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Abstract— The paper presents an over-parametrization free
certainty equivalence state feedback backstepping adaptive
control design method for systems of any relative degree
with unmatched uncertainties and unknown virtual control
coefficients. It uses a fast prediction model to estimate the
unknown parameters, which is independent of the control
design. It is shown that the system’s input and output tracking
errors can be systematically decreased by the proper choice
of the design parameters. The benefits of the approach is
demonstrated in numerical simulations.

I. INTRODUCTION

Adaptive control problems are challenging for systems
with unmatched uncertainties, and backstepping has been
excessively used to tackle these problems. However over-
parametrization and ”explosion of terms” because of repeated
differentiations are obstacles in its direct applications. One
way of avoiding over-parameterization is the departure from
the certainty equivalence principle by modifying the control
law to include nonlinear damping terms (see [8] for details).
However, this leads to the adaptation rate to enter into
the control law and gives rise of high magnitude control
signals in the case of fast adaptation, which is desirable
from the perspective of the unknown parameter estimations.
An alternative way was presented in [2], where certainty
equivalence control design avoids over-parametrization for
linear and low relative degree (not exceeding two) nonlinear
systems in sate feedback settings.

The ”explosion of terms” was addressed by combining the
standard backstepping with a sliding mode control approach
[1], [4], by the Multiple surface sliding control [17], or by
the Dynamic scarface control [16]. Alternative approaches
include approximation of the virtual control derivatives using
sliding mode filters [9], [15], neural networks [11], [12],
fuzzy systems [5], first order linear filters [18], and second
order linear filters [3]. The authors of [3] used the singular
perturbation method and Tikhonov’s theorem to prove the
closed-loop stability and to obtain the performance bounds.

In [14], we introduced a certainty equivalence state
feedback indirect adaptive control approach without over
parametrization for nonlinear systems of any relative degree
in the parametric strict feedback form. The approach was
based on the state prediction model, which is capable of
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providing fast estimation of unknown parameters indepen-
dent of the control design. This property is the consequence
of feeding back an error term with the gain proportional to
the square root of the adaptation rate, like in the modified
reference model MRAC (M-MRAC) architecture introduced
in [13], where it has been shown that the error feedback gain
acts as a damping factor for the adaptive signals, while the
adaptation rate determines their frequency.

In this paper we extend the method to the systems with
unknown virtual control coefficients. It is shown that the
input tracking error (difference between ideal control and
command filtered certainty equivalence control signal) and
output tracking error can be regulated as desired by the
proper choice of design parameters.

The rest of the paper is organized as follows. In Section II,
we give the problem statement and the main assumptions. In
Section III, we introduce the identification model and give its
properties. The control design and performance analysis are
presented in Section IV. A simulation example is presented
in Section VII, and some concluding remarks are given in
Section VIII.

II. PROBLEM STATEMENT

We consider control design for a system

ẋi(t) = aixi+1(t) + ϑ>i f i(t),

i = 1, . . . , n− 1 (1)
ẋn(t) = anu(t) + ϑ>n fn(t) ,

with some initial conditions x(0) = x0, where x ∈ Rn and
u ∈ R are the state and input of the system, ϑ ∈ Rp is
a vector of unknown constant parameters, f i : R → Rp,
i = 1, . . . , n are sufficiently smooth known functions, and
a1, . . . , an are unknown nonzero virtual control coefficients.
We assume that the sign of an is known (positive without
loss of generality). Here, we use short hand notations f i(t) =
f i(x1(t), . . . , xi(t)), i = 1, . . . , n.

Our goal is to design a controller such that all closed-
loop signals are bounded and the output y(t) = x1(t) of
the system (1) tracks a desired bounded command, which
has bounded derivatives up to of order n − 1. One way
of providing such a command is to filter appropriately cho-
sen piecewise continuous signal ycom(t) trough a reference
model of the same order as the system itself, and track the
model’s output, which is the approach adopted here. The
reference model is given in the controllable canonical form

ẋm(t) = Amxm(t) + bmycom(t), xm(0) = x0 , (2)



where xm ∈ Rn is the state of the reference model, Am =
A − vn,nk>x , A = [0 vn,1 . . . vn,n−1], bm = krvn,n,
vn,i is the i-th coordinate vector in Rn, and the gains kx
and kr are chosen from the perspective of the performance
specifications and to make Am Hurwitz. The output of the
reference model is ym(t) = xm,1(t).

