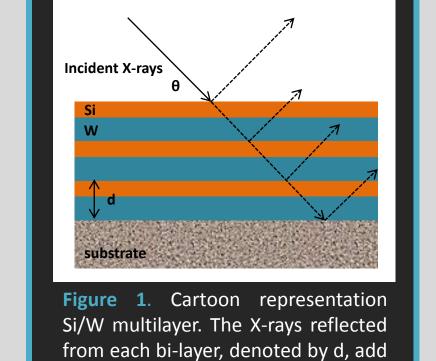


Design and Implementation of an X-ray Reflectometer System for Testing X-ray Optic Coatings

Authors: Danielle Gurgew¹, Brian Ramsey², Mikhail Gubarev², David Broadway², Don Gregory¹

1. The University of Alabama in Huntsville 2. Marshall Space Flight Center, NASA

MOTIVATION


Development of Multilayer Coatings for X-ray Optics at MSFC

Applications for high energy astrophysics

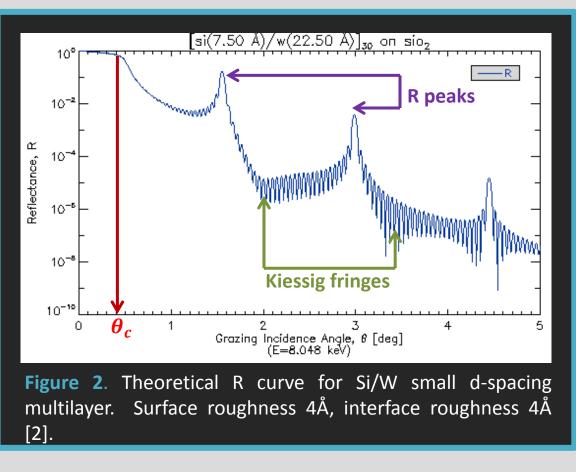
- Pushing observations of X-ray sources up to several hundred keV
- Focus on broadband coatings (10 200 keV)

How multilayers work – Figure 1:

- Bragg reflection: $n\lambda = 2d_n \sin \theta$
- Constructive interference of reflected X-rays

➤ In-house Testing of Coatings: the X-ray Reflectometer

X-ray reflectometer: measures coating performance at X-ray energies

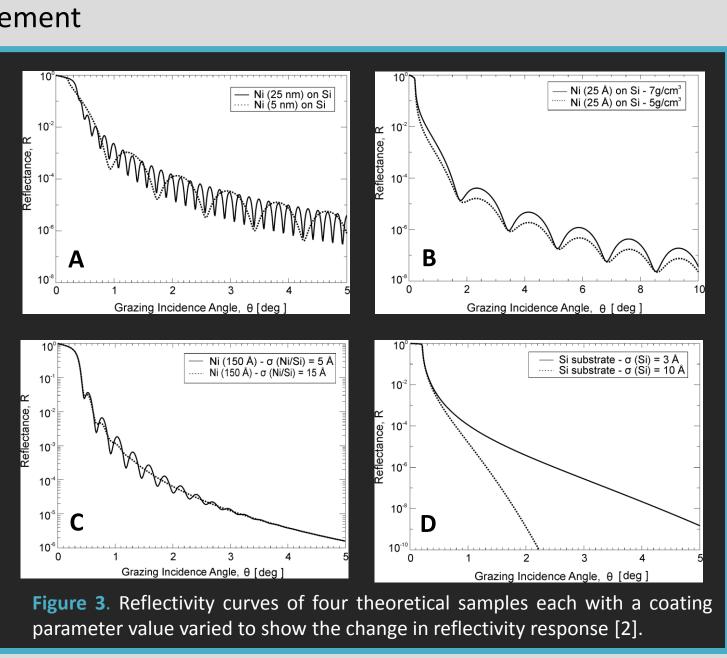

Purpose for this work: aid in development of hard X-ray multilayer coatings at MSFC

INTRODUCTION

What is the X-ray Reflectivity (XRR) Measurement?

