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Abstract. Published observations on the toroidal oscillations of the earth are critically 
reviewed. A supplementary analysis of the record obtained by the Lamont strain seismometer 
is presented. Eleven toroidal modes are identified, and it is concluded that the periods are 
known to within 1 per cent. 

A perturbation scheme involving the ratio of the angular velocity of the earth to the 
resonant frequency is used in calculating the effects due to the rotation of the earth on the 
resonant frequency. The free oscillations are viewed as a superposition of traveling waves. In 
n nonrotating system two traveling waves combine to produce a stationary standing wave. In 
a rotating system, the rotation distinguishes between waves that travel in the direction of 
rotation and those that travel in the opposite direction. Rotation removes a degeneracy and 
results in a splitting of a spectral peak of order 1 into 21 + 1 peaks. The fractional displacement 
in freqliency for the lowest-order toroidal oscillations is 1/206 and of the same order as the 
Q of the peak, so that splitting will probably not be observed in the toroidal oscillations. 
Viewed locally, rotation causes a particle to precess about a direction parallel to the axis of 
rotation. This precession will cause a variation of amplitude with time if the motion is 
recorded by an instrument with an anisotropic response function. Care is therefore needed in 
studying the time decay of a given spectral peak. Rotation also couples the normal coordinates 
so that a motion that is initially purely horizontal will develop a vertical component. It is 
expected that vertical seismometers should record particle motion with the toroidal frequencies. 

The perturbations of the toroidal oscillations due to core-mantle interaction are treated in 
detail. An exact expression is obtained for the rate of energy dissipated by a finitely conducting 
plate oscillating across a magnetic field. The energy dissipated at the core-mantle boundary 
due to viscous and hydromagnetic coupling is shown to be insignificant as compared with the 
energy dissipated within the mantle. The toroidal magnetic field leaking into the lower mantle 
combines with the dipole field, resulting in a stress on the mantle, tending to stiffen the lower 
boundary. The stress is of sufficient magnitude to produce a displacement toward higher 
frequency in the lower-order toroidal oscillations. Observations on the 0T2 oscillations lead to 
an estimate of the toroidal magnetic field in the lower mantle. 

A calculation of elastic energy in the low-order oscillations suggests a value of l0' ergs/cph 
for the energy density at low frequencies in the Chilean earthquake. Each mode of oscillation 
has a characteristic radial distribution of elastic energy associated with it. This distribution 
determines which parts of the earth contribute most heavily in determining a particular 
resonant frequency. The distribution of energy for the lower 17 modes for a homogeneous and 
a Gutenberg model earth is calculated. The resonant frequencies for models of the earth based 
on the Gutenberg and Lehmann distribution of elastic properties are presented. It is shown 
that the Gutenberg model earth fits the observations more closely than the Lehmann model 
and that a slight alteration of the Gutenberg model gives a significantly better fit to the 
observations. The alteration involves a lower shear-wave velocity in the lower mantle while 
the Gutenberg velocity distribution is maintained in the upper mantle. 

Various studies of the earth's oscillations coupled with surface-wave investigations sub-
stantiate Gutenberg's hypothesis of a layer of low velocity in the upper mantle. The physical 
conditions required for the formation of a region of low velocity are examined in detail. The 
results confirm Birch's earlier statement that a temperature gradient in excess of 6° to 7°/km 
is needed to produce a decrease in velocity. The low-velocity layer does not require that the 
temperature approach or exceed the melting temperature. If tile upper mantle is homogeneous, 
the region of lower velocity should commence at the base of the crust and extend to 150 km 
under the oceans and about 100 km under continental regions. The distribution of thermal 
conductivity and radioactivity consistent with the low-velocity layer is also considered. 
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FREQUENTLY USED SYMBOLS 	 6ijk	 alternating tensor. 

B" C" 1 P"',	 vector spherical harmonics of 	 ,j electromagnetic viscosity, part 5. 

angular order 1, m.	 X lamé constant, part 2; dimensionless param-

CA Alfvén wave phase velocity, part 4. eter, part 4. 

C shear-wave phase velocity. rigidity, parts 2, 7; magnetic permeability, 

C longitudinal-wave phase velocity, part 4. 

,,E 1 total elastic energy of toroidal oscillation 	 v kinematic viscosity, part 4. 

of radial order n, angular order 1, part 5.	 a electrical conductivity, part 4. 

H, magnetic field intensity, part 4. 	 p density. 

K kinetic energy, part 3 	 r elastic stress tensor, part 2. 

KR kinetic energy relative to rotating coordi-	 w angular frequency. 

nate system, part 3	 ', Elastic energy per unit radius associated 

K adiabatic incompressibility, part 7. with radial stress, part 5. 

K isothermal incompressibility, part 7 elastic energy per unit radius associated 

dimensionless	 measure	 of	 sharpness	 of with conical stress, part 5. 
nP1I(	 nf	 11,,+nr,	 nf	 ,nn,,lnr angular velocity of rotation.-	 ----''-

order 1, radial order n, part 5. 
,,S"' spheroidal mode of oscillation, introduc-

tion. 
,,T" toroidal mode of oscillation, introduction. 
it spherical Bessel function of first kind, part 2. 

(j is current density, part 4.) 
X 1 "' complex surface spherical harmonic. 
f frequency in cycles per unit time; as subscript 

referring to fluid. 
txf half-power bandwidth of resonance peak, 

part 3. 
i, j, Ic, s, t tensor subscripts; summation con-

vention applied. 
1, m integer denoting angular order of spherical 

harmonic; summation convention does not 
apply. 

a integer denoting order of oscillation associated 
with coordinate r. 

p hydrostatic pressure, part 2. 
p	 stress tensor, part 2. 
q complex amplitude of particle displacement, 

part 2. 
u• particle displacement, part 2. 
iz spherical Bessel function of second kind, 

part 2. 
a dimensionless parameter, part 4; thermal 

expansion, part 7. 
3 dimensionless parameter, part 4; isothermal 

compressibility, part 7. 
electromagnetic skin depth, part 4. 

ô, viscous boundary layer thickness, part 4. 
ô	 Kronecker delta. 
e 1/w parts 2, 3; displacement associated with 

- critical Maxwell stress, part 4. 
,, elastic strain tensor, part 5.

INTRODUCTION 

The observations of the free oscillations of the 
earth excited by the great Chilean earthquake 
of May 22, 1960, permit the application of new 
methods to the study of the earth's interior. 
The properties of the earth as a whole combine 
to determine the resonant frequencies. The 
separation of the relative contributions of parts 
of the earth in determining the resonant fre-
quencies poses formidable problems, the solution 
of which will provide new restraints on specula-
tion regarding the earth's interior. 

The free vibrations of a nonrotating elastic 
sphere can be classified into two groups: the 
torsional or toroidal' oscillations are those in 
which a particle executes motion on a spherical 
surface; there is no radial component of the 
motion. The toroidal oscillations combine to 
form the familiar horizontally polarized shear 
waves of classical seismology. The spheroidal 
oscillations involve both radial and tangential 
motion. The rotation of the earth introduces 
interesting complications into the particle mo-
tions, coupling the toroidal and spheroidal modes. 
However, to an approximation determined by 
the ratio of the angular velocity of rotation of 
the earth to the resonant frequency, the coupling 
effect of rotation can be neglected. 

'Toroidal is used throughout the paper in pref-
erence to torsional, for two reasons: toroidal, like 
spheroidal, has a purely geometric connotation, 
whereas torsional implies stress; toroidal is fa-
miliar from its use in the classic works on geo-
magnetism and the vector Helmholtz equation 
by Bullard and Gellrnan [19541 and ELasser 
[19561. 
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The spectrum of a seismic disturbance is 
characterized by sharp peaks for periods between 
an hour and about 10 minutes. At higher fre-
quencies the isolated peaks merge into a con-
tinuum as a result of the finite Q of the earth and 
the increased number of peaks. At frequencies 
for which the spectrum is recognizably discrete, 
the normal modes involve a major part of the 
earth. The characteristic length associated with 
these vibrations is large compared with the 
inhomogeneities of the continent-ocean system. 
Hence, it is customary to assume spherical 
symmetry for the earth. The solution to the 
equations of vibration of the earth is separated 
into a function dependent upon radius and a 
function dependent on the angular coordinates. 
The angular function is written as a sum of 
surface spherical harmonics, XLm. 

x, m	 P 1 m (cos 0) ei ""'	 (1) 

p 1 m is the associated Legendre function; 1 and m 
are the integers denoting the order of the spherical 
surface harmonic with respect to the angular 
coordinates 0 and ç. The integers 1 and . m 
determine the surface pattern of deformation 
associated with a particular free oscillation. The 
number of lines of vanishing displacement 
associated with the angular coordinate 0 is 
- mi; the number of nodal lines associated 

with angular coordinate ç is 2m. There will also 
be nodal surfaces associated with the radial 
function. A free oscillation can thus be charac-
terized by three integers, 1 and m determining 
the pattern of displacement on a spherical sur-
face, and n determining the number of radial 
nodal surfaces. The notation we propose is 

S m,pm 

for the spheroidal and toroidal oscillations, 
respectively. ,,T1m denotes a toroidal oscillation 
with n radial nodal surfaces and a displacement 
pattern on the surface of the sphere determined 
by 1 and m. 

Numerical treatment of the toroidal oscilla-
tions is markedly simpler than that of the 
spheroidal oscillations. The set of three second-
order coupled differential equations describing 
elastic vibrations reduces to a single second-
order differential equation in the case of the 
toroidal oscillations. This mathematical simplifi-
cation arises from the fact that the toroidal 
oscillations do not perturb the earth's density or

gravitational field. The mathematical simplicity 
of the toroidal oscillations does not dispose of 
their inherent geophysical interest. The toroidal 
oscifiations involve only shear motions and are 
confined to the mantle of the earth. The know!-
edge of their resonant frequencies can be used 
in determining the distribution of shear-wave 
velocity within the mantle. In addition, the 
resonant frequencies depend on the boundary 
condition at the core-mantle boundary, so that 
study of the toroidal oscillations can yield 
information on the nature of the core-mantle 
boundary. 

The present study is an attempt to obtain 
geophysically significant information about the 
interior of the earth from the observations of the 
toroidal oscillations. The observations now avail-
able are sufficient to settle certain problems, but 
answers to many other questions will depend on 
more detailed observations. The resonant fre-
quencies for the toroidal modes are not as well 
known as those for the spheroidal modes. The 
toroidal oscillations appear to have been excited 
to a lesser degree by the Chilean earthquake 
than the spheroidal oscillations. That is the 
present situation; we expect that in the future 
the toroidal oscillations will be more clearly 
delineated. 

Part 1 reviews the published observations on 
the toroidal oscillations. In addition, a new 
analysis is presented of the record obtained by 
the Lamont strain seismograph. The equations 
of motion are introduced in part 2. The separa-
tion of the effects due to the rotation of the 
earth is accomplished by means of a perturbation 
scheme involving the ratio of the angular velocity 
of the earth to the resonant frequency. The 
explicit effects of rotation on the motion are 
taken up in part 3. Viewed locally, a particle 
precesses about a direction parallel to the axis 
of rotation. Rotation couples the normal coordi-
nates so that a motion that is initially purely 
horizontal will develop a vertical component. 
An explicit expression is obtained for the magni-
tude of the shift in resonant frequency due to 
rotation. 

The resonant frequencies of the lowest-order 
toroidal oscillations depend on the nature of the 
core-mantle coupling; the general problem of 
core-mantle interaction is considered in part 4. 
The toroidal field leaking from the core into the 
lower mantle may stiffen the lower boundary
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enough to produce a perturbation in the gravest 
toroidal oscillation. Dissipation results from the 
viscous and hydromagnetic coupling. In part 5 
the radial distribution of energy and the total 
energy associated with any one mode of oscilla-
tion are considered. The calculation of the total 
elastic energy in any mode of• oscillations leads 
to an estimate of the energy density in the 
Chilean earthquake. Calculations of the resonant 
frequencies of specific models of the earth are 
taken up in part 6. A slight modification of the 
Gutenberg model earth leads to resonant fre-
quencies in close agreement with observations. 
The observed toroidal frequencies are consistent 
with an earth model having a low-velocity zone. 
The physical conditions producing a low-velocity 
zone are treated in part 7. If the upper mantle 
is homogeneous on a large scale, the low-velocity 
layer should commence at the base of the crust 
and extend to depths of 150 km under oceanic 
regions and about 100 km under continental 
regions. 

In order to interpret the earth's free oscilla-
tions properly, some physical feeling must be 
developed for the oscillations of an inhomo-
geneous, rotating, nearly elastic body. The 
present study is an attempt to provide an 
introduction to the toroidal oscillations. A com-
parable treatment of the spheroidal oscillations 
is possible but will involve numerical computa-
tions of a higher degree of complexity. 

1. OBSEEVATIONS OF THE TOROIDAL OSCILLATIONS 

The low-frequency toroidal oscifiations have 
been observed by Alsop, Sutton, and Ewing 
[1961a] and by Benioff, Press, and Smith [1961]. In

these studies, the oscillations excited by the 
Chilean earthquake of May 22, 1960, were 
recorded both by Benioff strain seismometers and 
by pendulum seismographs. Alsop and co-workers 
report results from both instruments; Benioff and 
co-workers describe results obtained using strain 
seismometers located at Isabella in California 
and Nafla in Peru. In both studies the analog 
records were digitized and Fourier-analyzed. 
The Lamont records were first low-pass-filtered 
by taking running averages over 19 and 21 
points and then decimated, using every third 
point in the case of the pendulum instrument 
and every fifth point in the case of the strain 
instruments. The data were then subjected to a 
standard Fourier analysis. The results are listed 
in Table 1, the identification of the modes being 
that given by Alsop and collaborators. This 
depends upon a comparison with the theoretical 
calculations of the frequency of toroidal oscil-
lations. 

Benioff and his collaborators carried out a 
similar analysis. Their strain-seismometer records 
were subjected to low-pass filtering by smoothing 
by threes, fives, and sevens and then decimated 
by taking every third point. In addition, tides 
and other low-frequency phenomena were re-
moved by a high-pass filter. The resultant records 
were subjected to a power spectral analysis by 
the methods developed by Blackman and Tukey 
[1958]. The results obtained by Benioff and his 
co-workers are listed in Table 1. The theoretical 
results of Gilbert and MacDonald [1960] were used 
in identifying the spectral peaks. 

Through the courtesy of Alsop, Sutton, and 
Ewing, we obtained a set of the digitized records 

TABLE 1. Observed Periods in Minutes of the Toroidal Oscillations 

Mode of 
Oscillation

Analysis of 
Lamont Strain

Lamont 
Strain

Lamont N-S 
Pendulum

. Lamont E-W 
Pendulum

Isabella 
Strain 

O '12 44.75 44.80 43.98 42.3 
0T3 28.57 28.48 28.43 28.68 28.6 
0T 4 	 . 21.95 21.90 21.83 21.62 21.8 

18.02 17.81 17.85 17.87 17.9 
15.51 15.10 15.5 
13.75 13.30 13.28 13.5 
12.35 12.10 12.08 12.25 12.3 

0T, 11.24 11.24 11.02 10.98 11.21 
10.33 10.33 

0 T,1 9.614 9.60 
0T, 2 9.065 
0T14 7.985
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of the Lamont strain seismometer covering a 
period of 36 hours with data points taken at 
intervals of 26.55 seconds. We have analyzed the 
record by techniques identical to those employed 
by Ness, Harrison, and Slishter [1961] in their 
analysis of the spheroidal modes as recorded by 
the UCLA tidal gravimeter. The data were first 
subjected to a 101-point low-pass filter designed 
by Martin [1957], and the record was then 
decimated by taking every other point. The half-
power point for the filter after decimation cor-
responded to a frequency of 14 cph. The data 
were then subjected to a double-stage Chebyshev 
high-pass filter. The half-power point of this 
filter corresponds to a frequency of 0.9 eph. 
For the frequencies passed there is a total 3 
per cent ripple about unity. The records were 
also Fourier-analyzed applying a Chebyshev 
time window with the side lobe level fixed at 0.01 
of the main lobe. The results of the analysis are 
shown in Table 1. The peaks were identified by 
comparison with the theoretical calculations of 
Gilbert and MacDonald [1960]. Additional assist-
ance in the identification of the modes was 
provided by detailed comparison with the 
spheroidal modes observed on the UCLA gra-
vimeter [Ness, Harrison, and Slichter, 1961]. 
Peaks that were weak or absent on the gravimeter 
records were identified as corresponding to the 
toroidal modes. This procedure is possible since 
the gravimeter records solely the vertical motion 
whereas the strain seismometer responds to both 
vertical and horizontal motion. The conversion 
of toroidal motion into a vertical motion by 
rotational coupling introduces some uncertainty 
in this identification (see part 3). 

The mode 0T, does not show up as a well-
defined peak on the Lamont strain record, but 
is well above noise level with a period of 42.3 
minutes in the records obtained by Benioff and 
collaborators at Nana and Isabella. Both the 
Isabella and Lamont strain instruments were 
within 8° of the nodal line for 0T2 (see part 5). 

The discrepancy between the period obtained 
for ,T 6 in our analysis and in the analysis of 
Alsop, Benioff, and their co-workers is con-
sidered to be due to improper identification. The 
gravimeter shows a split peak at 17.68/17.88 
minutes, corresponding to the spheroidal oscil-
lation 183. The Lamont listing of the observed 
peaks includes an unidentified peak at 18.0 
minutes. This corresponds to the 0T6 oscillation,

and the peak listed as the ,T, oscillation must 
then be ES,. The modes 0T, and 0T8 similarly 
appear to be incorrectly identified, owing to 
their close proximity to spheroidal modes as 
detected by the gravimeter. 

2. EQUATIONS OF MoTIoN 

The numerical methods used in obtaining the 
resonant frequencies of an inhomogeneous earth 
require the solution to the equations of motion 
for a homogeneous spherical elastic shell. The 
solution is well known and is discussed by Morse 
and Feshbach [19531, Love [1927], Alterman, 
Jarosch, and Pekeris [1959], and Gilbert and 
MacDonald [1960]. In this section we review the 
general theory of oscillation in an inhomogeneous 
sphere in order to introduce a notation and a 
perturbation scheme and establish a number of 
subsidiary results. The theory is specialized to 
the case of a homogeneous shell at a number of 
points. 

