \#1	28 April 2019	-6.53	1421.1	0
3	Z-control \#2	29 July 2019	+6.58	1512.7	91.6
4	Z-control \#3	23 Oct 2019	-6.60	1599.2	86.5
5	Z-control \#4	19 Jan 2020	+6.50	1687.1	87.9
6	Z-control \#5	13 April 2020	-6.70	1772.2	85.1

Maneuver	Reference Frame	Targeting Variable	Goal Variable
SK	RLP	$\Delta V x$	$\mathrm{Vx}=0.0 \pm 0.0001 \mathrm{~km} / \mathrm{sec}$
Z-control	RLP	$\Delta \mathrm{Vz}$	$\mathrm{Z}=-136,465 \pm 100 \mathrm{~km}$ (South)
			$\mathrm{Z}=+116,000 \pm 100 \mathrm{~km}$ (North)

DSCOVR: 3-Month Control and 6-Month Control SEV Angles

DSCOVR SEZ Avoidance Considerations

- Either 3 month or 6 month control can be used; decision may involve Science Team
- 3 month option may be preferred due to shorter burn duration (~15 min or less)
- On the other hand, 6-month control reduces operations impact
- Use +Z-axis delta-V configuration (thrusters 9 and 10)
- Attitude re-orientation Slews will be necessary to orient body Z-axis to target ecliptic pole direction, and then back to Science attitude
- Slews could be on the order of 180 deg each way, because science attitude has +Z-axis always pointing away from Earth-Sun line, roughly opposite to the needed direction for the SEZ burns
- -Z-axis configuration thrusters ($1,3,6,8$) could in principle be used, but plume impingement issues being assessed
- Nominally, ample fuel should be available; not just thru 2020 but thru 2028 at least!

DSCOVR Fuel Usage Actuals and Lifetime Projections

- 51 kg out of a budgeted 74 kg used for Transfer and Lissajous Insertion
- Leaves about 94 kg for remainder of mission
- SK expected to need no more than 2 kg yearly
- With nominal performance, probably << 1 kg
- During first full year of SEZ avoidance, expecting to use 7.5 to 8 kg
- Annual fuel costs decline slowly as we ride down blowdown curve

Year \#	BOL	1	2	3	4	5	6	7	8	9	10	11	12	13	14
Year	5 Yr Budget	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028
MCC-1	15	0.15													
MCC-2	2.5	0.6													
LOI	51	49.7													
LOIc	5.5	0.5													
SK	12	2	1.8	1.8	1.8	1.5	1.5	1.4	1.3	1.2	1.1	1	0.9	0.8	0.7
SEZ Control	11	0	0	0	4	7.6	6.9	6.3	5.9	5.4	5	4.6	4.2	3.8	0
Delta-H	2	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4	0.4
EOL/Margin	43	-	-	-	-	-	-	-	-	-	-	-	-	-	6
Unusable	3	-	-	-	-	-	-	-	-	-	-	-	-	-	3
Consumed	n/a	53.35	2.2	2.2	6.2	9.5	8.8	8.1	7.6	7	6.5	6	5.5	5	7.1
Remaining	145	91.55	89.35	87.15	80.95	71.45	62.65	54.55	46.95	39.95	33.45	27.45	21.95	16.95	9.85

Notes: 1) Delta-H = momentum management
2) $\mathrm{BOL} / \mathrm{EOL}=$ Beginning/End of Life
3) Actual usage to date (July 2015) highlighted yellow

DSCOVR SEZ Avoidance and Stationkeeping

- SK maneuvers can be planned in tandem with Z-control burns
- Plan SK before first SEZ burn for two-burn targeting
- Or, include $\Delta V x$ component with the Z-control burn
- Either way using 2 by 2 differential corrections targeting
- Once Z-control burns initiated, they have potential to affect future SK burn magnitudes and frequency
- Z-control burns are ~ 2 orders of magnitude larger than typical SK burns; any in-plane error from Z-control will affect future SK
- If in-plane errors significant, they can be managed by planning an SK burn ~ 4 weeks later to do clean-up
- Minimum interval needed to get good post-burn OD about 3 weeks
- Going forward, may also need to increase overall SK frequency

Concluding Remarks

- Mission design analysis has shown that DSCOVR stationkeeping may be performed using either X -control or Y -control with variations of each
- Successful Lissajous Orbit Insertion-Correction burn was executed using Xcontrol variant (staying in science attitude)
- First SK burn planned for Sept. $15^{\text {th }}$; predictions show $\sim 4 \mathrm{~cm} / \mathrm{sec}$
- SK expected to consume no more than 2 kg per year; likely much less
- Analysis for SEZ avoidance shows that DSCOVR can follow in ACE's foot-steps, using either 6-month or 3-month control
- 6-month finite burn estimates: $\sim 30 \mathrm{~min}$ and $\sim 4 \mathrm{~kg}$ per burn, initially
- 3-month finite burn estimates: ~ 15 min and $\sim 2 \mathrm{~kg}$ per burn, initially
- Finite burn fuel usage study shows fuel enough to last thru at least 2028
- Current analysis looking at controlling to a 2-degree SEZ