III. IDENTIFICATION

We transform (1) into the form

ẋi(t) = xi+1(t) + bixi+1(t) + ϑ>i f i(t),

i = 1, . . . , n− 1 (3)

ẋn(t) = gn(t) + an[u(t)− bngn(t) + ϑ̄
>
n fn(t)] ,

where bi = ai−1, i = 1, . . . , n−1, bn = 1/an, ϑ̄n = bnϑn,
and gn(t) is a smooth function to be specified in the control
design. This form is better suited for the parameter estimation
scheme adopted here and does not require devision by the
parameter estimates in the control design.

To estimate the unknown quantities in the first n − 1
equation in (3) we design an identification model

˙̂xi(t) = x̂i+1(t) + b̂i(t)xi+1(t) + ϑ̂
>
i (t)f i(t) + λx̃i(t)

i = 1, . . . , n− 1 , (4)

where x̂i(t) is the prediction of the i-th state, x̃i(t) =
xi(t) − x̂i(t) is the prediction error, λ > 0 is a design
parameter, b̂i(t), ϑ̂i(t) are the estimates of the unknown
constant parameters bi, ϑi. These estimates are generated
according to adaptive laws

˙̂
bi(t) = γx̃i(t)xi+1(t) (5)
˙̂
ϑi(t) = γx̃i(t)f i(t), i = 1, . . . , n− 1 ,

where γ > 0 is the adaptation rate.
The identification model for the estimation of the uncer-

tainties in the last equation in (3) has the form

˙̂xn(t) = gn(t) + λx̃n(t) (6)

+ ân(t)
[
u(t)− b̂n(t)gn(t) + ϑ̂

>
n (t)fn(t)

]
,

where x̂n(t) is the prediction of xn(t), x̃n(t) = xn(t)−x̂n(t)
is the prediction error, ân(t), b̂n(t), ϑ̂n(t) are the estimates
of the unknown constant parameters an, bn, ϑ̄n. We notice
that if we design the control signal as

u(t) = b̂n(t)gn(t)− ϑ̂
>
n (t)fn(t) , (7)

then the prediction model (6) reduces to

˙̂xn(t) = gn(t) + λx̃n(t) . (8)

Therefore ân(t) is not needed for the control design, and for
the generation of the necessary estimates b̂n(t) and ϑ̂n(t),
the adaptive laws

˙̂
bn(t) = −γx̃n(t)gn(t)
˙̂
ϑn(t) = γx̃n(t)fn(t) . (9)

can be implemented with x̃n(t) generated using the reduced
model (8).

The prediction error dynamics are easily derived to be

˙̃x(t) = (A− λI)x̃(t) + η(t) , (10)

where ηi(t) = b̃i(t)xi+1(t) + ϑ̃
>
i (t)f i(t), i = 1, . . . , n− 1,

ηn(t) = an[−b̃n(t)gn(t) + ϑ̃
>
n (t)fn(t)], and the parameter

estimation errors are defined as b̃i(t) = bi − b̂i(t), i =
1 . . . , n, ϑ̃i(t) = ϑi − ϑ̂i(t), i = 1 . . . , n − 1, ϑ̃n(t) =
ϑ̄n − ϑ̂n(t).

Lemma 3.1: The error signals x̃i(t), b̃i(t), ϑ̃i(t), i =
1, . . . , n are globally bounded, and x̃i(t)→ 0 as t→∞.

Proof: Consider a candidate Lyapunov function

V (t) =

n∑
i=1

x̃2i (t) +
1

γ

n−1∑
i=1

[
b̃2i (t) + ϑ̃

>
i (t)ϑ̃i(t)

]
+

an
γ

[
b̃2n(t) + ϑ̃

>
n (t)ϑ̃n(t)

]
.

It is straightforward to compute the derivative of V (t) along
the trajectories of the prediction error dynamics (10), and the
adaptive laws (5) and (9)

V̇ (t) = −2λ

n∑
i=1

x̃2i (t) + 2

n∑
i=2

x̃i−1(t)x̃i(t) . (11)

Since 2x̃i−1(t)x̃i(t) = [xi−1(t)+ x̃i(t)]
2− [x2i−1(t)+ x̃2i (t)],

we conclude that

V̇ (t) = −(2λ− 1)

n∑
i=1

x̃2i (t)− [x̃21(t) + x̃2n(t)] (12)

−
n−1∑
i=1

[x̃i(t)− x̃i+1(t)]2 ≤ −(2λ− 1)

n∑
i=1

x̃2i (t) .