We consider a rotating isotropic elastic solid. 
The equation of mot.ion referred to a coordinate 
system fixed to the mean body is 

2
aui 

P	 + 2pe,f1, 

a 
—p	 { U(r) + [ fl1(x1 + uj)]2 

- [21(xk + uk)11 +	 ph 

U1 = U(r) + [2,(; + u)]2 

- z, (.Xk -I- uk) 

provided that we neglect electromagnetic forces 
and dissipation and assume that the strains are 
small. u is the displacement vector; f is the 
angular velocity of rotation of the coordinate 
system and is assumed constant. U(r) is the 
spherically symmetric potential of the gravi-
tational forces. The term on the right-hand side 
involving the angular velocity represents the 
cylindrically symmetrical centrifugal potential. 
The stress tensor p,, may be written 

Phi = — P	 + T11 

where p is the hydrostatic pressure and r,, is the 
elastic stress tensor measured from the com-
pressed equilibrium state. 

In a homogeneous elastic material the diver-
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gence of the elastic stress tensor is 

3L, 

ox1	 Ox, Ox,	 Ox, 

where X and u are Lamé constants. 
The equations of motion referred to a rotating 

system of reference axes differ from the usual 
equations in two terms. The term on the right-
hand side involving the angular velocity is the 
ordinary centrifugal force. The term involving 
velocity on the left-hand side also depends on 
the angular velocity and is the Coriolis or 
gyroscopic force. The effect of this term is to 
couple motion along the various coordinate axes. 
The equations might also be written in terms of 
the principal or normal coordinates. Then, if the 
potential energy is written as a sum of square 
terms, a change in one of the normal coordinates 
brings about a change in the remaining coordi-
nates because of the gyroscopic terms. The 
rotational coupling introduces a complexity in 
the motion that is of considerable importance in 
the interpretation of the observations of the 
earth's free oscillations. 

The time variation of the displacement is 
assumed to be of the form 

= qe 

where w is the angular frequency of vibration 
and q, is the complex amplitude. In terms of the 
complex amplitude and frequency, the equations 
of motion are 

-wpqk + 2ipwkL,qE

°	
(2) —p-- U

Ox1 

Let

6 = 

and we note that the gyroscopic terms in equa-
tion 2 are of order 6, the centrifugal force of 
order 62. Since the fundamental frequency of the 
oscillations is of the order of an hour, s is always 
small compared with unity. This suggests a 
perturbation scheme ofthe form 

q = q1° + q. + €q1 + ...	 ( 3)

order in are then 

20 
- pw0 q + p -- Uo1 - 

2i0 0
(5) 

Ox, 

2	

OXk 
—pc,, 0 q	 -	 - Ox, 

= —2pwl2a l qk° -I- 2ipwO2 fk,,z,q, ° 	 ( 6) 

The only practical method of obtaining a solu-
tion to equation is to utilize a series expansion. 
A solution that takes full advantage of the 
spherical symmetry is 

=	 E [/1(1 + i)C 1 (O, ) Wj(r) 

+ P 1 "'U(r) + s/1(l + 1)B1,"'T7(r)] 

where the vector spherical harmonics [Morse and 
Feschbach, 1953; &raUon, 1941] are defined by 

= 's/l(1+ 1) 
611k	 (xkXtm)

= x1m 

B •=	 r—X1 
s/l(l + 1 Ox, 

X1" are the complex spherical harmonics. It 
should be noted that in the notation adopted the 
letters 1 and m are reserved for the angular order 
of the spherical harmonics and are associated 
with the colatitude 0 and longitude g, respec-
tively. The coordinate subscripts are separated 
from the order subscripts by a comma; the 
comma does not signify differentiation. The sub-
script n in the radial functions denotes the radial 
order or the number of zeros in the radial func-
tion. In the following the vector C" 1 , plays an 
important role. In Cartesian coordinates, C, has 
the components 

/i(i + 1)Cm1, = () (1 - ôo,,,)(n + m) 

- m + 1)iX 1 " 1 + () ( 1 + ô0m)jXim 

./i(i + 1)C"21 = () (1 - ô0 ,,)(n + m) 

a, = w0(1 + a,€ + a2 € +	 .)	 (4)	 •(n - m + 1)iX" - ()(i + ôo,,,)iX,m 

	

The equations of motion to zero order and first	 /i(l + 1)C'"3.1 = - miX"	 (7)
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provided that x is taken as the axis of the 
spherical harmonic X. 

The vectors C, P, B are mutually orthogonal. 
The motions described by 

=	 /i(t + 1)C",, (0, c') 

	

,,W,(r)	 (8) 

involve no radial component; the particles 
remain on a spherical surface. The density 
remains constant since

= 0 

The motion is that of a horizontally polarized 
shear wave and represents the toroidal oscilla-
tions. In a homogeneous elastic shell the equation 
of motion to zero order in € is 

20	 20	 2 

	

pw0 q + Mc:a qk /a)	 0	 (9) 

since the rigidity is constant throughout the 
spherical shell. The explicit solution to equation 
9 is [Gilbert and MacDonald, 1960] 

=	 s/i(i + 1)C"'k,z 

[A 1 mj,(kr) + Bmy1(kr)] 

where j1 and y are the spherical Bessel functions 
of the first and second kind. k is the wave 
number

= 

The resonant frequencies for the toroidal modes 
are obtained by substituting the solution (equa-
tion 8) into the appropriate boundary conditions. 
We note that the modes are degenerate in m. 
The normal modes can be considered as a super-
position of traveling waves. For a given I each 
pair of m values corresponds to two traveling 
waves: one travels in the direction of increasing 
Q, the other in the opposite direction. In a 
nonrotating system the two waves travel at the 
same speed to give a pattern of surface displace-
ment that remains constant with time. The 
modes of different m correspond to the same 
energy in a nonrotating system. The degeneracy 
in m allows a considerable simplification. We 
set m = 0 and obtain for the toroidal displace-
ments

= 0 

q0 = 0 

=	 P'(cos 0),,W(r) 

3. EFFECT OF ROTATION ON T0ROIDAL
OscILLTIoNs 

The effect of rotation on the toroidal oscilla-
tions can be readily understood in a qualitative 
fashion. For toroidal motion, the solution to the 
zero-order equation 5 is 

;	
im	

,. W (r) 

exp [i(mp + w,mt)] 

=	 (p°'' - in cot 0P m) ,W(r) 

exp [i(mp + wz'"t)] 

As was noted above, the modes are degenerate 
in in. In the degenerate case the two traveling 
waves associated with a pair (+ and —) of m 
numbers combine to give a stationary standing 
wave. Consider the case of rotation where the 
axis of rotation and the pole of the surface 
spherical harmonic coincide. For a g,iven m one 
of the associated pair of traveling waves is 
carried along by the rotation whereas the other 
is retarded by the rotation. We should then 
expect that the rotation should remove degener-
acy with respect to the wave number m. The 
rotation distinguishes between traveling waves 
that have a positive in and those that have a 
negative m. The removal of the degeneracy in 
the case of toroidal oscillations is particularly 
simple and will be dealt with in detail in this 
section. We first examine the effect of rotation 
on the particle motion and then consider the 
field equations.2 

As an introduction to the effect of rotation on 
the toroidal oscillations we approximate the 
equation of motion 

2	 2 oui 
p	 — /2	 = 0 

2 Backus and Gilbert [1961] have presented a 
detailed treatment of the rotational splitting of 
the normal modes. A solution has also been ob-
tained by Alterman and Pekeris (private com-
munication).
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£2T,2 

PATH WITH 
NO ROTATION

PATH WITH 
ROTATION 

Fig. 1. Motion of a vibrating particle in a plane 
rotating at angular velocity (.

to that of a Foucault pendulum. The horizontal 
plane of the motion is shown in Figure 1, where 
T is the period of the oscillation in the absence 
of rotation. 

Figure 2 illustrates a vibration along the line 
OA with an amplitude A. The axis of rotation is 
taken as the x3 axis. In a coordinate system 
rotating with angular velocity about x,, the 
particle will oscillate with frequency o 0 and 
amplitude A along the line OA and precess 
around the x 1 axis at a rate l, tracing out a 
right circular cone. The Cartesian components of 
the motion are then 

u1 = A cosw0 t sin ' cos

t 

p 

by	 u2 = Acosw0tsinsin2t 

+ wo2ui = 0 

where co0 is the resonant frequency for a particu-
lar tin the absence of rotation. We further assume 
that the initial vibration is in a plane perpen-
dicular to the axis of rotation, and we set the 
axis of rotation parallel to the x3 axis. The 
equations of motion in the rotating plane are then 

du1	 2	 du2 = —2--	 (10) 

du2	 2	 du1
(11) 

Multiplying equation 11 by i and adding to 
equation 10 we obtain 

(+2i+ W2)z=o (12) 

where Z = u 1 + iu 2. In equations 10 and 11 we 
neglect terms involving the square of the angular 
velocity of rotation. For an angular velocity of 
rotation less than the frequency of vibration, the 
solution of (12) is 

Z = exp (—i2t) 

.[A 1 exp(it) + A2 exp(—ict)]	
(13) 

u1 + iu2 = (uj° + uz°) exp (—i2t) 

u 1° and u 2° are the components of vibration in 
the absence of rotation. The effect of rotation is 
to turn the path of vibration about the vertical 
with angular velocity ^. The motion is similar

= A cosw0t cos 

where the displacement in the absence of rotation 
is

u1 = A 1 cosw0t 

Making the substitutions 

Asin=2B	 Acos=2C 

The displacement can be written as the sum of 
three vectors	 - 

U1 = a1 + b 1 + ci

XI 

A 

Xi 

Fig. 2. Particle vibrating along OA and
precessing about x8.
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where 

a, = B cos (c + ) t. 

a2 = B sin (w0 + )t. 

a3 = 0. 

= B cos (w 0 - 

b2 	 B sin (w0 - )t. 

b3 = 0. 

Cl = C2	 0. 

C3	 C COS co0t. 

The vector a, is located in the x,-x, plane and 
rotates about the x, axis in a positive sense with 
frequency co + 1. The vector b, is in the same 
plane and rotates about the z, axis in a negative 
sense with a frequency w 0 - f. The rotation 
therefore resolves the original linear oscillation 
into three components whose amplitude depends 
on the angle between the axis of rotation and the 
direction of oscillation. The component of the 
vector parallel to the axis of rotation is unaffected 
by the rotation; the other two components have 
displaced frequencies. 

The above discussion neglects the coupling 
produced by the rotation. In order to illustrate 
this, we approximate the particle motion by a 
harmonic oscillator. The x,-x 2 plane is tangent 
to the spherical surface with the x, axis along the 
vertical. It is assumed that a particle vibrates in 
the x 1-x 2 plane with the frequency in the 
absence of rotation. The particle can also vibrate 
along the x 8 direction with the frequency w8. 

represents a particular toroidal oscillation, 
and wg represents a spheroidal oscillation. The 
particle is set into oscillation, and in the absence 
of rotation the motion is 

	

= A 1 e"' T ' + B1e"'2'	
(14) 

U2 	 A2e	 +B2e 

Relative to a rotating coordinate system, the 
equation can be dealt with using the perturbation 
scheme in terms of the parameter . (See equa-
tions 3 and 4.) The motion in the x,-x, plane, to 
the first order in €, is given by equation 13. 
For the u, component the solution to zero order 
in € is u? = 0, since initially there is no displace-
ment in the z3 direction. To first order in the

equation for the u, component is 
2 

)9U3 i	 2	 3U2
21=—sinO 

where the coordinate system is chosen so that 
the x 1 direction corresponds to the south-north 
direction and x, to the east-west direction. Sub-
stituting the solution (14) into (15) we have 

	

d2u3 	 2 
7jjr + W U3 = W I.2 I) A COSWt 

To the first order in there will be a component 
of motion along the vertical direction with a 
frequency WT. The Coriolis or gyroscopic forces 
tend to excite the vertical vibration with the 
characteristic frequency of the horizontal vibra-
tion. The amplitude of the displacement along 
the vertical is then 

Wrui A/(w,2 - CI)?) 

where A is the amplitude of the oscillation in the 
horizontal direction. 

By examining the motion of the particle in 
terms of a harmonic oscillator, we can reach 
several important conclusions about the effect 
of rotation on the oscillation. The rotation will 
cause a precession in the particle motion so that 
with respect to a locally fixed coordinate the 
direction of motion varies with time. In instru-
ments whose response is anisotropic, there will 
be a variation with time of recorded amplitude 
because of the shift of the orientation of the 
particle motion with respect to the instrument. 
(Alsop, Sutton, and Ewing [1961b] have con-
sidered the effect of rotation on the estimation 
of Q of the free oscillations.) The strain-sies-
mometer response is a function of orientation 
of particle motion; detailed analysis of the 
decay of amplitude with time to determine 
Q will require consideration of the rotation of 
the direction of vibration. The rotation will 
couple horizontal motion with vertical motion 
so that some of the energy initially in a toroidal 
oscillation should appear in neighboring sphe-
roidal oscillations, and vice versa. The amplitude 
of the coupled vertical motion resulting from an 
initial horizontal displacement depends on and 
on the nearness in the frequency of spheroidal 
and toroidal oscillations. 

The expression for the change in frequency 
due to rotation as a function of mode number
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can be obtained directly from a perturbation 
treatment of the equations of motion, (5) and 
(6). An alternative and instructive derivation 
applicable to both spheroidal and toroidal oscil-
lations depends on the evaluation of the kinetic 
energy associated with a particular oscillation. 
The kinetic energy of motion relative to a 
coordinate system fixed in space can be written 

K = KR + 12 t h, +	 Ilfr	 (15) 

[Lyttleton, 1953], where K is the kinetic energy 
relative to a fixed coordinate system, KR is the 
kinetic energy relative to the coordinate system 
rotating with angular velocity , and is 

KR	 fff pv,v1 dV 

where v is the velocity measured relative to the 
rotating coordinate system. h, is the angular 
momentum relative to the rotating coordinate 
system

= 111 
and I,, is the moment of inertia 

= fff p(xx o,, - xx1) dV 

The time-averaged kinetic energy resulting from 
an oscillation of frequency w is 

K = fff p{ 1 q1 + iJeq. 

+ II(kqk	 - j qj)} dV	 (16) 

where , is the complex conjugate of q,. We now 
introduce the perturbation scheme described by 
equations 3 and 4. We note that to zero order in 
e the moment of inertia remains constant for a 
toroidal oscillation. This is not the case for a 
spheroidal oscillation. The kinetic energy associ-
ated with the oscillation in a nonrotating 
system is

K0 =	 Jff p 1 0 q,° dV	 (17) 

and we normalize the complex amplitudes q° 
so that

Consider an oscillation with fixed total kinetic 
energy K0. Substituting (3) and (4) into (16) 
and equating terms of equal order we find that 
the condition for the oscillation to have kinetic 
energy K0 is 

a1 = —iz fff p6, k , qk q dV	 (19) 

The frequency w is then the sum of the un-
disturbed frequency w plus the perturbation 
frequency ç.1.

w = w0 + w' 

We note that the perturbation frequency o,' is 
determined by the part of the kinetic energy 
associated with the relative angular momentum 
(provided only that zero-order terms are kept in 
the expansion for the displacement q,3. 

w = —i2 fff p,kqkq, dV	 (20) 

Higher-order approximations may be obtained 
similarly. 

We note that the result given in equation 20 
also follows from equation 6, since q° are the 
eigenfunctions for the operator on the left-hand 
side of the equation. The condition for a solution 
to exist is that the scalar product of the eigen-
function q° with the right-hand side of the 
equation must vanish. 

The expression for the first-order perturbation 
frequently given in equation 20 is general and 
applies equally well to spheroidal and toroidal 
oscillations. The integral in equation 19 is 
readily evaluated if the axis of rotation and the 
pole of the spherical harmonic coincide. For the 
toroidal oscillations we substitute the zero-order 
solution 

q	 [1(1 + 1)] Ll Cmk,I ,,Wm(r) 

into (19) and evaluate the integral using equa-
tion 7 and maintaining the normalization con-
ditions expressed in equations 17 and 18. The 
final result is

a = m/[l(t + 1)] 

For toroidal oscillations the angular frequencies 
are shifted by an amount 

{m/[l(l + 1)]ç 

K0 =	 ( 18) and the degeneracy associated with the angular
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order m is removed. The frequency shift is 
independent of n. The eigenfunctions to zero 
order in € are normal modes of the rotating 
system. The displacement then takes the form 

U,	 + i)C". ,Wz"(r) 

exp [i(w i t 
+ l(l+1))]} (21) 

where w is the eigenirequency for the non-
rotating system. 

Equation 21 demonstrates that each value of 
m has two traveling waves associated with it. 
One wave travels eastward, and its rate of travel 
is decreased by the angular velocity; the other 
travels westward, and its rate is faster. The 
combined effect is to produce a standing-wave 
pattern that for a given value of m moves west-
ward. The rate of advance decreases with 1, 
the local effect being to rotate the direction of 
vibration of a given particle. 

The magnitude of the displacement in fre-
quency varies inversely as a square of the mode 
number 1 and is therefore greatest for the lowest 
mode number. For the oscillation 1 = 2 we have 

____ - 0.0069 cph	 206 
l(1+1) 

The ratio of the frequency to zf, the offset in 
frequency due to rotation, is 206; it is thought 
that the Q of the toroidal oscillations should be 
about 200. It therefore seems unlikely that the 
splitting of the toroidal oscillations can be 
observed unless the Q is much higher. Table 2 
lists the periods for the various lines in the 
multiplets that would be expected in the struc-
ture of the 0T2 and 0 T, oscillations. 

The splitting of the toroidal oscillations, unlike 
the splitting of the spheroidal, has not been 
observed. Until a detailed study of the Q for the 
toroidal oscillations is made it cannot be deter-
mined whether the failure to detect the splitting 
is due to the shortness of the record or to the 
fact that the Q broadens a peak by an amount 
greater than the distance between the rotationally 
separated peaks. It appears certain that there 
is no hope of detecting the rotational separation 
for any but the lowest-order toroidal oscillations. 

