University of Colorado Boulder, Colorado

Identifying Accessible Near-Earth Objects for Crewed Missions with Solar Electric Propulsion

Stijn De Smet Jeffrey S. Parker Jonathan F.C. Herman Jonathan Aziz *Colorado Center for Astrodynamics Research University of Colorado at Boulder*

Brent W. Barbee Jacob A. Englander *NASA Goddard Space Flight Center*

University of Colorado Boulder, Colorado

- \geq Low thrust options were not considered because of computational cost
- This research lays some of the foundation for expanding the NHATS study with solar electric propulsion

- Crucial step in designing crewed missions to NEOs is identification of good targets
- Near-earth object Human space flight Accessible Targets Study (NHATS)
	- \triangleright Only for chemical trajectories

Motivation

 Identify all feasible trajectories to NEAs to all asteroids in time frame 2015-2040

NHATS background

- Requirements:
	- \triangleright Total mission $\Delta V \leq 12$ km/s
	- Mission duration ≤ 450 days
	- Stay time ≥ 8 days
	- Re-entry velocity ≤ 12 km/s at 125 km
- Trajectory design: Lambert solver
- Highly automated system: automatically re-computes trajectories for asteroid when ephemeris of asteroid is updated, as well as automatically computing trajectories for newly discovered asteroids

- To identify attractive rendezvous missions with NEAs using solar electric propulsion
- Compare those attractive SEP rendezvous trajectories with the chemical trajectories
	- Comparison is complicated by different nature of chemical and SEP trajectories

- Chemical trajectories are ranked based on total mission ΔV
	- \triangleright SEP operates on longer time scales \rightarrow also at kinematically inefficient points (gravity losses) \rightarrow higher ΔV
	- \triangleright SEP has higher Isp \rightarrow less propellant mass for same ΔV

 \rightarrow Unfair to only compare on total mission ΔV

- Comparison will be made based on initial mass in low-Earth orbit (IMLEO)
- For same payload mass, increasing IMLEO for chemical systems leads to higher achievable ΔV, increasing mission opportunities
	- \triangleright SEP systems can only expel certain amount of propellant in certain time frame dependent on power of system
	- \triangleright Increasing IMLEO / propellant mass does not always result in more mission opportunities

 Use chemical trajectories to estimate lower bound on required power for each SEP trajectory

Method

- Use this information as filter for SEP trajectories to avoid running clearly infeasible trajectories
- Implement SEP & optimize trajectories
	- Using chemical trajectory design variables as initial guess
- Compute IMLEO for both SEP and chemical trajectories and compute their difference

Method – filtering of 2000 SG344

Colorado Center for Astrodynamics Research

University of Colorado Boulder, Colorado

Method – trajectory optimization

University of Colorado Boulder, Colorado

Optimization parameters

Assumptions for SEP

Derived from NHATS

Maximum re-entry velocity 12 km/s Maximum total mission duration 450 days

Trajectory example

Colorado Center for Astrodynamics Research

University of Colorado Boulder, Colorado

Results

- 2004 VJ1 150 kW: similar to 2015 BM510: could be launched with 2 SLS 4xRL10, its chemical counterpart needs at least 3 SLS 4xRL10
- Also scenarios with 300 kW have been investigated
	- **Launch window for 3 SLS 4xRL10 with SEP allows for smaller** TOF's than chemical

- SEP can be used to significantly enhance crewed NEO rendezvous missions
	- Initial mass in LEO can be reduced
	- **Launch periods can be extended**
	- Additional mission opportunities become available
	- TOFs can be reduced
- These benefits are not achievable with traditional impulsive maneuvers
- Results presented here suggest that many other targets in the asteroid population would enjoy similar performance improvements through the use of SEP

CA

Colorado Center for Astrodynamics Research

University of Colorado Boulder, Colorado

Identifiying Accessible Near-Earth Objects for Crewed Missions with Solar Electric Propulsion

Stijn De Smet Jeffrey S. Parker Jonathan F.C. Herman Jonathan Aziz *Colorado Center for Astrodynamics Research University of Colorado at Boulder*

Brent W. Barbee Jacob A. Englander *NASA Goddard Space Flight Center*

Extra slides

Colorado Center for Astrodynamics Research

University of Colorado Boulder, Colorado

Extra slides

University of Colorado Boulder, Colorado

• Rough guess for required spacecraft power is

 $P_0 = \frac{\Delta V \cdot m_{\text{avg}} \cdot I_{\text{sp}} \cdot g_0}{2\Delta t \cdot \eta_{\text{jet}} \cdot \varepsilon_T}$

 Average mass is the average of the mass after the chemical departure burn and the mass at Earth return

$$
m_{\text{avg}} = \frac{m_{0,\text{SEP}} + M_{\text{Earth return}}}{2} = \frac{M_{\text{Earth return}}}{2} \cdot \left(1 + \exp\left(\frac{\Delta V}{I_{\text{sp}} \cdot g_0}\right) \right)
$$

This gives

$$
P_0 = \frac{\Delta V \cdot m_{\text{PL}} \cdot \left(1 + \exp\left(\frac{\Delta V}{I_{\text{sp}} \cdot g_0}\right)\right) \cdot I_{\text{sp}} \cdot g_0}{4\Delta t \cdot \eta_{\text{jet}} \cdot \varepsilon_T - k_{P_0} \cdot \Delta V \cdot I_{\text{sp}} \cdot g_0 \left(1 + \exp\left(\frac{\Delta V}{I_{\text{sp}} \cdot g_0}\right)\right)}
$$

Chemical

CCAR

IMLEO =
$$
M_{PL} + M_{chem \, prop} + M_{chem \, prop, \, esc} + M_{kick \, stage}
$$

\n= $M_{PL} + M_{chem \, prop} + (1 + k_{KS}) \cdot M_{chem \, prop, \, esc}$
\n= $M_{PL} \cdot \exp\left(\frac{\Delta V_{tot} - \Delta V_{esc}}{I_{sp,2} \cdot g_0}\right) \cdot \left((1 + k_{KS}) \cdot \exp\left(\frac{\Delta V_{esc}}{I_{sp,1} \cdot g_0}\right) - k_{KS}\right)$

IMLEO formulation

• SEP

IMLEO =
$$
M_{\text{Earth ret}} + M_{\text{SEP prop}} + M_{\text{chem prop, esc}} + M_{\text{kick stage}}
$$

\n= $M_{\text{Earth ret}} + M_{\text{SEP prop}} + (1 + k_{\text{KS}}) \cdot M_{\text{chem prop, esc}}$
\n= $\left(M_{\text{Earth ret}} + M_{\text{SEP prop}} \right) \cdot \left((1 + k_{\text{KS}}) \cdot \exp \left(\frac{\Delta V_{\text{esc}}}{I_{\text{sp},1} \cdot g_0} \right) - k_{\text{KS}} \right)$

Results

CCAR

8/1/2015 AAS 15-598

University of Colorado Boulder, Colorado

Results

CCAR

8/1/2015 AAS 15-598

University of Colorado Boulder, Colorado

Results

Table 3: Minimal IMLEO for the different scenarios

Summary results

University of Colorado Boulder, Colorado

Table 4: Launcher analysis

Summary results

University of Colorado Boulder, Colorado

Table 4: Launcher analysis

Summary results

University of Colorado Boulder, Colorado

Table 4: Launcher analysis