If we select 2λ > 1, it follows from the LaSalle-Yoshizawa
theorem ([8], p.24) that x̃(t), θ̃i(t), b̃i(t), i = 1, . . . , n are
globally uniformly bounded, and x̃(t)→ 0 as t→∞.

When x(t) and u(t) are bounded (which will be provided
by the control design), the following upper bounds on the
error signals x̃(t) and ηi(t), i = 1, . . . , n can be derived.

Lemma 3.2: Let the estimates x̂i(t), b̂i(t), and ϑ̂i(t), i =
1, . . . , n be generated by the identification models (4), (5),
(8), and (9). In addition, let x(t) and u(t) be bounded. Then
ηi(t) and x̃i(t) satisfy the following bounds

|ηi(t)| ≤ βi,1e−νt +
βi,2√
γ (13)

|x̃i(t)| ≤ βi,3e−νt +
βi,4
λ
√
γ , (14)

where the constants βi,j > 0, i = 1, . . . , n, j = 1, 2, 3, 4
and ν > 0 are defined in the proof.

Proof: Differentiating η̃i(t), i = 1, . . . , n − 1 and
substituting the adaptive laws we obtain

η̇i(t) =
˙̃
bi(t)xi+1(t) +

˙̃
ϑ>i (t)f i(t) + b̃i(t)ẋi+1(t)

+ ϑ̃
>
i (t)ḟ i(t) = −γρi(t)x̃i(t) + hi(t) , (15)

where ρi(t) = x̃2i+1(t)+f>i (t)f i(t), hi(t) = b̃i(t)ẋi+1(t)+

ϑ̃
>
i (t)ḟ i(t), i = 1, . . . , n− 1. It is straightforward to show



that the second derivative of the signals ηi(t), i = 1, . . . , n−
1 satisfy the dynamics

η̈i(t) + λη̇i(t) + γρi(t)ηi(t) = (16)
−γρi(t)x̃i+1(t)− γρ̇i(t)x̃i(t) + λhi(t) + ḣi(t) .

Similarly, for ηn(t) we obtain

η̈n(t) + λη̇n(t) + γρn(t)ηn(t) = (17)
−γρ̇n(t)x̃n(t) + λhn(t) + ḣn(t) ,

where ρn(t) = an[g2n(t) + f>n (t)fn(t)] and hn(t) =

an[−b̃n(t)ġn(t) + ϑ̃
>
n (t)ḟn(t)].

Since x(t) and u(t) are bounded, and g(t), f i(t), i =
1, . . . , n are smooth functions, there exist positive constants
δi,1, δi,2, δi,3 such that ‖ρi(t)‖L∞ ≤ δi,1, ‖ρ̇i(t)‖L∞ ≤
δi,2 and ‖hi(t)‖L∞ ≤ δi,3. Then, it follows from the
results of [13] that choosing λ ≥ 2

√
δ0γ, where δ0 =

max[δ1,1, . . . , δn,1], damps the oscillations in ηi(t) and guar-
antees the bound

|ηi(t)| ≤ βie−ν1t + δi,2‖x̃(t)‖+
δi,4√
γ
|hi(t)| , (18)

where ν1 is proportional to
√
γ, and the positive constants

βi and δi,4 are independent of γ (see details in [13]).
It follows from Lemma 3.1 that there exists δ1 > 0 such

that
∑n
i=1[‖θ̃i(t)‖2 + b2i (t)] ≤ δ21 . Therefore, the inequality

(12) can be written as

V̇ (t) ≤ −(2λ− 1)

[
V (t)− 1

γ
δ21

]
. (19)

Integrating (19) we conclude that

V (t) ≤
[
V (0)− δ21

γ

]
e−(2λ−1)t +

δ21
γ
. (20)

Since ‖x̃(t)‖2 =
∑n
i=1 x̃2i (t) ≤ V (t), we obtain

‖x̃(t)‖ ≤

√[
2V (0)− δ21

γ

]
e−(2λ−1)t +

δ21
γ
, (21)

Recalling that
√
a+ b ≤

√
a+
√
b for any a ≥ 0, b ≥ 0, we

arrive at

‖x̃(t)‖ ≤ δ2e−(λ−1/2)t +
δ1√
γ
, (22)

where δ2 =
√
|2V (0)− δ21

γ |.
Substituting (22) into (18) we obtain (13) with ν =

min(ν1, λ − 1/2), βi,1 = βi + δi,2δ2 and βi,2 = δi,2δ1 +
δi,3δi,4.