The detailed theory of the coupling of toroidal 
and spheroidal oscillations has not been at-
tempted. The qualitative considerations based

TABLE 2. Rotational Splitting of 
Toroidal Oscillations 

Period,	 Period, 
Oscillations	 minutes	 Oscillation	 minutes 

0T22 41.9 0T,3 28.43 
42.1 0T,2 28.48 

28.53 
0T2 42.3 0T, 28.57 
0T2-1 42.5 28.61 
0T2 42.7 28.66 

28.70

on harmonic oscillator models of the toroidal 
oscillations, however, strongly indicate the 
importance of this mechanism of transferring 
energy from one oscillation to another. It is 
pertinent to note that Bogert [19611 lists peaks 
in the spectrum at 28.8 minutes and 21.5 minutes 
which he does not identify. Bogert's observations 
were carried out on a long-period vertical 
seismometer. The listed periods are close to the 
observed toroidal periods for 0T3 and 0T4 . It is 
possible that the unidentified peaks in Bogert's 
record represent the rotational conversion of 
initial toroidal into vertical motiOn. A detailed 
investigation of existing records of vertical 
instruments is indicated. 

4. CORE-MANTLE BOUNDARY CONDITION 

The usual treatments of the toroidal oscilla-
tions assume as boundary conditions that the 
two boundaries limiting the mantle are free 
spherical surfaces. The outer boundary fulfills 
these conditions, provided that the inhomo-
geneous character of the upper mantle and crust 
is ignored. The situation with respect to the 
core-mantle boundary is much less clear. Indeed, 
it is possible that a detailed study of the toroidal 
oscillations can indicate the nature of the core-
mantle boundary. 

High-frequency shear waves are not trans-
mittëd by the core. The agreement of the Guten-
berg model earth with observations of toroidal 
oscillations for periods of 10 to 30 minutes (see 
part 6) suggests that the core behaves more or 
less as a fluid at these periods. The material of 
the core must have a certain degree of viscosity; 
thus the core will exert a viscous resistance to 
the motion of the lower boundary of the mantle. 
The core is composed of an electrically conducting 
material, and oscillations of the mantle boundary 
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Fig. 3. Displacement at core-mantle boundary
relative to unit displacement at outer surface. 

radiate magnetic energy in the form of modified 
Alfvén waves. Both the viscous and the hydro-
magnetic interactions of the mantle and core 
lead to a transfer of energy from the elastic 
motion of the mantle into thermal and magnetic 
energy in the core. 

The core may have some degree of elasticity, 
and this would lead to an apparently stiff lower 
boundary of the mantle. If the lower mantle is 
electrically conducting, the electromagnetic inter-
action of the core and the mantle stiffens the 
boundary. In this section we investigate the 
quantitative effects of the dissipation of elastic 
energy at the core-mantle boundary, and the 
possible effect of the stiffness of this boundary 
in altering the frequencies of the toroidal oscil-
lations. 

The effect of the lower boundary on the 
oscillation is a sensitive function of the order of 
oscillation. In Figure 3 the displacement at the 
core-mantle boundary relative to a unit dis-
placement at the outer surface is presented as a 
function of the mode number for the lower 
modes of oscillation for the Gutenberg model 
and- the homogeneous model earth (see part 6). 
The displacement of the boundary for the 
Gutenberg model is less since the stiffness of 
this model is greater in the lower mantle than

TABLE 3. Estimate of Parameters at 
Core-Mantle Boundary 

Mantle	 Core 

Density p, g/cm 3 5.7 10.6 
Conductivity	 , emu 108_109 3 X 10 
Kinematic viscosity v, 

cm2/sec 106 (?) 
Dipole field H,., gauss 3.8 3.8 
Toroidal field Hç , gauss <0.1-0.01 <30 
Alfvén wave velocity CA, 

cm/see 0.5 0.4 
Electromagnetic viscosity 

7), cm2/sec 107_108 2.6 X 10

it is in the homogeneous earth. 7' and 6T9 

differ in frequency only by a factor of 4, yet the 
displacement at the core boundary for 6T8 is 
1/20 the displacement of 0T2. 

Table 3 lists the important parameters needed 
for a discussion of the core-mantle interaction. 
A rough measure of the importance of electro-
magnetic to viscous dissipation is the ratio of 
the electromagnetic to the fluid viscosity n/v. 
If the Bullard and Geilman [1954] estimate of 
the viscosity of the core is correct, electro-
magnetic dissipation mechanisms outweigh the 
effects of viscosity. The viscosity of the core is 
quite uncertain, however, and if the viscosity 
were as high as 10 cm2/sec viscous effects would 
dominate hydromagnetic effects. 

Viscous interactions of core and mantle. We 
first consider the effect of the viscous interaction 
of core and mantle independently of electro-
magnetic effects. The boundary is treated as a 
flat plate, an approximation that is justified if 
the thickness of the boundary layer is small 
compared with the radius of the core. Table 4 
lists the thickness of the boundary layer 

1/2 = (2v/w) 

for 0T2 and for various viscosities. 
A viscosity of 10 leads to a boundary layer 

of only 30 meters for oscifiations with a 40-
minute period. For the higher modes the fre-
quencies are greater and the boundary-layer 
thickness correspondingly less. The actual 
boundary-layer thickness will be substantially 
increased by the roughness of the surface 
separating the core and the mantle. Because of 
the small boundary-layer thickness appropriate 
for a smooth boundary, it is likely that irregu-
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TABLE 4. Boundary-Layer Thickness for 0T5 

Viscosity,	 a,, 
cm2/sec	 cm 

10 6	 3 X 10 
10-1	 1 X 101 
10	 3X103 
10	 1X106 

larities will determine the scale of the flow. 
Seismic methods are not capable of detecting 
possible 10-km irregularities. 

Let the velocity of the oscillating surface be 
represented by

V = V0 coswt 

The stress resisting the motion at the surface 
is then

1/2 
p = Vop(wv) cos (wt + ir/4) 

The mean value of the energy passing through a 
unit area of the surface per unit time is equal to 
the product of the stress and velocity. 

1 2 5/2 de/dt = —q0 w p(v/2)''2	 (22) 

where qo is the amplitude of the displacement 
and is a function of the angular coordinates. 
The total energy passing through the core-
mantle boundary is then the integral of equation 
22 over the surface separating the mantle from 
the core. 

The core-mantle viscous interaction leads to 
a broadening of the spectral peaks as observed 
at the outer surface because of the energy dis-
sipation at the boundary. The effective Q for 
the oscillation is determined from 

Q = 2irE(dE/dt)' 

where E is the maximum elastic energy stored 
in an oscillation. Calculations have been carried 
out to evaluate Q as a function of viscosity for

an inhomogeneous Gutenberg model earth and 
for a homogeneous earth (see part 5). Table 5 
lists these results. As can be seen, even the 
excessively high viscosity of 10 14 cml/sec leads 
to a high Q for the 0T2 oscillation. 0Q6 corre-
sponding to a higher-frequency oscillation is 
greater, despite the fact that Q depends on the 
inverse 5/2 power of the frequency. This is 
because of the marked dependence of the dis-
placement of the core boundary on the mode 
number. The Q for the overtone is also large, 
the effect of the frequency being insufficient to 
compensate for the lower amplitude but higher 
total energy in the oscillation of the overtone. 
The Q for the homogeneous model is lower since 
the displacement at the core boundary is greater 
in a homogeneous mantle than in the Gutenberg 
mantle, as was previously noted. The effective 

is large, and there will be no measurable shift 
in frequency resulting from the viscous inter-
action of core and mantle. 

Electromagnetic interaction of core and mantle. 
The magnetic lines of force of the main dipole 
field intersect the core-mantle boundary at a 
large angle. In the toroidal mode of oscillation 
the mantle moves parallel to the core-mantle 
boundary, and this motion induces an electro-
motive force perpendicular to the dipole field 
and thus approximately parallel to the core-
mantle boundary. The electric field produces 
currents which flow both in the core and in the 
lower mantle. 

The coupling of the electromagnetic field and 
the velocity field in the core fluid results in a 
disturbance in the material motion at and near 
the boundary surface. The disturbance will be 
propagated as Alfvén waves along the lines of 
force that intersect the boundary. The Alfvén 
waves are damped because of the viscosity and 
the finite electrical conductivity of the core fluid. 
Eddy currents dissipate energy both in the core 
and mantle. 

TABLE 5. Effective Q of Oscillation Due to Viscous Interaction of Core and Mantle 

Q for 0T2	 Q for 5T6	 Q for 17'2 

Viscosity, Homogeneous Gutenberg Homogeneous Gutenberg Homogeneous Gutenberg 
cm /5cc	 Earth	 Model Earth	 Earth	 Model Earth	 Earth	 Model Earth 

10'	 8.8 x i0	 9.1 x 10	 9.0 x 10	 1.3 x io	 5.7 X 10	 8.6 X 102 101	 8.8X101	 9.1X101	 9.0X108	 1.3X105	 5.7X107	 8.6X107 10-6	 8.8 X 1013	 9.1 X 10' s	 9.0 x 10' s	 1.3 X 101	 5.7 x 1012	 8.6 X 101
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TABLE 6 

Electromagnetic	 for	 for 
Viscosity, cm 2/sec	 0T,, km	 oTe, km 

Mantle	 10	 0.9	 0.5 

	

108	 2.8	 1.6 
Core	 2.6 X 10	 0.05	 0.03 

The total stress acting on the boundary sur-
face is due to two components. One is the viscous 
stress perturbed by the presence of the electro-
magnetic field, and the second is a Maxwell 
stress due to the component of the magnetic 
field parallel to the core-mantle boundary. In 
the following paragraphs, we will evaluate the 
magnitude of the Maxwell stress acting on the 
oscillating surface and the perturbation of the 
flow field in the core due to electromagnetic 
effects. 

The hydromagnetic theory of the origin of the 
earth's magnetic field requires the presence of a 
toroidal field within the core. Because of the 
finite conductivity of the lower mantle, the 
permanent toroidal field leaks into the lower 
mantle. The toroidal field within the lower part 
of the mantle combined with the dipole field 
exerts a steady Maxwell stress on the lower 
boundary. The magnitude of the stress depends 
on the strength of the toroidal field in the upper 
part of the core and on the conductivity of the 
lower mantle. Rikitake [1955] has estimated that 
a toroidal field as high as 30 gauss ma exist in 
the upper core. The conductivity of the lower 
mantle has been estimated by Tozer [1960] to be 
10' emu, although H. Hughes has suggested a 
somewhat greater conductivity at this depth on 
the basis of the theory of electrical conductivity 
in solids at high temperatures. The indicated 
Maxwell stress is 0.03 to 0.003 dyne/cmo. Alfvén 
waves will not be excited along the toroidal 
lines of force, since they do not intersect the 
core-mantle boundary. As a first approximation 
we suppose that the steady Maxwell stress 
exerted by the combined toroidal dipole field on 
the lower mantle boundary does not affect the 
oscillatory motion of the surface. Later in this 
section we will consider the effects of the steady 
Maxwell stress on the frequencies of the toroidal 
oscillations. 

The core-mantle boundary will again be treated 
as a smooth plane. The justification of the plane

approximation requires that the skin depth of 
the disturbances in the mantle and the magneto-
hydrodynamic boundary layer thickness be small 
compared with the radius of the core. Table 6 
lists representative values for the electromagnetic 
skin depth ô, where 

= (2t/w)"2 = V'1/2irww 

with the electromagnetic viscosity i = 1/4iriicr 
(see Table 3). 

Electromagnetic units will be used in the 
following discussion. The permeability i is 
assumed to be unity, since it is improbable that 
there are ferromagnetic materials at the tem-
peratures that must exist at those depths. The 
skin depths and boundary-layer thicknesses are 
much smaller than the dimensions of the core. 
This also suggests that there is no need to 
consider reflection from other boundaries. The 
question of the effect of surface roughness, 
however, remains open. 

The problem of the motion of a flat plate in 
the presence of a magnetic field has been con-
sidered by a number of workers. Ludford [1959] 
studied the problem of the impulsive motion of 
a flat plate, assuming an infinite conductivity 
for the material of the plate. Kakutani [1958] 
and Hide and Roberts [1960] have discussed the 
motion of an insulator, and these solutions are 
contained implicitly in the work of Din [1958], 
who generalized many of the exact solutions of 
fluid dynamics to problems of hydromagnetics. 
The case of a plate of finite conductivity has not 
been treated. 

The geometry adopted is shown in Figure 4, 
the steady magnetic field being perpendicular 
to the boundary between the fluid and solid. 
As a result of the motion, the perturbation field 
is set up parallel to the boundary with the 
current perpendicular to the plane defined by 
the velocity vector and the magnetic field. Let 
H, v, and j, represent the magnetic field 

8o 

FLUID	 __________________________ L /////////// ///////////// 
SOLID 

Fig. 4. Geometry for the oscillating plate
problem.
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intensity, velocity, and current density, respec-
tively.

H = (H1 , 112 , 0) 

= (v,, 0, 0) 

:1. = (0, 0, 

The fluid is taken to be incompressible 

= o 

The equation of motion in the absence of rotation 
and neglecting gravity is

(25) and (27) become 

OH	 e92H	 Ov
(29) 

ô	 32v,	 fc4 2 OH 
—=---s+—)--	 (30) 
Ot	 Oy	 H0 Oy 

where for clarity H, has been expressed as 
H, = (H, H,, 0). 

The boundary condition at the solid-fluid 
interface is that the velocity of the viscous fluid 
is equal to the velocity of the plate. The plate 
velocity is 

dv,	 Op	 v = V0e"'	 (31) 
p	 =	 —	 (23) 

so that 

and Ohm's law is given by 

= i(Em +	 ,,,v,,H,) 

where p represents the pressure and E the electric 
field intensity. Under the standard approxima-
tion of magnetohydrodynamics [Cowling, 1957], 
Maxwell's equations combine as follows: 

OH 1	 3 V 1	 OH1	 O2HI 
-= H 1 --v 1 --+	 (24) 

Ot	 Ox1	 Ox1	 OXk OXk 

Let H 2 = H, + 1121, and assume that there is 
no x, dependence of the magnetic, velocity, and 
pressure fields. Then (23) and (24) yield 

OH 1	 02H, + OH2' 
2	 Vl 

--i- =
	

ay 

+(H0+H2') —	 (25) 
Oy 

— ____ 
— ' Oy	

(26) 

Op1 	 O2v1	 ,(H0 + H2 1) OH1
(27) 

4rp	 -&;-

- _iIii& — _L fzH,2\ 
—	 4ir Oy — 2 3 tT)	 (28) 

Equation 28 can be integrated directly to yield 
p = —pH i'/8ir, giving the tensional forces 
involved in Alfvén wave propagation. We can 
decouple (26) from (25) and (27) by assuming 
that IH,'/HoI << 1, which supposes that the 
perturbation field in the direction of the main 
field is relatively small. Let CA represent the 
Alfvén wave velocity, CA = pHo'/4irp. Then

v = Voe"'J...o 

The boundary conditions on the normal and 
tangential components of the magnetic field are 

H2 J. = H2 j f	 (32) 

H,I. = H,J 1	 (33) 

where the subscripts s and I denote the solid 
and fluid components. Equation 32 is satisfied 
automatically by our approximation that 

1H2 1/H01 << 1 

Finally there is the condition on the tangential 
component of the electric field being continuous 
at the core-mantle boundary. The continuity of 
the normal component of the magnetic induction 
requires

1J! _±L	 (34 
.iOy,	 crOy, 

The elasticity of the plate is neglected, since the 
stress gradients across the skin depth are small. 

Equation 29 takes the form 

OH	 O2H 
-j-=n-	 (35) 

in the solid. The appropriate solution to the 
diffusion equation 35 is 

11= Dexp[f+i(wt+-)] 

where D is a constant coefficient to be determined 
from the boundary conditions. This solution is 
chosen to give a vanishing perturbation field, H, 

at large negative values of the coordinate y.
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The solution for the velocity field is taken in	 TABLE 7. Dimensionless Parameters at 
the form [Ludford, 1959]

	
Core-Mantle Boundary 

= [Ae" + Be"']e"°'	 (36) a = 2.5 X 10 

boundary conditions, and k 1 and k 2 are de-
A and B 'are constants determined by the 

fl= 
= 0.02-0.05 

termined from (29) and (30). The perturbation 
field in the fluid is then 

jj = LL	 e"(k12 - iw) 
CA 2 Lici

B —k,u 
2 - )] k2 	 [[a + 1(1 + $) 2]l/2 

+ — e ( k2 v u 
k2

p = 10''	 10	 10" 
6X10 6	 0.6	 6X104 

1 
=	 [[a + i(1 + /3)2]1/2 

+ [a + i(1 - fi)2]1/2} 

The solution has been chosen so that the velocity 
field vanishes at large positive values of the 
coordinate y. Ludford has shown that the 
dispersion relations give 

1 _________	 1/2	 1/22 1/2 
= 2 \1/2 [ CA 2 + i(n + P ) w] 

l?7P)

1/2	 1/2s2 	 1/2k 
+ [ CA 2 + ( ?7	 - P ) C ] 5	 (37) 

1 _________	 1/2 
k2 =	 1/2 [[CA 2 + i(?	 -1- 

)2]1/2 

2(v)

[ CA 2 -F' i(	
1/2\2 -,1/2 -	 ?7P )c.J	 (38) 

In the limit of low frequency, the disturbance 
is an Alfvén wave propagated with a perturbed 
Alfvn wave velocity. The perturbations result 
from the finite viscosity and conductivity of the 
fluid. 