Determines characteristic properties of X-ray optic coatings

Reflectivity, R, curve: sample's reflectivity response as a function of graze angle where R = reflected X-ray flux/incident X-ray flux


Features of the R curve:

- Critical angle: θ_c
- Kiessig fringes –oscillatory features at graze angles > critical angle, result of interference of reflected X-rays
- Higher order reflectance peaks (multilayer coatings)

Extracting coating properties from the R curve

Film thickness, density, and interface/surface roughness values can be extracted from the XRR measurement

- A. Film thickness period of oscillations
- **B.** Film density oscillation amplitude
- C. Interface roughness oscillation suppression
- D. Surface roughness drastic loss of R

XRR DESIGN AND TESTING

Designing the XRR: Key System Components

X-ray generator: Rigaku RAS

- Cu target, Cu-Kα line: 8.048 keV
- Voltage: 5 35 kV, Current: 10-150

X-ray detector: Amptek Fast SDD

- Good throughput at high count rates
- Cu-Kα line resolvable

Goniometer: 2 rotary stages

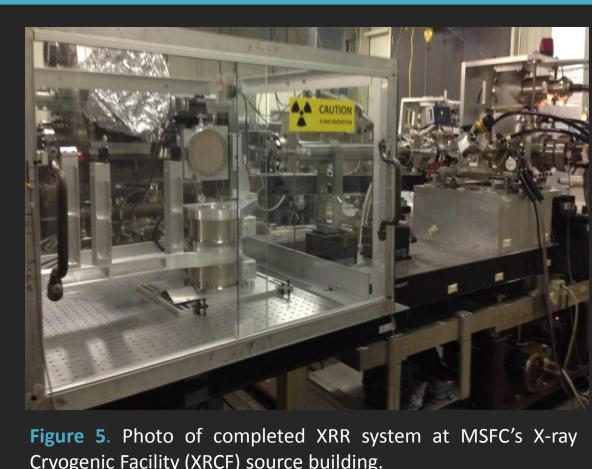
- Newport, resolution of 0.001°
- Moves sample through θ while moving detector through 2θ

Sample holder and stages

- Vacuum chuck for sample placement
- Stages for sample motion: 2 linear + 1tipping (Newport), 0.0001mm and 0.001° resolution

Figure 4. Schematic of XRR system with main components labeled. Note: Not to scale.

Series of beam-defining slits


- Open along same axis
- Minimize projected area of beam on sample and scattered radiation

Custom control software

- Full automation of alignment and data collection routines
- Developed in LabVIEW by Danielle Gurgew

Completion of the XRR System

Alignment of system components: Laser (rough) and X-ray (fine)

Cryogenic Facility (XRCF) source building

How the system operates

- 1) X-rays produced by generator travel down a beam tube under vacuum in which slits 1 and 2 are mounted
- X-rays leave vacuum through Be window on end of beam tube and enter region enclosed by radiation shielding
- X-ray beam further defined by slit 3 just outside Be window
- 4) Beam incident on sample mounted on vacuum chuck at angle θ
- 5) X-rays are reflected off of sample and travel through slits 4 and 5 to reduce scattered radiation entering detector
- 6) Reflected radiation collected by detector at angle 2θ

Verification of the XRR System

X-ray flux variability test – Figure 6

- Monitor X-ray flux as a function of time (2 tests)
- Most variability → counting statistics, other has no significant impact on measurement
- Warm-up period of 60 min before data collection begins

X-ray beam peak position consistency test

- Monitor X-ray beam peak position as a function of time, source current and source voltage
- Small in beam position over 6 hours found to be statistical

Figure 6. Plot of X-ray flux as a function of

time staring just after source is powered up, Test 1. Error bars show counting error as described by Poisson statistics.

INITIAL MEASUREMENT RESULTS

> XRR Measurement Repeatability

10 MSFC XRR measurements of both a single layer coating and multilayer coating

Single layer coating: Ir on Si substrate

- Data fit in IMD using genetic algorithm
- Compare best fit layer thickness, surface roughness and film density

Ir(161.43 <fit> Å) on Si

Si/W multilayer on SiO2, Si cap layer

- Analysis of critical angle and 2nd order R peak
- Compare 2nd order peak R value, angular position and FWHM