The bound (14) is obtained by direct integration of (10),
the last equation of which has the form

˙̃xn(t) = −λx̃n(t) + ηn(t) . (23)

Therefore

|x̃n(t)| ≤ |x̃n(t)|e−λt +
βn,1
λ− ν

[
e−νt − e−λt

]
(24)

+
βn,2
λ
√
γ

[
1− e−λt

]
≤ βn,3e−νt +

βn,4
λ
√
γ
,

where βn,3 and βn,4 are readily computed. Working back-
ward and taking into account the bounds

|x̃i+1(t) + ηi(t)| ≤ (βi,1 + βi+1,3) e−νt +
λβi,2 + βi+1,4

λ
√
γ

,

we obtain in the similar way the inequalities

|x̃i(t)| ≤ βi,3e−νt +
βi,4
λ
√
γ

(25)

for each i = n− 1, . . . , 1. The proof is complete.

IV. CONTROL DESIGN FOR KNOWN SYSTEMS

In this section we design two controllers, which are solely
used for the performance analysis.

A. Conventional Backstepping

We first design a controller assuming that b, ϑ1, . . . ,ϑn
are known (ideal control) and formally applying the conven-
tional backstepping procedure to the system (3). The error
variables are defined as

e01(t) = x01(t)− xm,1(t) (26)
e0i (t) = x0i (t)− xm,i(t)− g0i−1(t), i = 2, . . . , n ,

where the stabilizing functions have the form

g01(t) = −b1x02(t)− ϑ>1 f
0
1(t)

g0i (t) = −bix0i+1(t)− ϑ>i f
0
i (t) + ġ0i−1(t), (27)

i = 2, . . . , n− 1 .

To distinguish between the designs we furnish all variables
with a superscript 0, which indicates that the loop is closed
by the backstepping controlled designed for (3) in the ideal
case of known dynamics.

The error variables satisfy the equations

ė0i (t) = e0i+1(t), i = 1, . . . , n− 1 (28)

ė0n(t) = g0n(t) + [u0(t)− bng0n(t) + ϑ̄
>
n f

0
n(t)]

− ẋm,n(t)− ġn−1(t) .

When the control signal is designed as

u0(t) = bng
0
n(t)− ϑ̄>n f

0
n(t) , (29)

the error dynamics reduce to an exponentially stable system

ė0(t) = Ame
0(t) , (30)

if we select

g0n(t) = −k>x e0(t) + ẋm,n(t) + ġn−1(t) . (31)

Although the stabilizing functions depend on the corre-
sponding virtual controls, it can be easily shown that the
algebraic loops are solvable and the controller could be
implemented if the uncertainties were known.

We notice that since e0(t) is exponentially stable, it
follows that y0(t) exponentially converges to ym(t). In
addition, ycom(t) ∈ L∞ implies that xm(t) ∈ L∞, which
along with e0(t) ∈ L∞ can be used to recursively show that
g0i (t), ġ0i (t) ∈ L∞, i = 2, . . . , n. Then, u0(t) ∈ L∞, and
the following lemma has been proven.



Lemma 4.1: The controller defined by (26), (27) and (29)
guarantees the boundedness of all closed loop signals in the
system (3) and exponential tracking of the reference model’s
output.