The contributions of the energy radiated from 
the plate as Alfvén waves and of that going into 
dissipation by viscosity and conductivity near 
the boundary are given by the ratio of the two 
terms in each of the square brackets of equations 
37 and 38. It is convenient to separate the effects 
of conductivity and viscosity by the introduction 
of the dimensionless quantities

'1/2 
a = CA 2/O.127 1 	 t., = 

a is a measure of the ratio of energy radiated 
away to that lost by dissipation due to the finite 
conductivity of the fluid. /3 is a measure of the 
ratio of dissipation due to viscous effects relative 
to that due to the finite electrical conductivity 
of the fluid. In terms of the constants a and /3, 
the mode numbers k1 and k 2 are given by

- [a + i(1 - /3)2]1/2} 

A parameter useful in discussing the relative 
contributions of eddy-current dissipation in the 
solid and fluid is

/	 \1/2= ôí/&, = 

• Representative values of the dimensionless 
parameters a, /3, and y are listed in Table 7. 
a is the best known of these parameters. Bullard 
and Gellman [1954] adopt a value for the con-
ductivity of the core of 3 X 10 6 emu and state 
that this value is uncertain by no more than 
30 per cent. Several other estimates of the con-
ductivity based on the extrapolation of near-
surface values lead to much the same value, 
though studies of the westward drift of the 
field suggest a conductivity lower by an order 
of magnitude. If anything, the value adopted by 
Bullard for the conductivity of the core is too 
high. A lower value would lead to a correspond-
ingly lower value for a. The value for 3 is 
uncertain because of the inconclusive evidence 
concerning the value of the viscosity for the 
core. Jeffreys [1952] has attempted an estimate 
on the basis of the damping of P waves in the 
core. Aside from difficulties in interpretation of 
the seismic results this will give an estimate of 
the bulk viscosity rather than the shear viscosity, 
which is of interest for the boundary-layer 
problem. Gutenberg [1959a] considers the prob-
lem of viscosity of the core completely open. 

The stress resisting the oscillation of the solid 
surface will be composed of a viscous plus a 
Maxwell stress.

avl	 HOHI
P12 = PP - +
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2	 / \1/2 1 In terms of the solution (36), the gradient of the 1e -	 - pp V0 	 (0,) 
S i(i + ) fluid velocity is	 - 2[a + i(1 + /3)2]1/2 ,
	 ( 

= —(k,A + k2B)e1" 
ay 

which combined with the boundary condition on 
the velocity 

v	 V0e" at y = 0 
yields

	

-	 [AC/c2 - Ic 1) - k2VoJe' 
3y i,-0 

The perturbation field H at the boundary y = 0 
in the solid is

H L-0	 Dew' 

The total stress acting on the plate in terms of 
the mode numbers and undetermined constants 
is then 

P12 = {pv[A(k2 - k) - k2 v0 + 

The average energy dissipated at the boundary is 

= _ v[ A(k2 - Ic,) - là2 V0 + 

The boundary conditions in equations 31, 33, 
and 34 provide the three equations for de-
termining the three constants A, B, and D, 
which are, respectively 

A + B = V0 

H0
[A(i - /c2) + B(ü - k21-)] = D 

and 

1H0 
- -- [A(io, - /c,2) + B(ia -

= P . (' + i) 
0• ,	 ö 

The solution for D is found to be 

	

D -	
- VoV_yHo2(n,v)12 

- (1+i)(1+/3)± /2[a+i(1+/3)2]h/2y 

Solving for A and B in terms of the dimensionless 
parameters, we find that the -rate of energy 
dissipated per unit area of the surface is given 
exactly by

a(i + i) 

+ (1 +i)(i +/3) +V[a+i(1 +/3)2]h/2 

+	 + i)(i + /3) 

+ [a ± i(i + /3)2]1/2} (39) 

The term in the braces represents the modified 
viscous dissipation; the second term describes 
the eddy-current dissipation in the fluid; the 
third term is due to the dissipation by eddy 
currents in the solid as represented by the 
Maxwell stress. The terms involving -y arise from 
the finite conductivity of the solid, and those 
involving a are associated with the magneto-
hydrodynamic modes. 

The parameter a is small because of the rela-
tively small dipole field of the core-mantle 
boundary. As a result, the magnetohydro-
dynamic effect will be important only when /3 
is small. For the case of small viscosity for the 
core /3 << 1, the average energy flux is 

1/2 1/2 (	 ( 

	

______ 1
	 '	 2 

dl	 2/	 .	 /31+i'J 0 lJ3<<1 

The dissipation due to the finite conductivity of 
the mantle dominates the viscous dissipation 
when

1	
( y/2 H02cr, 

>> 1 
/3	 \4-zrl	 -/; 

Eddy-current dissipation is thus favored by low-
frequency oscillations and high conductivity of 
the mantle. 

In terms of the displacement q 0 of the plate 
the eddy-current dissipation is 

jy 2 3/2 de	 P'-'AW	 o	 2
1/2 dl	 - 4?7 

The eddy-current dissipation depends on the 3/2 
power of the frequency; ordinary viscous dissi-
pat.ion, on the 5/2 power of the frequency. 

The relative contribution of the eddy-current 
dissipation to the viscous dissipation is shown 
in Figure , in which the ratio of the Maxwell 
stress to the viscous stress is presented as a 
function of the conductivity of the lower mantle
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Fig. 5. Ratio of energy dissipated by eddy 
currents to that dissipated by viscosity. 

and the viscosity of the core. If the viscosity of 
the core is 10 cm2/sec, the eddy current con-
tributes as much to the dissipation as the viscous 
stress does, provided that the conductivity of 
the lower mantle is 2.5 X 10 emu. These 
considerations indicate that for probable values 
of the core viscosity and the core-mantle con-
ductivity (see Table 3) the viscous dissipation 
greatly exceeds the hydromagnetic dissipation 
at the frequencies of the toroidal oscillations. 
In motions of lower frequencies, however, such 
as the Chandler wobble, the electromagnetic 
dissipation should dominate. 

As /3 approaches unity, and becomes large, 
the expression for the average rate of energy 
dissipation (equation 39) approaches the energy 
dissipated by pure viscosity, and we obtain the 
results discussed in the previous section. 

Effect of the steady toroidal magnetic field on the 
lower boundary of the mantle. The toroidal field 
in the core leaks into the mantle because of the 
finite conductivity of the mantle. The ponder-
motive force exerted by the field on the mantle is 

1 
{/"o	 o)	 (sin OH,,) I—sm 

4w \r

+ (if) (rH)} 
Hr, the radial component of the magnetic field, 
is approximately equal to the dipole field. H,, is 
the toroidal component of the field in the lower 
mantle. The conductivity of the lower mantle is 
presumed to decrease outward in a radial direc-
tion, and therefore the toroidal field is confined 
to a thin spherical shell near the core-mantle 
boundary. The pondermotive force is, to this 
degree of approximation,

TABLE 8. Values of X, for the Gutenberg
and Homogeneous Model Earth 
Xeft	 (W'tjff - COfrae)/W2frao 

(H,/4ir)(aH,,/ar)	 (40) 

The total force, acting on the mantle, follows 
from integrating equation 40 over the mantle. 
We neglect radial variations in the dipole field; 
the stress acting on the mantle is H,H,,/4ir. 
This stress couples the mantle to the core and, 
indeed, is supposed to be responsible for trans-
mitting variable core motions to the mantle with 
a resulting variation in length of day [Munk and 
MacDonald, 1960]. 

The magnitude of the Maxwell stress depends 
on the strength of the toroidal field in the core 
and on the conductivity of the lower mantle. 
Pertinent estimates are listed in Table 3. The 
stresses corresponding to the listed values of the 
toroidal field are 0.03 to 0.003 dynes/cm2. 

Suppose that the lower boundary of the mantle 
is kept rigid. The stress at the core-mantle 
boundary required to maintain a rigid boundary 
varies as

r(b)	 ro(b) coswt 

where c is the frequency of the oscillation and 
ro(b) is the maximum stress. Direct calculation 
shows that, for the Gutenberg model, the maxi-
mum stress is 

ro(b)	 1.5 X 104 q0(a) dynes/cm2 

where qo(a) is the maximum outer surface dis-
placement (see parts 5 and 6). If for a given 
surface displacement qo(a), ro(b) is less than the 
Maxwell stress, the surface is rigid throughout 
the oscillation and the frequency of the oscilla-
tion will be higher than in the case of a free 
boundary. Table 8 lists the proportional increase 
in the frequency for various oscillations. If the 
stress generated at the core-mantle boundary is 
greater than the critical Maxwell stress TM, then 

Oscillation
'eff 

Homogeneous
ff 

Gutenberg 

,T 2 0.58 0.84 
0T 3 0.19 0.25 
0T 4 0.08 0.06 

0.018 0.016 
0T, 0 0.001 0.000 

0.64 0.57
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Fig. 6. Amplitude-dependent spring constant. 

over part of the oscillation the boundary acts 
as if it were rigid. The situation is analogous to 
the case of solid friction. A force below a certain 
critical value does not move a block resting on a 
solid but will result only in the elastic deforma-
tion of the block. Forces in excess of this critical 
force move the block over the resisting surface 
with a sliding friction less than the static friction. 

In the following, we obtain an approximate 
expression for the shift in frequency for oscilla-
tions with a partly rigid boundary. Each oscil-
lation is modeled by a spring-mass system with 
a variable spring constant. For stresses below 
some critical stress determined by the toroidal 
field and conductivity in the lower mantle, the 
lower boundary acts as a stiff boundary; above 
this critical stress the boundary is free. The 
variable spring constant is schematically illus-
trated in Figure 6, where € is the displacement 
corresponding to the critical Maxwell stress. In 
the lumped constant approximation for the 
toroidal oscillation, k, is the larger spring constant 
corresponding to the high-frequency, stiff lower 
boundary oscillation w 1, and k 2 represents the 
low-frequency, free lower boundary oscillation 
CL)2. The equation for the lumped constant 
harmonic oscillator is then 

d2x/dt2 + k2x 

= —Xk2 [H(x + ) - H(x - )]	 (41) 

= (2 - 
w2)/w2 

where H(x) is a unit step function and dissipation 
both in the mantle and at the boundary has been 
neglected. Table 8 lists values for the effective A 
for certain oscifiations of the Gutenberg and the 
homogeneous models. In the analogy with the 
nonlinear spring-mass system, the frequencies of 
oscillation have been determined from actual 
model computations for a stiff and a free core-
mantle boundary (see part 6). Table 8 again 
illustrates the fact that the low-order modes are

far more dependent on the lower boundary 
condition than the high-order modes. 

The period of the nonlinear harmonic oscil-
lators described by equation 41 can be obtained 
either by the method of Krylov-Bogoliuboff 
[Minorsky, 1957] or by direct integration of the 
energy equation. The latter procedure leads to 
the exact expression for the period T. 

1	 i	 ._[( I_i+x 
T 4 1[k2( i + A)]2sm [E.t2 + 

1	 1 +f7s—rrs1fl [ 
x,., is the maximum amplitude of the oscillation. 
Let T0 represent the period for the oscillation if 
the lower boundary is free (k 1 = k 2). The 
perturbed period T is then given approximately 
by

T/T0 = I - 

with the condition for the validity of the ap-
proximation

X(/Xm)2 << 1 

The ratio €/x,,. is the proportion of the amplitude 
over which the harmonic oscillator reacts to the 
stiffer spring. This implies for the toroidal 
oscillations that a partly rigid boundary will 
affect the period of the oscillation only if ro(b) 
is of the same magnitude as the critical Maxwell 
stress. The Maxwell stress tying the core with 
the mantle is of the order of 0.03 to 0.003 
dyne/cm2, provided that the estimates of the 
magnetic field and conductivity are correct. 

The analysis by Benioff, Press, and Smith 
[1961] shows a peak of the toroidal oscillations 
at a period of 42.3 minutes (see part 1). Benioff, 
Harrison, LaCoste, Munlc, and Slichter [1959] 
determined the noise level for the Benioff 
extensometer at Isabella, finding that the root 
mean square error in strain is very nearly the 
least count of about 1 X 10 10. The extensometer 
is 24.08 meters long, so that the minimum 
measurable displacement is about 10 cm. The 
records for the Chilean earthquake of both 
of the Naña and Isabella extensometers all 
indicate readings well above the noise level, 
suggesting a maximum surface displacement of 
at least 10 cm. For a surface displacement of 
this magnitude the corresponding stress at the 
core-mantle boundary needed to maintain a 
rigid boundary is 0.01 dyne/cm2. This stress is of
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Fig. 7. Total elastic energy in 0T1 

the same order as the computed electromagnetic 
stress. The observed frequency 0T2 is somewhat 
greater than that expected for a Gutenberg 
model free boundary (see part 6) but much less 
than the stiff boundary. It should be noted that, 
if the electromagnetic stress is actually 0.3 
dyne/cm2, corresponding to a high mantle con-
ductivity and toroidal field, the mantle should 
act with a stiff lower boundary. 

The data on the 0T2 oscillations are not 
sufficiently precise to allow a definite statement 
on the extent of the core-mantle interaction. 
If the ratio of the perturbed period to the free 
period is taken as 42.3/43.6, the critical Maxwell 
stress is

To(b)[(	
T 

— 

or 

(1.5 X 1O4)(1O_6)[j (1 - 423']u1'3 l,	 43.61 
-3	 2 = 7 X 10 dyne/cm 

Thus it appears that the electromagnetic stress 
could be of sufficient magnitude to perturb the 
mantle oscillations. The effect of the magnetic

stiffness would be to increase the frequency of 
the oscillations. The observed 8T2 oscillation is 
close to the value predicted for the Gutenberg 
model with a free lower boundary, so that the 
toroidal magnetic field in the lower mantle has 
a strength less than about 0.1 gauss. This requires 
that the toroidal field in the core is lower than 
10 gauss if the conductivity of the lower mantle 
is 10 8. It is even lower if the mantle conductivity 
is higher. 

We further note that because of dissipative 
processes within the mantle and at the boundary 
the amplitude of the 8T2 oscillation at the core-
mantle boundary will decrease with time. As the 
amplitude decreases the perturbations due to 
the finite boundary stress increase, and there 
should be a corresponding shift in frequency. 
Analysis of the frequency of the 8T2 oscillations 
as a function of time should indicate a shift in 
frequency. We have attempted such a study of 
the Lamont record, but the record is too short 
to give definitive results. 

The 0 T2 oscillation should show the effects of 
the steady electromagnetic coupling for the core-
mantle to a greater extent than the other oscil-
lations. This is apparent both from the tabula-
tions of the parameter X in Table 8 and from the 
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Fig. 9. Elastic energy per volume associated with radial stress in a homogeneous 
mantle (0T). 

fact that higher-order oscifiations require a 
greater stress in order to maintain a rigid lower 
boundary. 

The placing of a requirement on the magnitude 
of the toroidal field in the lower mantle provides 
further difficulties for the interpretation of the 
irregularities of the rotation of the earth, in 
terms of the core-mantle interaction. Munk and 
MacDonald [1960] have discussed these irregu-
larities. They find that a toroidal field in the 
mantle of about 0.1 gauss is required to account 
for the longer-period irregularities in rotation by

core-mantle interaction. The above interpreta-
tion for the 0T5 toroidal oscillations suggests 
that the toroidal field is less than this. 

5. Disnusu'rior OF ENERGY 

In the present section we neglect the effects of 
dissipation and rotation and consider the equa-
tion of motion to zero order in 6. In a toroidal 
oscillation there is an equal partition between 
kinetic and elastic energy over one or more 
cycles of oscillation. The radial distribution of 
elastic energy is a function of the mode number. 

HOMOGENEOUS MODEL ni 

6
-I. 

•Io, 

z —I'

10

4000	 3000 
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Fig. 10. Elastic energy per unit volume associated with radial stress in a homogeneous
mantle (1T.)
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Fig. 11. Elastic energy per unit volume associated with radial stress for Gutenberg 
model earth (,T,). 

In any given mode of oscillation the mean 
elastic energy will be a function of radius, depend-
ing on the distribution of elastic constants. A 
knowledge of the radial variation of elastic 
energy with mode number is essential in the 
construction of different models of the earth. 
A given model is defined by the distribution of 
shear-wave velocity C8 and rigidity u. Any 
discrepancy between the theoretically computed 
and the observed resonant frequencies can be 
assigned to incorrect values of the elastic param-
eters. For a given mode, certain regions of the

earth are more disturbed by the oscillation than 
others, and the corresponding rigidities and 
velocities play a greater role in determining the 
resonant frequency. Distribution of energy fixes 
the regions of the earth that contribute most 
heavily in determining a particular resonant 
frequency. 

The radial distribution of energy for a given 
mode is also essential to the interpretation of the 
values of Q obtained from observations. Different 
modes will effectively sample different parts of 
the earth's mantle; the Q's obtained for the 
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Fig. 12. Elastic energy per unit volume associated with radial stress for Gutenberg 
model earth (1T,). 
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Fig. 13. Elastic energy per unit volume associated with conical stress for homogeneous 
earth (0T). 

different modes allow an estimate of the radial 
variation of the dissipative properties. 

The variation with mode number of the total 
energy in a mode of oscillation is useful in the 
determination of the energy spectrum of an 
earthquake. The surface displacement at a given 
frequency at a point on the earth's surface 
specifies the total elastic energy in that mode of 
oscillation. It thus may be possible to calibrate 
the intensity of large earthquakes exciting the 
free oscillations in terms of the energies within 
specific modes of oscillation.

The mode number m is set equal to zero since, 
in a nonrotating body, the modes are degenerate 
with respect to m. The neglect of rotational 
effects in the energy consideration implies that 
we neglect terms of order €2. For m = 0 the 
surface displacement corresponding to an oscil-
lation of a given order 1 is 

= 0	 = 0 

= P (cos 0) ,,W(a)	 (42) 

where a is the outer radius. The computed 
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Fig. 14. Elastic energy per unit volume associated with conical stress for homogeneous 
earth (,T1).
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energies are normalized such that

1t9q6, - 
T,c, =	

ri 

- (qf - cot oq 9) 09 - 
r 

The elastic energy per unit volume is given by 

1	 2	 2 = j {r r + T 

r,,, is the stress associated with the traction on 
spherical surfaces. For the mantle bounded by 
free surfaces T, 9 vanishes at both of the free 
surfaces. r0 9 is the stress resulting from the 
twisting of a spherical shell, and it is associated 
with the differential rotation of conical sectors 
of a spherical shell. We will consider the energies 
associated with the radial stress, T, 9 , and the 
conical stress, TO,, separately. 

In terms of the displacement, the energy 
associated with the radial stress is 

1 p 2 f19 ,W1 - w2 

\ 2 14j'8r	 rJ 

The energy per unit thick spherical shell follows 
from integrating equation 44 over the spherical 
surface 

KM 

1000 

I.2 

0 
U-

750 

500 
a-
Si 
0

250

= P 1 1 (cos 0) 

= sin 20 

= (sin 0 + 5 sin 30) 

= (2 sin 20 + 7 sin 40) 

where the pole of the harmonic is fixed by the 
source of the disturbance, and 0 is the angle 
between the source and receiver, not the geo-
graphical colatitude. 