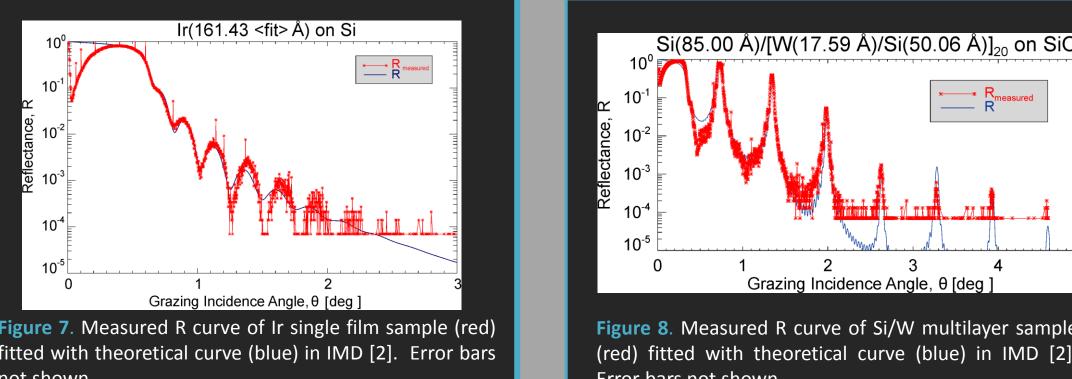
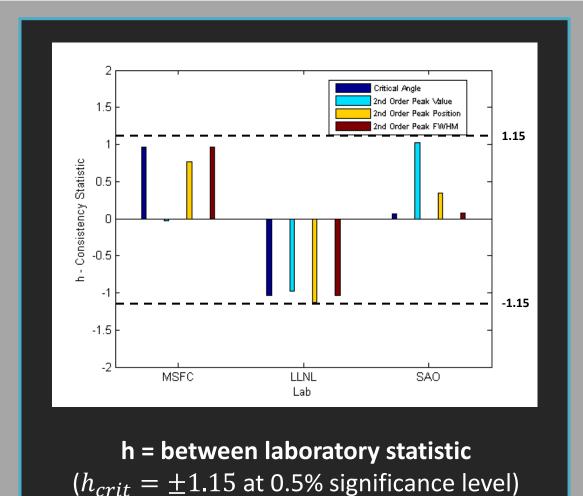
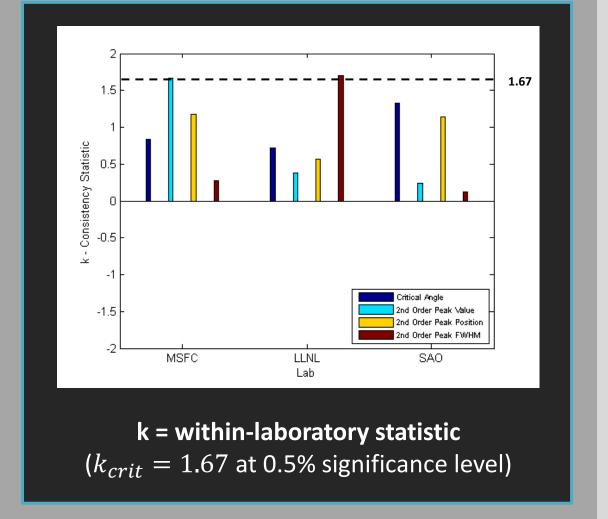


Figure 8. Measured R curve of Si/W multilayer sample (red) fitted with theoretical curve (blue) in IMD [2]. Error bars not shown.

Results:

- No significant variation in repeatability measurements for both samples
- Noise background for both samples: R approx. $10^{-4} \rightarrow$ artifact of detector integration time (1s)


Conclusions:


- In-house XRR measurements consistent and repeatable
- Final verification of system needed

Inter-laboratory Study (ILS)

Comparing MSFC XRR measurements of the Si/W multilayer with XRR measurements made at LLNL and SAO of the sample

Followed ILS study described in ASTM standard practice E691 - 14

Majority of measurements from labs in ILS are consistent at 99.5% confidence

REFERENCES

- 1. E. Spiller, "Characterization of multilayer coatings by X-ray reflection", Revue de Physique Applique", pp. 1697-1699,
- 2. Windt, David, "Reflective X-ray Optics", IMD. http://www.rxollc.com/idl/Ch. 3. X-ray Diffraction* 3. Amptek. http://www.amptek.com/fastsdd.html
- 4. Christopher. C. Walton. Ultra-Short Period W/B4C Multilayers for X-Ray Optics Microstructure Limits on Reflectivity. Ph. D. Thesis, Earnest Orlando Lawrence Berkeley National Laboratory, December 1997.
- 5. CXRO: The Center for X-ray Optics. X-ray Database. http://henke.lbl.gov/optical constants/
- 6. Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method. ASTM designation E691 – 14.