B. Command Filtering

Following [3], we introduce the command filtered version
of the design (26), (27) and (29). In this case the error
variables are introduced as

ef1 (t) = xf1 (t)− xm,1(t) (32)

efi (t) = xfi (t)− xm,i(t)− σ0
i−1,1(t), i = 2, . . . , n ,

where σ0
i,1(t), i = 1, . . . , n − 1 are the outputs of the

command filters

σ̇0
i,1(t) = ωσ0

i,2(t) (33)

σ̇0
i,2(t) = −2ζωσ0

i,2(t)− ω[σ0
i,1(t)− gfi (t)]

with initial conditions σ0
i,1(0) = gfi (0) and σ0

i,2(0) = 0. The
stabilizing functions are defined similar to the ideal case as

gf1 (t) = −b1xf2 (t)− ϑ>1 f
f
1 (t) (34)

gfi (t) = −bixfi+1(t)− ϑ>i f
f
i (t) + ωσ0

i−1,2(t),

i = 2, . . . , n− 1 .

where the superscript f indicates that the corresponding
quantities are computed with the command filtered control
in the loop. The system (3) is written in error variable as

ėfi (t) = efi+1(t)− gfi (t) + σ0
i,1(t), i = 1, . . . , n− 1

ėfn(t) = gfn(t) + an

[
u(t)− bngfn(t) + ϑ̄

>
i f

f
i (t)

]
− ẋm,n(t)− ωσ0

n−1,2(t) . (35)

The command filtered control signal is defined according
to equations

uf (t) = bng
f
n(t)− ϑ̄>i f

f
i (t) (36)

gfn(t) = −k>x ef (t) + ẋm,n(t) + ωσ0
n−1,2(t) ,

which translates the error dynamics (35) into

ėf (t) = Ame
f (t) +α(t) , (37)

where

α(t) =


σ0
1,1(t)− gf1 (t)

...
σ0
n−1,1(t)− gfn−1(t)

0

 .
For the stability analysis we introduce the compensated error
signal as efc (t) = ef (t) − ξ(t), where ξ(t) satisfies the
dynamics

ξ̇(t) = Amξi(t) +α(t) (38)

with the initial condition ξ(0) = 0 and ξn(t) ≡ 0 for all
t ≥ 0. It is straightforward to verify that

ėfc (t) = Ame
f
c (t) . (39)

Obviously, the compensated error dynamics are exponen-
tially stable.

Lemma 4.2: The command filtered controller defined by
(32), (33), (34), and (36) guarantees the following relation-
ships

ef (t)− e0(t) = O (ε) , ξ(t) = O (ε) (40)
σ0
i,1(t)− g0i (t) = O (ε) , i = 1, . . . , n− 1

ωσ0
i,2(t)− ġ0i (t) = O (ε) , i = 1, . . . , n− 1 ,

where ε = 1/ω (the proper choice of ζ and ω is discussed
in [3]), and the notation O (ε) is adopted from [6] (p. 383).

The proof of the lemma follows the steps of Theorem 2
from [3].

V. ADAPTIVE CONTROL DESIGN

A. Certainty Equivalent Control

Here, we design a controller for the identification models
(4) and (6). In essence, the form of the control signal is given
by (7) and we need to only specify g(t). To distinguish from
the ideal design we use ”hat” notation for the corresponding
variables. Following the conventional backstepping design
steps we define the stabilizing functions as

ĝ1(t) = −b̂1(t)x2(t)− ϑ̂
>
1 (t)f1(t)

ĝi(t) = −b̂i(t)xi+1(t)− ϑ̂
>
i (t)f i(t) + ˙̂gi−1(t) ,

i = 2, . . . , n− 1 . (41)

and the error variables as

ê1(t) = x̂1(t)− xm,1(t) (42)
êi(t) = x̂i(t)− xm,i(t)− ĝi−1(t), i = 2, . . . , n .

The identification model (4) in the error variables takes the
form

˙̂ei(t) = êi+1(t) + λx̃i(t), i = 2, . . . , n− 1 .

The dynamics of ên(t) is derived from the equation (6) as
follows

˙̂en(t) = ĝn(t) + an

[
u(t)− b̂n(t)ĝn(t) + ϑ̂

>
n (t)fn(t)

]
− ẋm,n(t)− ˙̂gn−1(t) + λx̃n(t) . (43)

We notice that the error system is translated into

˙̂en(t) = −k>x ê(t) + λx̃i(t) , (44)

which is asymptotically stable, if we set ĝn(t) = −k>x ê(t)+
ẋm,n(t) + ˙̂gn−1(t) and the certainty equivalence control law

û(t) = b̂n(t)ĝn(t)− ϑ̂
>
n (t)fn(t) . (45)

It is easy to see that the error dynamics can be written as

˙̂e(t) = Am(t)ê(t) + λx̃(t) . (46)

Lemma 5.1: The controller defined by (41), (42) and (45)
guarantees boundedness of all closed-loop signals and the
inequality

|êi(t)| ≤ βi,5e−ν2t +
βi,6

ν2λ
√
γ
, (47)



where βi,j > 0, i = 1, . . . , n, j = 5, 6 and ν2 > 0 are
defined in the proof.