The nonvanishing components of the strain are 

= 2 \ &r	 r I 

1 fi aq1. =	 --- - cot 0
ri 

for the displacement given by equation 42. The 
corresponding nonvanishing components of the 
stress are

	

irr 1(1 + 1) fä	 + 21+1	 3r	 rJ 

Similarly, the energy per unit volume associated 
with the conical stress is 

(r,g, '\ 	 1 / 2\2 1	 2 

	

j — 5F'j)	 ,,VV1 
\ 2 /	 r	 4/2 

and the energy contained within a spherical shell 
of unit thickness is 

ff T6g 

(1 - 1)1(1 + 1)(1 + 2) 1	 2 

21+1	
—W1(r) 

The total energy E1 associated with an oscil-
lation of radial order n and angular order 1 
is then

1(1 + 1) f i ha ,,w1	 ,W1'\2 
Ej -7r	 I)t	 +-21 + 1 j p(r) t	 a	 r 

+ (1 - 1)(l + 2) Wz2}r2 dr	 (45) 

(43) , 
= ff T€ 

ds 
and the radial function ,,W1 is set equal to 1 cm 
at the outer surface. The surface distribution of 
displacement for the first few orders is then 
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Fig. 16. Energy per unit volume aociated with conical stress for Gutenberg model 
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Equation 45 has been evaluated numerically 
for two models, a homogeneous mantle and a 
Gutenberg mantle (see part 6). Figure 7 illus-



trates the variation of the total elastic energy 
as a function of mode number 1 for the 

fundamental oscillations. The surface displace-



ment is given by equation 43, and the energies 
are in ergs, assuming that the surface displace-



ment is 1 cm. In progressing from 0T2 to 0T8

the elastic energy increases by about two orders 
of magnitude. The increase of energy with mode
number 1 corresponds to the increased corn-

plexity in the pattern of displacement on the 
outer surface. Figure 8 lists the variation of total 
energy with 1 for the first overtone. For a given 
value of 1 the energy in the overtone is about two 
orders of magnitude greater than in the funda-
mental. For fixed surface displacement the energy 
increases with the overtone because of the 
increasing stresses required to produce the nodal 
surfaces within the earth. 

An inhomogeneous earth with velocity and 
rigidity varying as the Gutenberg model has a 
lower energy in any given mode than a corre-
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Fig. 17. Energy per unit volume associated with conical stress for Gutenberg model earth 
(1T,).
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Fig. 18. Total elastic energy per unit radius for homogeneous model earth (0T1). 

sponding homogeneous mantle. This results 
partly from the fact that the Gutenberg model 
earth has a low-rigidity crust and upper mantle. 
It is possible to produce a given surface dis-
placement in the inhomogeneous mantle with a 
lower stress than in a homogeneous mantle with 
a stiffer outer layer. 

Figures 7 and 8 can be used to estimate the 
total elastic energy associated with a particular 
oscillation. As an example, we consider the 0T2 

oscillation excited by the Chilean earthquake. 
From the records obtained by Benioff, Press, and 
Smith [1961] the displacement is about 10-6 cm

(see part 4). Equation 42 then gives 

io_-6 
,,W1(a) 3cosOsinO2XlO	 cm 

where we have taken the angular distance 
between Chile and Pasadena as 82°. The pattern 
of displacement rotates; the amplitude is period 
averaged. Assuming that oQ2 equals 200, the 
energy density corresponding to the 8T2 oscil-
lation for the Chilean earthquake is 10 1 8 ergs/cph. 
Even though this figure is most uncertain it 
implies that the energy density must increase 
toward high frequencies if the total energy in 
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Fig. 19. Total elastic energy per unit radius for homogeneous model earth (iT1).
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Fig. 20. Total elastic energy per unit radius for Gutenberg model earth (0T1). 

the earthquake is of the order of 1024 ergs. A flat 
spectrum with the level of energy for the 0T2 

oscillation would require that the cutoff fre-
quency be of the order of 1O cps. A lower cutoff 
frequency is more probable. 

The above discussion suggests that it may be 
possible to obtain rough estimates of the energy 
in the lower-frequency toroidal oscillations for 
earthquakes recorded by instruments with known 
response curves. Corrections that must be made 
for the finite decay of the oscillations are straight-
forward.

In Figure 9 we illustrate the variation of the 
normalized energy density associated with radial 
stress

(21 + 1) 1', 
1(1 -I- 1) 

for ahomogeneous mantle. The energy vanishes 
at both the core-mantle boundary and the outer 
surface because of the boundary conditions. The 
energy density is concentrated nearer the surface 
at higher mode numbers and is more evenly 
distributed throughout the mantle in the lower 
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Fig. 21. Total elastic energy per unit radius for Gutenberg model earth (1T1).
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mode numbers. Figure 10 illustrates the nor-
malized energy density of the first overtones for 
a homogeneous earth. The level of energy is 
greater, but the features are similar in the sense 
that the energy in the higher modes tends to be 
concentrated toward the surface. Figures 11 and 
12 illustrate the variation of the energy associated 
with the radial stress in the Gutenberg model for 
the fundamental and first overtone, respectively. 
As in the homogeneous model, the energy level 
increases toward the surface in the higher modes. 
The distribution is more irregular because of the 
nonuniform rigidity in the mantle. 

The distribution of the normalized energy 
density

(21+1)1 

1(1 + 1) 42 

associated with the conical stress in a homo-
geneous mantle is shown in Figures 13 and 14. 
The energy in the fundamental (Fig. 13) is 
almost constant through the mantle for the low-
order oscillations. The higher-order oscillations 
show a concentration of the energy toward the 
surface. The energy does not vanish at either 
the upper or lower surfaces since the boundary 
conditions involve the vanishing of the radial 
stress. In the overtone the energy associated 
with the conical stress vanishes at the radius 
corresponding to the radial nodal surface. The 
radial node approaches the surface with in-
creasing mode number 1. The variation of the 
depth to the radial node for the homogeneous 
and the Gutenberg model earth is shown in 
Figure 15. 

The variation of the energy density associated 
with the conical stress for an inhomogeneous 
earth is shown in Figure 16 (fundamental) and 
Figure 17 (first overtone). The energy associated 
with the conical stress is lower in the crust 
because of the low rigidity of the crust, but the 
general features of the variation of this energy 
with depth are similar to those for the homo-
geneous earth. For the low-order modes the 
energy is uniformly distributed over the mantle 
for the fundamental and is concentrated toward 
the surface for the higher-order modes. The 
overtones again show the effect of the radial node. 

The distribution of the normalized elastic 
energy per unit thick shell 

(21 + 1) 
1(1 + 1	

+

is shown in Figures 18 to 21. In Figure 18 the 
total energy per unit thick shell for a homo-
geneous earth is shown for the fundamental 
oscillations. At the low mode numbers the 
energy is evenly distributed throughout the 
mantle. At higher mode numbers there is a 
tendency , for the concentration of energy toward 
the surface, though the peak in the near-surface 
concentration is not sharply defined. Figure 19 
shows the distribution of energy for the first 
overtone in a homogeneous mantle. The energy 
tends to be concentrated about halfway through 
the mantle. The node in the upper part of the 
mantle associated with the conical stress de-
creases the energy in the upper mantle, and the 
lower energy near the core-mantle boundary 
combines to produce the peak in the energy near 
the central part of the mantle. 

The distribution of total energy per unit thick 
shell in an inhomogeneous earth resembles that 
in a homogeneous earth. Figure 20 illustrates the 
distribution of energy in the Gutenberg model 
for the fundamental oscillations. The low-order 
oscillations have more or less constant energy 
throughout the mantle. It should be noted that 
the smitH dip in the energy curves near the upper 
mantle implies that the low-order oscillations are 
somewhat insensitive to the region of low velocity 
in the mantle. For higher-order oscillations the 
energy is more nearly concentrated toward the 
surface. For 0T,0 the energy drops to one-half 
the peak value at 900-km depth. For 0 T14 the 
depth at which the elastic energy is one-half 
peak value is 700 km; for 0T18, it is 520 km. 

The results shown in Figure 20 clearly illus-
trate the fact that the low-order oscillations 
uniformly sample the entire mantle; the low-
order resonant frequencies of the inhomogeneous 
earth and the homogeneous mantle are almost 
identical. For 1 = 6 the lower part of the mantle 
is less important in determining the resonant 
frequency, since the energy distribution begins 
to drop off rapidly at a depth of some 1500 km. 
These results imply that the study of the detailed 
characteristics of the upper mantle will depend 
on the identification and analysis of toroidal 
oscillations of order 15 to 30, corresponding to 
a range in periods of 9 to 4 minutes. These high-
order oscillations will provide definitive evidence 
on the variation of rigidity in the critical upper 
region of the mantle. 

The results presented in Figure 20 will also
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be useful in the interpretation of the anelastic 
properties of the mantle. The Q obtained from 
the 0T2 oscillation will provide the average 
anelastic properties for pure shear in the mantle. 
The major contribution to the Q obtained for 
the 0T18 oscillation will come from the upper 500 
km of the mantle. We should thus be able to 
obtain an estimate of the distribution of the 
dissipative properties in the mantle. An attempt 
to study the amplitude decay of the toroidal 
oscillations with time has been made on the 
Lamont record. The record is too short to 
give definitive results, but the value obtained 
for çQ is 250 and that for	 is 200. 

Figure 21 shows the variation of total elastic 
energy per unit thick shell for the first overtones 
in the Gutenberg model earth. As in the homo-
geneous mantle there is a tendency for the energy 
to be concentrated near the center of the mantle 
as a result of the node in the conical stress in the 
upper part of the mantle. 

6. MODEL CALCULATION 

The resonant frequencies of the toroidal oscil-
lations for 1 = 2-17 and n. = 0-3 have been 
computed for a number of earth models. An 
earth model is defined by the radial distribution 
of shear-wave velocity C8 and rigidity . The 
discrepancy between observed and calculated 
resonant frequencies provides a measure of the 
uncertainty in our knowledge of the constitution 
of the mantle. The computations used the radial 
distribution of elastic energy (see part 5) for a 
given oscillation as a guide in adjusting earth 
models to fit the observed frequencies. The 
majority of the calculations are based on the 
assumption that the earth's mantle is bounded 
by two free surfaces. Additional solutions have 
been obtained in which the core-mantle boundary 
is taken as rigid. This study is necessary to 
investigate the effect of the core-mantle boundary 
on the toroidal oscillations (see part 4). 

The starting point for the calculations is an 
assumed model of the earth's mantle derived 
from classical seismology. We have initially 
considered two models, the Gutenberg and the 
Lehmann. Both these models are characterized 
by having a layer of lower velocity in the upper 
mantle; this layer distinguishes these models 
from Bullen's model A or model B. Comparison 
of theoretical and observed spheroidal oscilla-
tions [Pekeris, Alterman, and Jarosch, 1961] shows

that the observations favor the Gutenberg model 
over Bullen B. Moreover, a number of seismic 
studies provide support for the existence of a 
low-velocity layer (see part 7). 

The actual computation of the resonant fre-
quencies has been carried out by the method 
described by Gilbert and MacDonald [1960]. The 
earth is assumed to be made up of a number of 
concentric spherical elastic shells. The motion in 
each shell is described by a sum of products of 
surface spherical harmonics and spherical Bessel 
functions. The solutions for each shell are con-
tinued by use of the continuity condition on the 
stress and displacement. The resonant frequencies 
are obtained by applying the boundary condi-
tions at the outer and inner surface. For the 
mantle bounded by free surfaces, the boundary 
conditions are symmetrical and require that the 
radial traction 

=	 /i(i + 1) C".1 

• {/AkAj,,[j'(kr) - (kr)'j1(kr)] 

+ jilcB,,,[y 1 1 (kr) - (kr)'y1(kr)] I 

Ic = 

vanishes on the outer surface and at the core-
mantle boundary. For the case of a stiff lower 
boundary we obtain the resonant frequencies by 
requiring that the radial traction vanish at the 
outer boundary and the displacement vanish 
over the core-mantle boundary. The details of 
the matrix operations used in the actual numeri-
cal calculations are described by Gilbert and 
MacDonald [1960]. 

A homogeneous mantle is taken as a basis for 
comparison in much of the following discussion. 
It is defined as a spherical shell with inner radius 
of 3472 km and outer radius of 6371 km. The 
elastic properties are 

C8 = 6.24 km/sec 
12	 2	 3 = 1.74 X 10 dynes/cm p = 4.47 g/cm 

corresponding to the mass-average properties of 
Bullen's model B. The resonant frequencies for 
the oscillations 0T1 are listed in Table 11. The 
resonant frequencies for the higher overtones 
n = 1,2, and 3 are summarized in Tables 12, 13, 
and 14. 

The calculation of the distribution of elastic
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TAB 

Gutenberg 

ii, 
Radius,	 C,,	 mega-



km X 10 km/sec bars 

	

3.47	 7.20	 2.05 

	

3.57	 7.23	 2.92 

	

3.77	 7.15	 2.81 

	

3.97	 7.05	 2.68 

	

4.17	 6.97	 2.57 

	

4.37	 6.90	 2.47 

	

4.57	 6.80	 2.34 

	

4.77	 6.69	 2.22 

	

4.97	 6.55	 2.08 

	

5.17	 6.42	 1.95 

	

5.37	 6.32	 1.85 

	

5.47	 6.23	 1.77 

	

5.57	 6.03	 1.60 

	

5.67	 5.76	 1.40 

	

5.72	 5.45	 1.19 

	

5.87	 5.20	 1.04 

	

5.92	 5.04	 0.937 

	

5.97	 4.85	 0.852 

	

6.02	 4.68	 0.784 

	

6.07	 4.54	 0.728 

	

6.12	 4.46	 0.696 

	

6.15	 4.42	 0.680 

	

6.17	 4.38	 0.664 

	

6.20	 4.36	 0.652 

	

6.22	 4.35	 0.645 

	

6.25	 4.37	 0.647 

	

6.27	 4.41	 0.657 

	

6.28	 4.46	 0.670 

	

6.29	 4.51	 0.683 

	

6.30	 4.57	 0.700 

	

6.31	 4.60	 0.713 

	

6.32	 4.65	 0.718 

	

6.34	 3.80	 0.433 

	

6.35	 3.55	 0.345
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LE 9. Parameters for Gutenberg Model Earths 

Gutenberg I	 Gutenberg IV	 Guten 

IL, 

C,,	 mega-	 C,,	 mega-	 C,, 
km/sec bars	 km/sec	 bars	 km/sec 

7.11	 2.88 Same as	 Same as	 7.08 
7.14	 2.85 Guten-	 Guten-	 7.11 
7.06	 2.74	 berg I	 berg I	 7.03 
6.94	 2.62	 to	 to	 6.91 
6.88	 2.51 R = 5.87 R = 5.87	 6.85 
6.81	 2.41	 x 10	 X 10	 6.78 
6.72	 2.28	 6.69 
6.61	 2.17	 6.58 
6.47	 2.03	 6.44 
6.34	 1.90	 6.31 
6.24	 1.80	 6.21 
6.15	 1.72	 6.12 
5.96	 1.56	 5.93 
5.69	 1.34	 5.66 
5.38	 1.16	 5.38 
5.14	 1.01	 5.16 
4.98	 0.914	 5.00	 0.924	 5.02 
4.79	 0.831	 4.82	 0.814	 4.84 
4.62	 0.765	 4.66	 0.780	 4.68 
4.48	 0.710	 4.52	 0.720	 4.54 
4.41	 0.679	 4.46	 0.679	 4.48 
4.37	 0.664	 4.42	 0.680	 4.44 
4.33	 0.648	 4.38	 0.664	 4.40 
4.31	 0.636	 4.36	 0.652	 4.38 
4.30	 0.629	 4.35	 0.645	 4.37 
4.32 . 0.631	 4.37	 0.647	 4.39 
4.36	 0.641	 4.41	 0.657	 4.43 
4.41	 0.654	 4.46	 0.670	 4.48 
4.46	 0.667	 4.51	 0.683	 4.53 
4.51	 0.683	 4.57	 0.700	 4.59 
4.54	 0.696	 4.60	 0.713	 4.62 
4.59	 0.701	 4.65	 0.718	 4.67 
3.75	 0.423	 3.80	 0.433	 3.80 
3.51	 0.337	 3.55	 0.345	 3.55

berg V
Gutenberg 

LL	 Low Den-
mega-	 sity, , 
bars	 megabars 

2.86 Same as 
2.83 Gutenberg 
2.72	 to 
2.60 R = 6.02 
2.49	 X 10 
2.39 
2.26 
2.15 
2.01 
1.88 
1.78 
1.70 
1.54 
1.32 
1.14 
1.03 
0.944 
0.824 
0.800	 0.773 
0.740	 0.707 
0.710	 0.676 
0.700	 0.660 
0.684	 0.646 
0.672	 0.639 
0.665	 0.634 
0.667	 0.640 
0.677	 0.651 
0.690	 0.666 
0.703	 0.681 
0.720	 0.689 
0.733	 0.715 
0.738	 0.724 
0.433	 0.433 
0.345	 0.345 

Gutenberg II 

Gutenberg III: 

Gutenberg low-density

C, = C, of Gutenberg I. 
= of Gutenberg. 

C, = C. of Gutenberg. 
= h of Gutenberg I. 

C, = C, of Gutenberg. 

energy associated with a single oscillation shows 
that the 0T2, 0T3, and 0T4 modes should give a 
good estimate of the mass-averaged velocity and 
rigidity for the mantle, provided that boundary 
effects are unimportant. The 02'2 oscillation is, 
however, perturbed by a core-mantle inter-
action; hence the 0T3 oscillation gives the best 
estimate. The values listed in Table 11 show 
that the observed period of 0T3 is about 1 per 
cent larger than the calculated period for the

homogeneous mantle. In the homogeneous 
mantle the period varies inversely with the shear-
wave velocity so that the average shear-wave 
velocity for the mantle should be 6.18 km/sec. 
The mani-average rigidity of the earth's mantle 
is somewhat less than that for Bullen's model B. 
The accurate determination of the frequencies of 
the low-order oscillations and therefore of the 
mass-average properties of the mantle can be 
used to fix the total mass of the mantle within
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- Fig. 22. Comparison of resonant frequencies in 
Gutenberg and homogeneous model earth (07',).

density. For the purposes of this calculation, the 
difference is unimportant, as will be shown below. 

The effect of the inhomogeneous distribution 
of rigidity and density on the resonant fre-
quencies is illustrated in Figure 22, where the 
frequencies for the Gutenberg and homogeneous 
models are shown. For oscillations of orders 2, 3, 
and 4, the frequencies are very nearly the same; 
the elastic energy associated with these oscilla-
tions is uniformly distributed throughout the 
mantle. The higher-order oscillations predomi-
nantly sample shallower regions of the upper 
mantle. In the Gutenberg model the average 
rigidity of the upper mantle is less than the 
rigidity for the mantle as a whole. The fre-
quencies are therefore lower than for the homo-
geneous mantle. The frequency interval between 
different mode numbers becomes less at a 
greater rate in the Gutenberg model than in the 
homogeneous model. This is a consequence of 
the lower rigidity and shear-wave velocity of 
the Gutenberg model in the upper part of the 
mantle. 
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about 1 per cent. This accuracy or greater is
2.0 

required in order to investigate the question of 
the total mass contained within the earth's inner II 0 

- 

core. The average density of the outer core is 
known within 5 per cent, but the density of the 
inner core, occupying only 0.7 per cent of the 
volume of the earth, is unknown. 

The elastic parameters defining the Gutenberg 
model earth are listed in Table 9 [Bullen, 1959; 8.0 

Dorman,	 Ewing,	 and	 Oliver,	 1960,	 Pekeris, 
Allerman, and Jarosch, 1961]. In the Gutenberg 7.0 

model the shear-wave velocity initially decreases, 
beginning at the base of the crust, and reaches a 6.0 

minimum at a depth of 150 km. The rigidities 
used in these calculations arc those listed by 5.0 
Bullen, but they are undoubtedly inappropriate 
for the upper part of the mantle. As is discussed
in part 7, the density most probably remains 
constant or decreases slightly within the upper 	 FREQUENCIES FOR T 

layers of the mantle, while the listed values of Fig. 23. Comparison of resonant frequencies in 
the rigidity imply a monotonically increasing Gutenberg and homogeneous model earth (1T1). 
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TABLE 10. Parameters for Lehmann Model Earths 

Radius, 
km X 10-s

Lehmann 

C,	 p, 
km/sec	 megabars

Lehmaim I 

km/sec	 megabars

Lehmann II 

C, 
km/sec	 megabars

Lehmann Velocity-
Bullen B Density 

p, megabars 

3.47 7.30 3.03 Same as Same as Same as Same as 2 86 
3.50 7.30 3.02 Lehmann Lehmann Lehmann Lehmann 2.85 
3.55 7.30 3.01 to to to to 2.83 
3.60 7.28 2.98 R = 5.98 R = 5.98 R = 5.85 R = 5.85 2.81 
3.65 7.26 2.95 >< 10 X 10 X 10 X 10 2.78 
3.70 7.24 2.93 2.75 
3.75 7.22 2.90 2.72 
3.80 7.20 2.87 2.69 
3.85 7.18 2.83 2.66 
3.90 7.15 2.80 2.63 
3.95 7.12 2.77 2.60 
4.00 7.10 2.74 2.57 
4.05 7.08 2.70 2.54 
4.10 7.05 2.67 2.51 
4.15 7.03 2.63 2.49 
4.20 7.00 2.60 2.46 
4.25 6.98 2.57 2.43 
4.30 6.96 2.55 2.40 
4.35 6.94 2.52 2.38 
4.40 6.91 2.49	 . 2.35 
4.45 6.89 2.46 2.33 
4.50 6.86 2.43 2.30 
4.55 6.84 2.40 2.27 
4.60 6.82 2.37 2.25 
4.65 6.80 2.35 2.23 
4.70 6.77 2.32 2.20 
4.75 .74 2.29 2.16 
4.80 6.71 2.26 2.13 
4.85 6.68 2.23 2.10 
4.90 6.65 2.20 2.07 
4.95 6.62 2.16 2.04 
5.00 6.60 2.13 2.02 
5.05 6.58 2.10 1.99 
5.10 6.54 2.07 1.96 
5.15 6.50 2.03 . 1.93 
5.20 6.47 2.00 1.90 
5.25 6.44 1.97 1.87 
5.30 6.41 1.94 1.84 
5.35 6.37 1.90 1.81 
5.40 6.33 1.86 1.77 
5.45 6.29 1.82 1.74 
5.50 6.23 1.77 1.70 
5.55 6.16 1.71 1.65 
5.60 6.08 1.64 1.59 
5.65 5.97 1.55 1.52 
5.70 5.84 1.46 1.45 
5.75 5.71 1.36 1.38 
5.80 5.56 1.26 1.30 
5.85 5.41 1.16 1.23 
5.90 5.25 1.05 5.18 1.05 1.14 
5.92 5.18 1.01 5.05 0.990 1.10 
5.94 5.11 0.968 4.90 0.930 1.07 
5.96 5.05 0.928 . 4.78 0.870 1.04 
5.98 4.92 0.880 4.72 0.810 0.983 
6.00 4.90 0.866 4.94 0.850 4.67 0.770 0.927
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TABLE 10.	 Continued 

Lehmann Lehmann I Lehmann II
Lehmann Velocity-

Radius, C,, C,.	 p, C,, p. Bullen B Density 
km X 10 km/sec megabars km/sec	 megabars km/sec megabars p, megabars 

6.02 4.87 0.853 4.90	 0.790 4.64 0.730 0.868 
6.04 4.84 0.840 4.81	 0.740 4.64 0.730 0.811 
6.06 4.82 0.830 4.72	 0.700 4.64 0.730 0.790 
6.08 4.80 0.815 4.64	 0.670 4.64 0.730 0.783 
6.10 4.77 0.802 4.56	 0.640 4.64 0.730 0.773 
6.12 4.74 0.790 4.48	 0.620 4.64 0.730 0.764 
6.14 4.71 0.778 4.39	 0.610 4.64 0.730 0.754 
6.16 4.30 0.640 4.30	 0.610 4.64 0.730 0.629 
6.18 4.30 0.637 4.23	 0.610 4.64 0.730 0.629 
6.20 4.30 0.634 4.30	 0.615 4.64 0.730 0.629 
6.22 4.30 0.631 4.38	 0.620. 4.64 0.730 0.629 
6.24 4.30 0.628 4.48	 0.640 4.64 0.730 0.629 
6.26 4.64 0.730 4.56	 0.690 4.64 0.730 0.730 
6.28 4.63 0.720 4.63	 0.720 4.63 0.720 0.720 
6.30 4.62 0.712 4.62	 0.712 4.62 0.712 0.712 
6.32 4.61 0.706 4.61	 0.706 4.61 0.706 0.706 
6.34 4.60 0.684 4.60	 0.684 4.60 0.684 0.684 
6.36 3.60 0.369 3.60	 0.369 3.60 0.369 0.369 

Lehmann III: C,	 C. of Lehmann. 
p	 = 0.98 p of Lehmann. 

Lehmann IV: C, = C, of Lehmann. 
p	 = 1.02 p of Lehmann. 

Lehmann velocity Bullen B density: C, = C, of Lehmann.

Figure 23 illustrates the frequencies for the 
first overtone for both the inhomogeneous 
Gutenberg model and the homogeneous model. 
The distribution of frequencies is more complex 
than in the case of the fundamentals because of 
the nodal surface for the energy associated with 
the conical stress. The ,T2 oscillation has a higher 
frequency in the Gutenberg than in the homo-
geneous model, since the energy in the first 
overtone is concentrated in the lower regions of 
the mantle with a greater C,. The first overtones 
of orders 11 and 12 have nearly identical periods 
for the Gutenberg and homogeneous models and 
depend only on the mass-averaged properties. 

The periods calculated for the Gutenberg 
model are 1. to 2 per cent lower than the observed 
periods. The difference is consistent and is larger 
than combined uncertainties of the computation 
and observations. As a measure of the agreement 
of the theoretical models with the observations, 
we use the quantity 

D = E IT
09 - 

£	 T(0b) 

where T°" is the observed period for the

toroidal oscillation of order 1; the summation 
extends over the observed oscillations. 

Table 15 lists the value of D for various models 
in decreasing order of agreement with observa-
tion. The observed values used in constructing 
Table 15 are those derived from our analysis of 
the Lamont strain seismograph (see Table 1). 
0T2 is not present on the record; it is not included 
in the listing of the observations. The average 
percentage deviation over the eleven observed 
toroidal modes is about 1 per cent for the Guten-
berg model. We also note that the inhomogeneous 
model is far superior to the homogeneous model. 

The actual mantle is somewhat less rigid than 
that assumed in the Gutenberg model. Guten-
berg I is an attempt to fit the observations by 
uniformly lowering the shear-wave velocity by 
1.2 per cent and the rigidity by 2.4 per cent. 
The periods are increased, and the fit to the 
observations is better (see Table 15). The com-
parative effect of variations of rigidity and 
velocity are illustrated in Gutenberg II and 
Gutenberg III. Gutenberg II maintains the same 
rigidity as Gutenberg, but the velocity is identical 
to that of Gutenberg I. Since p = ji/C,', the 
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TABLE 11. Resonant Periods in Minutes for oT 

N=0	 L=2	 3	 4	 5	 6	 7	 8	 9 

Observations	 28.570 21.950 18.020	 15.510	 13.750	 12.350	 11.240 

Gutenberg IV 44.106 28.548 21.864 18.040 15.525 13.721 12.351 11.265 
Gutenberg II 44.181 28.602 21.912 18.084 15.567 13.763 12.392 11.307 
Gutenberg V 44.062 28.498 21.803 17.971 15.448 13.640 12.265 11.177 
Gutenbergl 44.170 28.598 21.910 17.649 15.165 13.765 12.395 11.310 
Gutenberg III 43.626 28.244 21.640 17.861 15.377 13.596 12.243 11.171 
Gutenberglow-density 43.581 28.213 21.612 17.836 15.353 13.574 12.222 11.152 
Gutenberg 43.631 28.247 21.642 17.861 15.376 13.594 12.241 11.169 
Gutenbergstiff 32.150 25.237 21.032 17.527 15.258 13.553 12.226 11.164 

Lehmann velocity 
Bullen density 43.671 28.245 21.603 17.794 15.282 13.479 12.109 11.024 

Lehmann III 43.322 28.045 21.458 17.683 15.199 13.417 12.064 10.930 
Lehmannl 43.205 27.927 21.356 17.599 15.125 13.351 12.017 10.951 
Lehmannll 43.314 28.013 21.423 17.654 15.171 13.389 12.047 10.974 
Lehmann 43.332 28.022 21.429 17.657 15.173 13.390 12.046 10.972 
LehmannlV 43.310 28.007 21.422 17.652 15.171 13.383 12.030 10.960 

Homogeneous 44.351 28.250 21.229 17.169 14.487 12.569 11.121 9.985 
Homogeneous stiff 35.270 25.903 20.422 16.856 14.358 12.514 11.098 9.974 

N = 0 L = 10 11 12 13 14 15 16 17 

Observations 10.330 9.614 9.065 7.985 

Gutenberg IV 10.380 9.640 9.010 8.467 7.991 7.573 7.200 6.854 
Gutenberg II 10.421 9.682 9.052 8.508 8.032 7.612 7.244 
Gutenberg V 10.290 9.548 8.918 8.374 7.898 7.479 7.104 6.770 
Gutenberg I 10.424 9.684 9.055 8.511 8.035 7.615 7.246 6.892 
Gutenberg III 10.299 9.566 8.944 8.407 7.937 7.522 7.155 6.822 
Gutenberg low density 10.279 9.550 8.930 8.394 7.925 7.512 7.144 6.817 
Gutenberg 10.294 9.563' 8.941 8.404 7.934 7.520 7.150 6.811 
Gutenberg stiff 10.293 9.564 8.943 8.406 7.936 7.520 7.151 6.811 

Lehmann velocity 
Bullen density 10.140 9.402 8.776 8.236 7.765 7.349 7.037 6.722 

Lehmann HI 10.120 9.391 8.772 8.238 7.772 7.358 7.001 6.670 
Lehmann I 10.089 9.365 8.747 8.236 7.984 7.359 7.000 6.670 
Lehmannll 10.105 9.375 8.752 8.219 7.759 7.340 6.906 6.657 
Lehmann 10.103 9.373 8.752 8.233 7.756 7.341 6.971 6.663 
Lehmann IV 10.087 9.359 8.741 8.208 7.743 7.333 6.968 6.900 

Homogeneous 9.068 8.310 7.672 7.128 6.657 6.246 5.884 5.563 
Homogeneous stiff 9.063 8.307 ' 7.671 7.127 6.657 6.246 5.884 5.562

density at each point in Gutenberg II is greater 
by 2.4 per cent than the density in Gutenberg. 
Maintaining the rigidity constant but every-
where lowering the velocity 1.2 per cent over 
that in the Gutenberg model'increases the periods 
by a greater amount than increasing both the 
rigidity and the velocity. Gutenberg II provides 
a better fit to the observations than the un-
adjusted Gutenberg model.

In Gutenberg III the velocity distribution is 
that of the Gutenberg model, but the rigidity is 
that of Gutenberg I (2.4 per cent lower than in 
the Gutenberg model). The density at every 
point in Gutenberg III is less than the density 
in the Gutenberg model by 2.4 per cent. The 
variation in rigidity produces only a slight 
alteration in the period. The 0T5 oscillation of 
Gutenberg II equals that of Gutenberg; oscilla-
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TABLE 12. Resonant Periods in Minutes for 1T1 

N=l	 L=2	 3	 4	 5	 6	 7	 8	 9 

Gutenberg IV 12.749 11.690 10.606 0.602 8.725 7.983 7.363 6.845 
Gutenberg II 12.755 11.695 10.611 0.606 8.729 7.988 7.368 6.850 
Gutenberg V 12.764 11.704 10.619 9.614 8.665 7.992 7.371 6.851 
Gutenberg I 12.762 11.701 10.616 9.387 8.528 7.991 7.371 6.853 
Gutenberg III .	 12.599 11.552 10.480 9.489 8.623 7.891 7.279 6.768 
Gutenberg low-density 12.575 11.532 10.465 9.477 8.614 7.884 7.274 6.764 
Gutenberg 12.593 11.546 10.474 9.484 8.619 7.888 7.276 6.765 
Gutenberg stiff 	 . 10.033 9.601 9.102 8.575 8.052 7.552 7.088 6.664 

Lehmann velocity 
Bullen density 12.528 11.463 10.381 9.584 8.517 7.843 7.174 6.664 

Lehmann III 12.520 11.471 10.401 9.414 8.553 7.825 7.217 6.709 
Lehmannl 12.456 11.422 10.426 9.389 8.537 7.814 7.214 6.713 
Lehmannll 12.504 11.460 10.392 9.408 8.551 7.825 7.213 6.712 
Lehmann 12.505 11.453 10.386 9.400 8.540 7.811 7.205 7.272 
LehmannlV 12.484 11.439 10.373 9.387 8.530 7.802 7.195 6.687 

Homogeneous 13.116 12.016 10.900 9.862 8.943 8.148 7.468 6.889 
Homogeneous stiff 10.236 9.765 9.226 8.665 8.111 7.585 6.125 6.646 

N = 1	 L = 10	 11	 12	 13	 14	 15	 16	 17 

Gutenberg IV 6.406 6.030 5.703 5.414 5.157 4.926 4.716 4.526 
Gutenberg II 6.412 6.037 5.710 5.421 5.164 4.933 4.723 4.533 
Gutenberg V 6.411 6.035 5.707 5.417 5.160 4.928 4.731 4.528 
Gutenberg I 6.414 6.038 5.710 5.421 5.164 4.932 4.723 4.532 
Gutenberg III 6.335 5.963 5.640 5.355 5.100 4.872 4.665 4.477 
Gutenberg low-density 6.333 5.963 5.641 5.357 5.103 4.876 4.669 4.482 
Gutenberg 6..333 5.962 5.639 5.354 5.100 4.872 4.665 4.477 
Gutenberg stiff 6.281 5.936 5.627 5.349 5.098 4.871 4.665 4.478 

Lehmann velocity 
Bullen density 6.234 5.867 5.548 5.268 5.020 4.796 4.595 4.412 

Lehmann III 6.279 5.910 5.589 5.306 5.053 4.826 4.620 4.433 
Lehmann I 6.289 5.925 5.608 5.328 5.077 4.884 4.647 4.460 
Lehmann II 6.284 5.917 5.597 5.314 5.063 4.836 4.628 4.443 
Lehmann 6.270 5.902 5.582 5.299 5.048 4.821 4.616 4.429 
LehmannlV 6.258 5.891 5.571 5.289 5.038 4.812 4.608 

Homogeneous 6.393 5.967 5.599 5.277 4.993 4.740 4.496 4.309 
Homogeneous stiff 6.240 5.872 5.541 5.242 4.972 4.728 4.507 4.305

tions of lower order have a shorter period, and 
oscillations of greater 1 have a longer period. 
The resonant frequencies are thus determined 
primarily by the velocity distribution and to a 
much lesser extent by the distribution of rigidity. 
The rigidity enters into the determination of the 
periods only because of the variation of velocity 
with depth. 

The model that fits the observations best is 
Gutenberg IV (see Table 15). In this model the 
distribution of velocity and rigidity is taken to 
be the same as that of Gutenberg I from the

core-mantle boundary to a depth of 500 km. 
At this depth the distribution is joined smoothly 
to the Gutenberg distribution. The velocity in 
the deeper part of the mantle is less than in the 
Gutenberg model but in the upper part of the 
mantle is equal to that in the Gutenberg model. 
The 0 T2 oscillation in this model has a period 0.5 
minute longer than that in the Gutenberg model. 