Proof: According to Lemma 3.2, x̃(t) ∈ L∞. Since Am
is Hurwitz, it follows from (46) that ê(t) ∈ L∞. In addition,
from ycom(t) ∈ L∞ it follows that xm(t) ∈ L∞. Therefore
x̂1(t) = ê1(t) + xm1(t) ∈ L∞ and x1(t) = x̂1(t) + x̃1(t) ∈
L∞. Then ĝ1(t) ∈ L∞, since f1(x1(t)) and h1(x1(t)) are
continuous and b̂1(t), θ̂1(t) ∈ L∞ according to Lemma 3.1.
This implies that x̂2(t) = ê2(t) + ĝ1(t) ∈ L∞ and x2(t) =
x̂2(t) + x̃2(t) ∈ L∞. Continuing this recursion we conclude
that x̂(t) ∈ L∞, x(t) ∈ L∞, ĝi(t) ∈ L∞, i = 1, . . . , n,
˙̂gi(t) ∈ L∞, i = 1, . . . , n − 1, and û(t) ∈ L∞. Thus all
closed-loop signals are bounded. To derive the bound (47) we
notice that eAmt ≤ κe−ν2t for some κ > 0, where ν2 > 0 is
the decay rate of the reference model. Therefore integrating
(46) and taking into account (14) we obtain

|êi(t)| ≤
κβi,3
ν − ν2

[
e−ν2t − e−νt

]
+

κβi,4
ν2λ
√
γ

[
1− e−ν2t

]
≤ βi,5e

−ν2t +
βi,6

ν2λ
√
γ
. (48)

This control design is used for the performance analysis.

B. Actual Control Design
Now we design the actual control applied to the system

as the command filtered version of the certainty equivalent
control from the previous subsection. The uncompensated
error variables are introduced as

êf1 (t) = x̂f1 (t)− xm,1(t) (49)

êfi (t) = x̂i(t)− xm,i(t)− σ̂i−1,1(t), i = 2, . . . , n.

where σ̂i−1,1(t) is the first state of the command filter

˙̂σi,1(t) = ωσ̂i,2(t) (50)
˙̂σi,2(t) = −2ζωσ̂i,2(t)− ω[σ̂i,1(t)− ĝfi (t)]

i = 0, . . . , n− 1 ,

with the initial conditions σ̂i,1(0) = ĝfi (0) and σ̂i,2(0) = 0.
The stabilizing functions have the form

ĝf1 (t) = −b̂1(t)xf2 (t)− ϑ̂
>
1 (t)ff1 (t)

ĝfi (t) = −b̂i(t)xfi+1(t)− ϑ̂
>
i (t)ffi (t) + ωσi−1,2(t) ,

i = 2, . . . , n− 1 . (51)

where the superscript f indicates that the corresponding
quantities are computed with the command filtered control
in the loop. The identification model in error variables takes
the form

˙̂efi (t) = êi+1(t)− ĝfi (t) + σ̂i,1(t) + λx̃fi (t),

i = 1, . . . , n− 1 (52)
˙̂efn(t) = ĝfn(t) + [u(t)− b̂n(t)ĝfn(t) + ϑ̂

>
n (t)ffn(t)]

−ẋm,n(t) + ωσ̂n−1,2(t) + λx̃fn(t) .

where x̃f (t) = xf (t)− x̂f (t). Designing the controller as

ûf (t) = b̂n(t)ĝfn(t)− ϑ̂
>
n (t)ffn(t) (53)

ĝfn(t) = −k>x ê
f (t) + ẋm,n(t) + ωσ̂n−1,2(t) .