The total deviation from the observations is 
less than 3 per cent in this model. It should be 
emphasized that this model is not unique. Other 
variations of the Gutenberg model are possible 
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TABLE 13. Resonant Periods in Minutes for 2T, 

N=2	 L=2	 3	 4	 5	 6	 7	 8	 9 

Gutenberg IV 7.492 7.316 7.053 6.753 6.429 6.093 5.757 5.434 
Gutenberg II. 7.533 7.322 7.059 6.760 6.435 6.099 5.763 5.439 
Gutenberg V 7.527 7.316 7.055 6.756 6.434 6.099 5.765 5.442 
Gutenberg I 7.536 7.348 7.065 6.581 6.271 6.099 5.763 5.438 
Gutenberg III 7.442 7.233 6.973 6.676 6.354 6.021 5.689 5.368 
Gutenberg low-density 7.437 7.229 6.971 6.675 6.355 6.023 5.692 5.372 
Gutenberg 7.440 7.231 6.971 6.674 6.354 6.021 5.689 5.369 
Gutenberg stiff 6.285 6.167 6.018 5.846 5.655 5.452 5.244 5.034 

Lehmann velocity 
Bullen density 7.280 7.079 6.830 6.546 6.240 5.923 5.301 

LehniannlH 7.362 7.156 6.901 6.609 6.294 5.968 5.642 5.328 
Lehmannl 7.368 7.166 6.914 6.620 6.314 6.011 5.664 5.351 
Lehmannll 7.377 7.170 6.916 6.624 6.308 5.982 4.452 5.340 
Lehmann 7.345 7.140 6.887 6.598 6.284 5.960 5.636 5.323 
LehmannlV 7.323 7.120 6.869 6.584 6.273 5.948 5.626. 5.315 

Homogeneous 7.393 7.195 6.951 6.677 6.385 6.084 5.783 5.489 
Homogeneous stiff 6.175 6.069 5.927 5.766 5.590 5.403 5.210 5.015 

N = 2	 L = 10	 11	 12	 13	 14	 15	 16	 17 

Gutenberg IV 5.130 4.851 4.601 4.376 4.176 3.998 3.837 3.692 
Gutenberg II 5.135 4.856 4.605 4.381 4.181 4.002 3.842 3.697 
Gutenberg V 5.139 4.861 4.610 4.385 4.185 4.006 3.845 3.699 
Gutenberg I 5.134 4.855 4.604 4.380 4.159 4.002 3.841 3.693 
Gutenberg III 5.068 4.793 4.584 4.324 4.127 3.951 3.793 3.645 
Gutenberg low-density 5.072 4.797 4.550 4.329 4.132 3.956 3.798 3.655 
Gutenberg 5.069 4.794 4.546 4.325 4.128 3.952 3.794 3.651 
Gutenberg Stiff 4.828 4.628 4.437 4.256 4.086 3.927 3.780 3.643 

Lehmann velocity 
Bullen density 5.014 4.750 4.499 4.298 4.108 3.937 3.782 3.642 

Lehmann III 5.033 4.762 4.519 4.301 4.106 3.990 3.768 3.633 
Lehmannl 5.056 4.786 4.540 4.324 4.173 3.956 3.799 3.655 
Lehmannll 5.044 4.773 4.530 4.312 4.117 3.941 3.785 3.641 
Lehmann 5.028 4.779 4.516 4.298 4.105 3.935 3.774 3.632 
LehmannlV 5.023 4.755 4.512 4.296 4.102 3.929 3.772 

Homogeneous 5.206 4.939 4.688 4.456 4.243 4.047 3.869 3.706 
Homogeneous stiff 4.886 4.634 4.451 4.276 4.108 3.950 3.800 3.659

in which agreement with observation is com-
parable. We believe, however, that the improve-
ment in Gutenberg IV over the Gutenberg model 
is real, and that the model eventually adopted 
for the mantle will be characterized by a lower 
average shear-wave velocity than the Gutenberg 
model. The shear-wave velocities in the Guten-
berg model for the lower mantle are about 1 
per cent too high. Gutenberg IV is not satis-
factory in the sense that it gives an increasing 
density with depth, which is incompatible with 
concepts of a chemically homogeneous low-
velocity layer.

Two additional models have been constructed. 
In the Gutenberg low-density model the velocity 
is the same as in the Gutenberg model but the 
density is adjusted to remain constant over the 
low-velocity region. The rigidity is joined 
smoothly to the Gutenberg model at a depth of 
350 km. This model is nearly identical to the 
Gutenberg model, since the change in density 
varies only the rigidity. Furthermore, these 
variations take place only in the upper part of 
the mantle and thus influence lower oscillations 
to a slight degree. A study of the higher oscilla-
tions is required to determine the distribution of 
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TABLE 14.	 Resonant Periods in Minutes for 3T1 

N=3 L=2	 3	 4	 5	 6 7 8 9 

Gutenberg IV 5.187	 5.115	 5.023	 4.914	 4.790 4.654 4.509 4.358 
Gutenberg II 5.195	 5.124	 5.031	 4.921	 4.797 4.660 4.515 4.364 
Gutenberg V 5.189	 5.118	 5.026	 4.917	 4.794 4.659 4.515 4.364 
Gutenberg I 5.193	 5.121	 5.029	 4.821	 4.795 4.659 4.514 4.363 
Gutenberg III 5.129	 5.058	 4.967	 4.859	 4.736 4.601 4.458 4.309 
Gutenberg low-density 5.138	 5.067	 4.975	 4.867	 4.743 4.609 4.465 4.315 
Gutenberg 5.060	 4.969	 4.861	 4.738 4.603 4.594 
Gutenberg stiff 4.469	 4.424	 4.366	 4.296	 4.216 4.128 4.034 3.935 

Lehmann velocity 
Bullen density 5.013	 4.926	 4.822	 4.704 4.574 4.436 4.290 

Lehmann III 5.097	 5.027	 4.938	 4.831	 4.710 4.577 4.435 4.287 
Lehmarrnl 5.141	 5.072	 4.903	 4.873	 4.750 4.615 4.471 4.320 
Lehmannll 5.119	 5.052	 4.961	 4.853	 4.730 4.596 4.302 
Lehmann 5.084	 5.023	 4.934	 4.828	 4.707 4.575 4.433 4.285 
LehmannlV 5.084	 5.015	 4.926	 4.823	 4.701 4.569 4.429 4.282 

Homogeneous 4.993	 4.912	 4.817	 4.708 4.590 4.464 4.334 
Homogeneous stiff 4.418	 4.377	 4.324	 4.261	 4.188 4.062 4.021 3.944 

N	 3 L	 10	 11	 12	 13	 14 15 16 17 

Gutenberg IV 4.204	 4.048	 3.893	 3.741	 3.596 3.457 3.328 3.209 
Gutenberg II 4.209	 4.052	 3.897	 3.745	 3.599 3.461 3.332 3.212 
GuténbergV 4.210	 4.055	 3.901	 3.749	 3.603 3.465 3.336 3.216 
Gutenberg I 4.208	 4.052	 3.897	 3.745 3.461 3.332 3.213 
Gutenberg III 4.156	 4.001	 3.698	 3.553 3.416 3.289 3.171 
Gutenberg low-density 4.161	 4.006	 3.852	 3.702	 3.557 3.420 3.292 3.174 
Gutenberg 4.156	 4.001	 3.848	 3.697	 3.553 3.416 3.288 3.171 
Gutenberg stiff 3.832	 3.728	 3.622	 3.518	 3.414 3.314 3.215 3.120 

Lehmann velocity 
Bullen density 4.140	 3.988	 3.861	 3.687	 3.543 3.406 3.279 3.161 

Lehmann III 4.133	 3.980	 3.533 3.396 3.160 
Lehmann I 4.171	 4.007	 3.851	 3.698	 3.551 3.432 3.283 3.164 
Lehmannll 4.147	 3.991	 3.836	 3.684	 3.539 3.401 3.272 3.153 
Lehmann 4.133	 3.826	 3.551	 3.532 3.267 3.149 
LehmannlV 4.130	 3.977	 3.825	 3.675	 3.531 3.395 3.267 

Homogeneous 4.200	 4.065	 3.930	 3.796	 3.665 3.536 3.412 3.292 
Homogeneous stiff 3.834	 3.737	 3.639	 3.442 3.346 3.251 3.158 

velocity and elastic parameters in the upper part	 crust to a depth of 120 km, where it drops 
of the mantle. Gutenberg V is a perturbation on 	 discontinuously from 4.64 to 4.30 km/sec. The 
the Gutenberg IV model in which the velocity is	 shear-wave velocity is taken as constant from a 
0.5 per cent greater in the upper 400 km (see	 depth of 120 km to a depth of 220 km, where the 
Table 9). The agreement of the Gutenberg V 	 velocity increases discontinuously to 4.71 km/sec. 
model with observations is not as good as that 	 At greater depth the velocity distribution is that 
of Gutenberg IV. of the Jeifries-Bullen model of the earth. The 

Another class of earth models has been con- 	 average shear-wave velocity in the Lehmann 
structed around the Lehmann model [Lehmann,	 model is greater than in the Gutenberg model, 
1959; Sato, Landisman, and Ewing, 1960]. In the	 and the periods for the low-order oscillations are 
Lehmann model (see Table 10) the shear-wave	 correspondingly lower. The Gutenberg model 
velocity increases slightly from the base of the 	 deviates from observations in having too short a
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TABLE 15. Comparison of Observed and
Calculated Periods 

Model	 D 

Gutenberg IV 0.026 
Gutenberg II 0.044 
Gutenberg V 0.074 
Gutenberg I 0.080 
Gutenberg III 0.096 
Gutenberg low-density 0.113 
Gutenberg 0.098 
Gutenberg stiff 0.262 

Lehmann velocity Bullen density 0.213 
Lehmann III 0.257 
Lehmannl 0.264 
Lehmann II 0.270 
Lehmann 0.270 
Lehmann IV 0.280 

Homogeneous 1.032 
Homogeneous stiff 1 . 184

period when compared with observations; the 
Lehmann model therefore agrees with observa-
tions less well than the Gutenberg model. 

A number of adjusted Lehmann models have 
been considered. The Lehmann I model is 
identical with the Lehmann model in the lower 
part of the mantle, but the discontinuity in 
shear-wave velocity is smoothed out so that the 
variation in shear-wave velocity is continuous. 
The shifts in resonant frequencies are slight 
(see Table 11). 

The shear-wave velocity is assumed to remain 
constant to a depth of 350 km in Lehmann II. 
The density also remains constant over this 
region. At greater depths the shear-wave velocity 
is joined smoothly to the unadjusted Lehmann 
model. The periods of the low-order oscillations 
are decreased, since the average shear-wave 
velocity of Lehmann II is greater than that of 
the unadjusted Lehmann model. 

The Lehmann III and Lehmann IV models 
represent slight modifications to the rigidity and 
density of the Lehmann model. In Lehmann III 
the rigidity is taken to be 2 per cent less than 
in the Lehmann model; in Lehmann IV, it is 
2 per cent greater. The corresponding shift in 
the resonant frequencies is small. 

In the final Lehmann model considered, the 
velocity is that of the Lehmann model but the 
rigidity is derived from Bullen's model B density 
distribution (see Table 11). This Lehmann model

gives the best fit to the observations, but it is 
not in as good agreement as the Gutenberg 
models (see Table 15). 

Tables 11 to 14 also list the resonant fre-
quencies for a homogeneous model and a Guten-
berg model in which the lower boundary is 
assumed fixed. Maintaining a rigid core-mantle 
boundary increases the resonant frequencies of 
the low-order oscillations. In the case of 0 T2 for 
the Gutenberg model the resonant frequency is 
changed from 43.63 to 32.15 minutes. The shift 
in frequency due to the stiffness of the lcfwer 
boundary decreases at the higher modes. This 
is illustrated in Figure 24, where the percentage 
shift (WS - WF)/WF (W and Wp are the resonant 
frequencies for a stiff and free core-mantle 
boundary, respectively) is given for the first few 
oscillations for the Gutenberg and homogeneous 
models. For 0T8 the shift is less than 1 part in 
1000. In the high-order oscillations the energy is 
concentrated toward the upper boundary, and 
any stiffness of the core-mantle interface does 
not perturb the toroidal oscillations. 

The transition from a mantle with a free 
lower boundary to a stiff lower boundary has 
been studied by determining the resonant fre-
quency of the Gutenberg model earth with an 
additional inner spherical shell 100 km thick. 

GUTENBERG	 HOMOGENEOUS 
MODEL	 MODEL 

'0-I 

3.	 4-

, 3	 4-
3

102
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Fig. 24. Percentage shift in resonant frequencies 
due to rigid inner boundary. 
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Fig. 25. Variation of resonant periods with ri-
gidity of an additional 100-km-thick inner shell. 
Inner boundary of inner shell is rigid. 

The shell is taken to have a density of 10, and 
the periods corresponding to various rigidities 
have been calculated. Figure 25 illustrates the 
case in which the additional inner shell is assumed 
to have a rigid inner boundary. If the rigidity of 
the inner shell is taken as 1 X 1010 dynes/cm2, 
the period for the 0T2 oscillations is 43.28 minutes, 
or about 1 per cent less than the period for the 
Gutenberg model without the additional inner

1903 

oscillation are increased. This is illustrated in 
Figure 26, where the periods for the free inner 
shell are shown. Once again the effect of the 
inner shell on the resonant frequencies is greatest 
for the low-order oscillations and becomes 
negligibly small for the high-order oscillations. 

7. ORIGIN OF THE LOW-VELOCITY LAYER 

Study of the point of inflection of travel-time 
curves for earthquakes originating at various 
depths led Gutenberg [1948, 1953] to postulate 
the existence of a layer in the upper mantle 
having elastic wave velocities lower than the 
material above and below. This supported an 
earlier interpretation by Gutenberg and Richter 
[1939]. Gutenberg's early results were not uni-
versally accepted, and the general interpretation 
of the variation of velocity with depth was that 
based on the Jeffrey model for the upper mantle. 
In this model both the shear and compressional 
velocity increase monotonically with depth. In 
recent years, several detailed studies on the 
propagation of surface waves indicate the 
presence of a low-velocity zone under both 
continents and oceans. Landisman and Sato [1958] 
and Press [1959] studied the propagation of Love 
waves and G waves in the upper mantle. Investi-
gations of mantle RAyleigh waves [Taiceuchi, 
Press, and Kobaya.shi, 1959] provided additional 
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shell. This calculation suggests that if the core 
had a rigidity of the order of 1010 dynes/cm2 it (dynes/cm2) 

would result in a measurable perturbation in the 
frequency of the 0T2 oscillation. Figure 25 illus- 40.0 

trates the variation in the periods as a function 
of the rigidity of the inner shell. The low-order 
oscillations have their periods shifted by a 
greater degree than the high-order oscillations, 30.0 
the effect for 1 = 6 being less than 1/1000. 

Similar computations have been carried out 
assuming that a shell 100 km thick with a density 
of 10 is fastened to the lower mantle and that 200 
the inner boundary of the shell is kept free. 
If the rigidity of the inner shell is 1 X	 1012 
dynes/cm2, somewhat less than the rigidity of 
the lower part of the mantle, the resonant periods 
are increased slightly. The increase for the o1'2 00

PERIODS FOR GUTENBERG MODEL oscillation is from 43.63 to 43.74 minutes. As	
WITH FREE INNER SHELL nO the rigidity is increased above the value of the Fig. 26. Variation of resonant periods with ri-

rigidity of the lower mantle, the boundary IS giclity of a 100-km-thick inner shell. Inner boun-
stiffened and the corresponding frequencies of dary of inner shell is free. 
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supporting evidence for the presence of a layer 
of low velocity. 

A number of workers have extended Guten-
berg's results for near earthquakes [Lehmann, 
1953; Shirokova, 19591. The present study of the 
toroidal oscillations coupled with the work of 
Alterman, Jarosch, and Peke'ris [1961] provides 
further confirmation for a region of lower velocity 
below the crust but in the upper 100 to 200 km 
of the earth. 

Gutenberg's initial interpretation of the low-
velocity layer was in terms of the asthenosphere 
of Daly [1940], which was a world-encircling 
layer of glassy material having little mechanical 
strength. Daly postulated this layer in order to 
explain both the world-wide occurrence of basalt 
and the mobility of the outer regions of the earth. 
In Gutenberg's view, the low-velocity region is 
composed of silicates at or near the melting 
point. Press [1959] states that it is not unreason-
able to ascribe the low velocity to material near 
the melting point. If matter were near the 
melting point, it might be possible to account 
for the long-period nature of observed 8 waves 
by supposing that the high-frequency 8 waves 
were absorbed as a result of imperfect elasticity 
of the nearly molten material. Press also envisages 
the low-velocity layer as a source for primary 
basatic magma and a zone where the lower 
mantle is decoupled from the crust for tectonic 
processes. Birch [1952] found it unnecessary to 
postulate the existence of a zone near melting 
to account for the low-velocity layer. In sum-
marizing data on the variation of velocity with 
temperature and pressure, Birch noted that a 
low-velocity layer would result if the temperature 
gradient exceeded some 6° to 7°/km. 

In the following paragraphs we examine the 
variation of 8-wave velocity with temperature 
and pressure to determine whether a low-
velocity zone could form in a layer that is 
chemically homogeneous on a large scale and is 
in hydrostatic equilibrium. The principal result 
of this study is that the temperature gradients 
to be expected in the upper mantle are more 
than sufficient to produce a decrease in S-wave 
velocity starting at the base of the crust and 
extending to a depth of 100 to 200 km. There is 
no need to suppose that the temperature closely 
approaches the melting temperature. These 
results support earlier theoretical treatments of 
the low-velocity layer [Birch, 1952; Valle, 1956].

The variation of the velocity of a shear wave, 
C,, with radius r is 

- (-	 + (c	 (46 
dr - \3pI T dr	 \8T1 dr 

assuming the upper mantle to be chemically 
homogeneous. The upper mantle is assumed to 
be in hydrostatic equilibrium 

dp = —pgdr 

Writing the shear-wave velocity as 
/ / \I/2 

= U2IP) 

the variation is found to be 

dC,2	 [i (a, + aC,2 1 dT 
dr	 Lp\t9TI	 p ] dr

[(Oii'\	 C,2p 

L) 
a is the coefficient of thermal expansion 

a = —(1/p)(3p/ôT) 

and K is the isothermal incompressibility 

K = P[0P/Ô P]T 	 K,	 (47)

K, is the adiabatic incompressibility 

2	 42 K, P[CP - C. 

The ratio of the adiabatic incompressibility to 
the density is directly determined by the observed 
elastic-wave velocities. 