reduces the error dynamic to

˙̂ef (t) = Amê
f (t) + α̂(t) + λx̃f (t) , (54)

where α̂(t) is obtained from α(t) by replacing σ0
i,1(t) with

σi,1(t) and gfi (t) with ĝfi (t).
The compensated error signal is êfc (t) = êf (t) − ξ̂(t),

where ξ̂(t) now satisfies the dynamics

˙̂
ξ(t) = Amξ̂i(t) + α̂(t) (55)

with the initial condition ξ(0) = 0. It is straightforward to
verify that

˙̂efc (t) = Amê
f
c (t) + λx̃f (t) . (56)

Lemma 5.2: The controller defined by (49), (50), (51), and
(53) guarantees the following relationships

êf (t)− ê(t) = O (ε) , ξ̂(t) = O (ε) (57)

σ̂i,1(t)− ĝfi (t) = O (ε) , i = 1, . . . , n− 1

ωσ̂i,2(t)− ˙̂gfi (t) = O (ε) , i = 1, . . . , n− 1 .
Proof: Since the exponential convergence of x̃f (t)

is not guaranteed, Tikhonov’s theorem ([6], Theorem 11.2)
cannot be directly applied to the system comprised of (52),
(55) and (56). However, since x̃f (t) does not depend on ε,
the state transformation sf (t) = êf (t) − µ(t), where µ(t)
is dynamically defined as µ̇(t) = Amµ(t) + λx̃f (t), results
in the system

ṡf (t) = Ams
f (t) + α̂(t) . (58)

Next, define ŝ(t) = ê(t) − µ(t), which satisfies the expo-
nentially stable dynamics

˙̂s(t) = Amŝ(t) . (59)

Following the steps from [3], it can be verified that
Thikhonov’s theorem’s conditions are satisfied for the sys-
tems (58) and (59). Therefore the last three relationships in
(57) can be concluded along with sf (t) − ŝ(t) = O (ε).
Then, it follows that êf (t) − ê(t) = sf (t) − ŝ(t) = O (ε),
which completes the proof.

VI. PERFORMANCE ANALYSIS

Lemma 6.1: Let the command filtered controller for sys-
tem (3) be defined by (32), (33), (34), and (36). Then all
closed-loop signals are bounded and

xf (t)− x0(t) = O (ε) (60)
uf (t)− u0(t) = O (ε) .

Proof: From Lemma 4.1 we have e0(t) ∈ L∞,
g0i (t), ġ0i (t) ∈ L∞ for i = 1, . . . , n − 1. Therefore, (40)
implies that ef (t) ∈ L∞, σ0

i,1(t) ∈ L∞ and σ0
i,2(t) ∈ L∞

for i = 1, . . . , n − 1. Next, (32) implies that xf (t) ∈ L∞.
Therefore ffi (t) ∈ L∞, and equations (34) imply that
gfi (t) ∈ L∞ for all i = 1, . . . , n. It follows from the
definition (36) that uf (t) ∈ L∞. Further, we notice that

xfi (t)− x0i (t) = efi (t)− e0i (t) + σ0
i,1(t)− g0i (t) .



Since efi (t)− e0i (t) = O (ε) and σ0
i,1(t)− g0i (t) = O (ε), it

follows that xfi (t)−x0i (t) = O (ε) for all i = 1, . . . , n. From
Lemma 4.2 we also have ωσn−1,2(t) − ġ0n−1(t) = O (ε),
therefore

gfn(t)− g0n(t) = O (ε) .

It follows from the smoothness of fn that fn(xf (t)) −
fn(x0(t)) = O (ε). Then

uf (t)− u0(t) = O (ε) .

The proof is complete.
Lemma 6.2: Let the controller for system (3) and the

identification models (4) and (8) be defined by (49), (50),
(51), and (53). Then all signals are bounded and

x̂f (t)− x̂(t) = O (ε) (61)
ûf (t)− û(t) = O (ε) .

Proof: From Lemma 5.1 we have ê(t) ∈ L∞,
ĝi(t), ˙̂gi(t) ∈ L∞ for i = 1, . . . , n − 1. Therefore, Lemma
5.2 implies that ef (t) ∈ L∞, σi,1(t) ∈ L∞ and σi,2(t) ∈
L∞ for i = 1, . . . , n− 1. It follows from (49) that x̂f (t) ∈
L∞. Since x̃f (t) ∈ L∞, it follows that xf (t) ∈ L∞ as
well. Therefore ffi (t) ∈ L∞, and equations (51) imply that
ĝfi (t) ∈ L∞ for all i = 1, . . . , n. The definition (53) implies
that ûf (t) ∈ L∞ as well. Next, we observe that

x̂fi (t)− x̂i(t) = êfi (t)− êi(t) + σ̂i,1(t)− ĝi(t) .