Birch [1938] studied the variation of shear-
wave velocity with pressure according to the 
theory of finite strain. One result of the theory 
is that the shear-wave velocity increases linearly 
with pressure 

C? = C,°' { i + (p/KT°)(X + 2) 

provided that the compression ratio for the 
material is much less than 1. 

A p/p I << 1 

C,' is the zero pressure value of the shear velocity. 
Since

K'p 

and since at a depth of 300 km the pressure is 
10 bars (see Figure 27), we have 

I/I < 1 
down to this depth. it is to be expected that the
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Fig. 27. Variation of pressure and melting point of diopside with depth in the upper mantle. 
(Melting point of diopside after Boyd and England [1958].) 

variation of velocity with pressure will not be 
linear at depths of 200 to 300 km. A further 
result from Birch [1938] is that the variation of 
compressional-wave velocity C,, is greater than 
the variation of the shear-wave velocity with 
pressure. 

(ac,,2 /(ac,2\ ,__ 13 - 4C,°' 
\OpII \Op/	 3	 c,,0' 

No comparable theory of the variation of the 
shear-wave velocity with temperature is avail-
able. 

A number of workers have shown that at 
moderate conditions of temperature and pressure 
an increase of temperature tends to decrease C,, 
whereas an increase of pressure raises C,. The 
results of Hughes and Maurette [1957] on gabbros 
and dunite are summarized in Table 16. The 
effect of pressure on velocity increases with 
increasing temperature. In a detailed study of 
the variation of frequency of torsional oscilla-
tions with temperature, Birch [1958] finds that, 
for gabbros,

= —6.0 X 10'/deg 

Because of the limited range over which the 
measurements of the variation of shear-wave 
velocity with temperature and pressure have 
been carried out it would be premature to 
attempt to directly extrapolate laboratory values

to conditions existing in the upper mantle. A 
further complicating factor is the uncertainty in 
the chemical composition of the material im-
mediately below the Mohorovicic discontinuity. 
An alternative approach is suggested by the fact 
that temperature and pressure have opposite 
effects on the shear-wave velocity. Since C, 
increases with increasing pressure, we can thus 
ask for the minimum temperature gradient 
required to compensate the effect of pressure and 
produce a decrease in C. [Birch, 1952, 19581. 

The condition that the shear-wave velocity 
decreases with increasing depth in a chemically 
homogeneous layer is 

(_c	 +	 0 
\t9TJ, dr	 ' op /2' dr	 dr 

	

dT	 /ac	 /(ac\ 
> PUIj/	 (48) 

TABLE 16. 9C,/ap in km/sec/bar after Hughes
and MaureUe [1957] 

Pressure range 3000-6000 bars 

OC,/ap 

	

Rock type	 At 25°C	 At 300 °C 

San Marcos gabbro 8 X 10° 3 X 10' (400°C) 
Bytownite gabbro 7 X 10 3 X 10 
Dunite	 2 X 10' 7 X 10' 
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TABLE 17.	 Thermal Expansion of Possible Constituenth of the Upper Mantle (l0 
After Skinner [1956] and Birch [19521

deg') 

Debye Temper- Debye Temper-
ature from Heat ature from 

Mineral a at 298°K	 a at 600°K	 a at 1000°K Capacity, °K Entropy, °K 

Periclase MgO 23.7	 39.6	 44.2 739 745 
Forsterite MgzSiO 4 25.2	 36.5	 43.0 873 760 
JadeiteNaAlSi 2O 6 19.5	 27.6	 38.2 933 751 
PyropeMg 3Al 2(SiO 4 ) 3 19.8	 25.4	 28.6 
Grossularite Ca 3Al 2(SiO 4 ) 3 16.4	 23.0.	 27.1 
Almandite Fe 3Al 2(SiO 4 ) 3 15.7	 23.6	 29.4

Since

	

(ac	 /(ac, 
\aTJ/ äPiT - \c9TJcs 

equation 48 can be written 

dT	 (a\ 
-> —pgj 

Now we approximate the change of pressure with 
temperature at constant density and rigidity by 

i'0p'\	 fc9p\ 

'-i	
(49) 

Equation 49 would hold exactly if the rigidity 
followed a law of corresponding states 

	

/2 = 1(p)	 ( 50) 

There is no rigorous justification for equation 
50, but various laboratory data suggest that 
some form of a corresponding state law holds 
among close-packed silicates. Under the approxi-
mation expressed in equation 50, and using (47), 
the temperature gradient required to produce a 
decrease in shear-wave velocity is 

	

> - ( p -	 (51) 

	

dr	 a 

The minimum temperature gradient required 
for decreasing C8 with depth is thus determined 
by seismic velocities and the coefficient of ther-
mal expansion. Note that equation 51 is also the 
condition that the temperature gradient produces 
a density decreasing with depth. 

The principal uncertainty in applying equation 
51 is in the value of the thermal expansion. 
Table 17 lists representative values of the 
coefficient of thermal expansion for materials

that may be important constituents of the upper 
mantle. The available Debye temperatures are 
also listed. 

The temperature variation of the thermal 
expansion decreases rapidly at temperatures in 
excess of the Debye temperature. The tem-
perature at a depth of 50 km probably exceeds 
800°K. We therefore assume that the variation 
of thermal expansion with temperature can be 
neglected in the region of 50 to 300 km. 

The dependence of thermal expansion on 
pressure is more uncertain. The thermodynamic 
relation

(at3	 - (Oa 

\.aT1 —	 3PiT 

provides a means of obtaining approximate 
values. The temperature coefficient of com-
pressibility has been measured in the laboratory 
over a temperature range of some 200°. The 
value for forsterite is 1.4 X 10'°/deg bar; for 
periclase, 1.8 X 10'°/deg bar. lithe variation 
of the thermal expansion with pressure were 
linear, the change in thermal expansion for a 
change of pressure of 10 bars would be about 
0.2 the zero pressure value. The variation due to 
pressure over a pressure range of lOm bars is of 
the same magnitude as the variation among the 
different compositions listed in Table 17. 

An approximate expression for the variation 
of the thermal expansion with pressure can be 
obtained from the theory of solids [Birch, 1952]. 
In the ionic theory of solids, the dimensionless 
quantity	 - 

K (a3\ =	
= a \;)	 a 

varies from 4 to 8. The pressure dependence of 
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TABLE 18. Variation of Incompressibility in 
Gutenberg Model of Upper Mantle 

Depth, 
km

K,/p, 
kin! 
see

dT 
-a -, 

K,,	 dr 
bars X 1O km' X 10

K,, 
bars X 10 
(Gutenberg 
low-density 

model) 

33 38.42 1.28 2.55 1.29 
50 38.30 1.28 2.56 1.28 
60 38.42 1.29 2.55 1.29 
70 38.49 1.29 2.55 1.29 
80 38.60 1.30 2.53 1.29 
90 38.39 1.30 2.55	 . 1.29 

100 37.41 1.27 2.62 1.25 
125, 36.39 1.24 2.69 1.22 
150 36.90 1.27 2.65 1.24 
175 38.11 1.32 2.57 1.28 
200 39.56 1.38 2.47 1.34 
225 40.88 1.43 2.40 1.39 
250 42.74 1.51 2.29 1.47 
300 45.10 1.61 .	 2.17 1.59 
350 47.32 1.71 2.07 1.71 
400 49.85 1.84 1.97 1.84 

the thermal expansion of periclase and forsterite 
can be accounted for by a = 4. Provided that 
pressure is small compared with the incompres-
sibility, the decrease of thermal expansion with 
pressure is approximated by 

a	 ao{1 - [a(p - p0)/KJ}	 (52) 

The minimum temperature gradient required 
to produce a low-velocity layer can be written as 

TABLE 19. Critical Temperature Gradient in 
Gutenberg Model of Upper Mantle

dT/dr, dT/dr, 
'1(p - P80)	 deg/km deg/km 

Depth,	 ao = 4.0 X ao = 3.0 X 
km	 K3	 100/deg 106/deg 

50 0.019 6.51 8.68 
60 0.031 6.58 8.77 
70 0.041 6.62 8.82 
80 0.050 6.67 8.89 
90 0.060 6.77 9.02 

100 0.071 7.02 9.36 
125 0.100 7.41 9.88 
150 0.124 7.46 9.94 
175 0.145 7.36 9.81 
200 0.164 7.21 9.61 
225 0.182 7.09 9.45 
250 0.195 6.85 9.13 
300 0.226 6.66 8.88

> - ( - c.) 

(1 + a(p po)\ 
Kr )	

(53) 

or

> 2.6 X iO-4 4 
dr	 a	 km 

A thermal expansion of 4 X 10&/deg leads to a 
temperature gradient of 6°/km. Birch [1952], 
considering laboratory values for the variation 
of velocity, estimated the critical temperature 
gradient as 6.6°/km. 

Table 18 lists the product of the thermal 
expansion and temperature gradient required to 
produce a decrease of velocity with depth in the 
Gutenberg model of the upper mantle. The 
incompressibility of the Gutenberg low-density 
model consistent with equation 51 is also listed 
for comparison. The irregularities in the value8 
in Table 18 undoubtedly reflect the uncertainties 
in the velocity distribution. The approximate 
form for the critical temperature gradient, equa-
tion 53, leads to the gradients listed in Table 19 
for two values of the initial thermal expansion. 
These values for a0 are representative of the 
range of high-temperature thermal expansions 
observed in silicates (see Table 16). 

In Table 19 the correction term for the varia-
tion of thermal expansion with pressure has 
been calculated on the assumption that a .= 4. 
As can be seen in the table, the maximum cor-
rection to the thermal expansion is 23 per cent 

DEPTH (EM) 

Fig. 28. Minimum temperature required to pro-
duce a low-velocity-zone temperature at 30 km is 
460. The albite-jadeite plus quartz stability curve 
after Birch and LeComte [19601; the quartz-
coesite curve after Boyd and Engliznd [1960]. 
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TABLE 20. Temperature Gradients in 
Model Earths 

Temperature distribution at 4.5 X 10 years leads 
to central temperature of 400000. Opacity is 10 
cm'. Total radioactivity equals earth made up of 
chondrites.

Depth, Mean Temperature 
Model	 km	 Gradient, degfkm 

Radioactivity in 50 16 
upper 500 km 150 6.5 

250 4.0 
350 2.8 
450 1.8 

Radioactivity in 50 16 
upper 400 km 150 6.2 

250 3.6 
350 2.2 
450 1.0 

Radioactivity in 50 16 
upper 300 km 150 5.8 

250 2.9 
350 1.1 
450 0.9 

Radioactivity in 50 15 
upper 200 km 150 4.9 

250 1.4 
350 1.2 
450 1.0 

Radioactivity in 50 15 
upper 100 km 150 2.1 

250 1.6 
350 1.3 
450 1.1

at a depth of 300 km and less than 12 per cent 
down to the critical depth of 150 km. 

The temperatures corresponding to the critical 
temperature gradient listed in Table 19 are shown 
in Figure 28 on the assumption that the tem-
perature at 30 km is 460°. In the Gutenberg 
model the velocity decreases to a depth of 150 
km and then begins to increase. This means that 
to a depth of 150 km the critical temperature 
gradient must be exceeded, and at depths greater 
than 150 km the actual temperature gradient 
must be less than the critical. In Figure 28 the 
range of temperatures that might be expected 
for depths between 50 and 150 km is indicated. 
In addition to the minimum temperature curves, 
the melting curve for diopside and the quartz-
coesite and albite-jadeite transition curves are 
shown. The diopside melting temperature doubt-

less exceeds the fusion temperature of the 
multicomponent mantle material. It can be seen 
that in the depth range of 50 to 150 km the 
temperature could assume values considerably 
less than the melting point of diopside and still 
satisfy the criteria for decreasing velocity with 
depth. It should be emphasized that on the 
Gutenberg model the temperatures to 150 km 
are absolute minimum temperatures provided 
that the temperature at 30 km is 460°. On this 
basis it is seen that the minimum depth of 
stability of coesite relative to quartz is 80 to 
100 km, and that the min,imum depth for the 
stability of jadeite plus quartz relative to albite 
is 60 to 75 km. Under the Gutenberg model and 
with a temperature of 460° at 30-km depth, 
neither of the high-pressure phases would be 
stable at a depth of less than 60 km. 

The limits on thermal conditions in the upper 
mantle derived from the variations of velocity 
with depth in the Gutenberg model of the upper 
mantle can be compared with thermal conditions 
calculated on assumed distribution of thermal 
parameters [MacDonald, 1959, 1961]. 

MacDonald [1961] determined the development 
of temperature within an earth with an initial 
central temperature of 4000° and an initial 
temperature of 2000° at 300-km depth. The 
material composing the earth is assumed to 
transport heat by radiation with an opacity of 
10 cm-1 . The radioactivity corresponds to an 
earth of chondritic composition. MacDonald 
found that the models resulted in surface heat 
flows 20 to 80 per cent in excess of the earth's 
heat flow. In addition, models in which radio-
activity was concentrated at depths greater than 

DEPTO 1KM) 

Fig. 29. Temperature gradient in upper mantle 
with radioactivity concentrated in upper 500, 200, 
and 100 km. 
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300 km led to temperatures in excess of melting 
temperature over substantial regions of the 
mantle. In these calculations no attempt was 
made to distinguish continental from oceanic 
crustal structure. Table 20 and Figure 29 give the 
temperature gradients obtained by MacDonald. 

The thermal models listed in Table 20 assume 
a high initial temperature and low opacity. The 
combined effects of the high contribution of 
radiation to thermal conductivity plus the 
upward concentration of radioactivity lead to a 
high near-surface temperature gradient, tapering 
off at greater depths. If the models are taken 
literally the radioactivity must be concentrated 
to depths of at least 150 to 250 km in order to 
produce a thermal gradient sufficient for a low-. 
velocity layer. The indicated requirements of 
radioactivity at depths of the order of 200 km 
depend sensitively on the assumed thermal con-
ductivity. In the models, the conductivity at 200 
km is reduced sharply because of the low opacity. 
A lower conductivity would allow a suitable 
temperature gradient for the low-velocity layer. 
It should also be noted that the thermal models 
listed in Table 20 lead to heat flows in excess of 
the observed heat flows. The high surface heat 
flow implies a higher temperature gradient than 
would exist in a model earth in which the radio-
activity or the initial temperature was lower. 

MacDonald [1959] discusses steady-state models 
having a lower surface heat flow and adjusted to 
represent oceanic and continental structures. In 
model 5 the temperature at 30 km was taken to 
be 460° (see Table 21). The heat flow at a depth 
of 30 km is one-half the surface heat flow of 52 
ergs/cm2/sec. Model 5 is thus an attempt at 
modeling subeontinental conditions. The opacity 
is 30 cm', a value 3 times higher than that 
assumed in the models listed in Table 20. Models 
4 and 6 are roughly representative of suboceanic 
conditions. The temperature at 30 km is 420°, 
and the heat flow at 30 km equals the surface 
heat flow. The contribution of radioactivity 
above 30 km to the surface heat flow is assumed 
small compared with the total heat flow. In 
model 4 the conductivity is affected by an opacity 
of 30 cm-1 ; in model 6 a greater contribution 
from radiation is assumed since the opacity is 
taken at 10 cm-'. 

The upward concentration of radioactivity in 
continental model 5 leads to low temperature 
gradients of the order of 9°/km. These gradients

TABLE 21. Temperature Gradient in Steady-



State Earth Models 

Mean 
Temperature 

Gradient, 
Model Depth deg/km 

Model5 50 9.0 
Continental model with 100 7.1 
chondritic radioactivity 150 5.2 
inupper430km;heat 200 3.6 
flow at 30 km = 26.1 250 2.6 
ergs/cm'/sec; €, = 30 300 1.8 
cm'; T at 30 km 350 1.0 
460°C 400 0.6 

Model 4 50 18 
Oceanic model with 100 12 
chondritic radioactivity 150 7.5 
in upper 430 km; heat 200 5.0 
flow at 30 km = 54 250 3.4 
ergs/cmh/sec; €o = 30 300 2.4 
cnr'; T at 30 km = 350 1.4 
420°C 400 0.6 

Model 6 50 15 
Oceanic model; same 100 8.2 
a.smodel4with 150 5.0 

= 10 cm' 200 3.2 
250 2.2 
300 1.4 
350 1.0 
400 0.6

are lower than the gradients at the same depth 
under oceanic areas because of the absence of 
marked upward concentration of radioactivity 
in oceanic areas. The upward concentration of 
radioactivity in continental areas implies that 
the low-velocity layer under continents should 
not be as marked or extend to as great a depth 
as under oceans. In both cases we should expect 
the low-velocity layer to commence immediately 
below the crust. Under oceans the low-velocity 
layer should extend to depth of 100 to 150 km; 
under continents, it might not extend beyond 
100 km. 

Even though the details of the velocity and 
temperature distribution on the continents and 
oceans are most uncertain, several firm qualita-
tive statements can be made. A low-velocity 
layer should be expected, provided that the 
upper mantle is homogeneous on a large scale. 
The dominance of the temperature effect over 
the effect of increasing pressure implies a low-
velocity layer extending to depths of 100 to 150 
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km in a homogeneous material. The temperature 
need not approach the melting temperature for 
a low-velocity layer to exist. If the subcrustal 
layer is homogeneous on a large scale, and if a 
low-velocity layer exists, the low-velocity layer 
must begin at the Mohorovicic discontinuity. 
Indeed, this is what Gutenberg [1959b] has sug-
gested in one of his last public statements on the 
low-velocity layer. If, on the other hand, it is 
found on detailed study that the low-velocity 
layer does not begin at the base of the crust, 
some large-scale inhomogeneity in the upper 
layers of the mantle is implied. 

The mere existence of the low-velocity layer 
has important implications about the thermal 
nature of the upper mantle. It would appear 
that the thermal conductivity of the material 
making up the upper mantle must be less than 
that implied by using an opacity of 10 cm- 1 in 
evaluating the radiative contribution to the 
thermal conductivity. Furthermore, if the low-
velocity layer extends to 150 km or more, sub-
stantial heat sources must persist to this depth 
or to greater depths. As has been pointed out 
elsewhere [MacDonald, 1961], this depth of burial 
of the radioactivity implies a low initial tem-
perature for the earth or a lower bulk radio-
activity than that of chondritic meteorites or 
both.
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