Since êfi (t) − êi(t) = O (ε) and σ̂i,1(t) − ĝi(t) = O (ε),
it follows that x̂fi (t) − x̂i(t) = O (ε) for all i = 1, . . . , n.
On the other hand, ωσ̂n−1,2(t) − ˙̂gn−1(t) = O (ε) is true
according to Lemma 5.2, therefore

ĝfn(t)− ĝn(t) = O (ε) .

Next, fn(xf (t)) − fn(x(t)) = O (ε) holds because fn is
smooth. Since b̂n(t) and ϑ̂n(t) are bounded, it follows that
ûf (t)− û(t) = O (ε). The proof is complete.

Now we are ready to prove the main result.
Theorem 6.1: Let the controller for the system (1) be

defined according to command filtered scheme given by (4),
(5), (8), (9), (49), (50), (51), and (53). Then the input and
output tracking errors satisfy the following upper bounds

|y(t)− ym(t)| ≤ β3e−ν2t +
β4
λ
√
γ

+O (ε) (62)

|ûf (t)− u0(t)| ≤ β5e−ν2t +
β6√
γ

+O (ε) , (63)

where β3, β4, β5, β6, and ν2 are positive constants defined
in the proof.

Proof: First of all, we notice that y(t) − ym(t) =
xf1 (t)− xm1(t) = x̃f1 (t) + x̂f1 (t)− xm1(t) = x̃f1 (t) + êf1 (t).
Since êf1 (t) = ê1(t) +O (ε), it follows that y(t)− ym(t) =
x̃f1 (t) + ê1(t) +O (ε). Using (14) and (47) one can obtain

|y(t)− ym(t)| ≤ β1,3e−νt +
β1,4
λ
√
γ

+ β1,5e
−ν2t

+
β1,6
ν2λ
√
γ

+O (ε) ≤ β3e−ν2t +
β4
λ
√
γ

+O (ε) ,

since ν > ν2 for fast adaptation, and β3 and β4 are readily
computed.

To compute the bound for the control signal, we consider
two closed-loop systems. Namely, the system (1) with the
controller defined by (32), (33), (34) and (36), and the system
(1) with the actual controller. For the clarity, we denote
y(uf ), when y(t) is generated by the controller uf (t), and
y(ûf ) when y(t) is generated by the actual control ûf (t).
The error between this variables is ỹf (t) = y(uf )− y(ûf ).

First, we recursively compute x̃fi (t) = xi(u
f ) − xi(ûf ),

f̃
f

i (t) = f i(u
f ) − f i(ûf ), g̃fi (t) = gi(u

f ) − gi(ûf ), i =
1, . . . , n. For i = 1 we have x̃f1 (t) = x1(uf ) − xm,1(t) +

xm,1(t)−x̂1(ûf )+x̂1(ûf )−x1(ûf ) = ef1 (t)−êf1 (t)−x̃1(t) =

e01(t) +O (ε)− x̃1(t)− êf1 (t). Since |e0(t)| ≤ |e0(0)|κe−ν2t,
it follows from (14) and (47) that

|x̃f1 (t)| ≤ ‖e0(0)‖κe−ν2t +O (ε) + β1,3e
−νt +

β1,4

λ
√
γ

+β1,5e
−ν2t +

β1,6

ν2λ
√
γ ≤ βx,1e

−ν2t +
δx,2√
γ +O (ε) , (64)

where βx,1 = ‖e0(0)‖κ+β1,3 +β1,5 and δx,2 =
β1,4

λ +
β1,6

ν2λ
.

Since x(t) is bounded and f1(t) is smooth, it follows from
(64) that

‖f̃
f

1 (t)‖ ≤ βf,1e−ν2t +
δf,1√
γ

+O (ε) . (65)

where βf,1 = L1βx,1, δf,1 = L1δx,2, and L1 is the Lipschitz
constant for f1. Using (34) and (51) it is straightforward to
compute that

g̃f1 (t) = −b1x̃f2 (t)− ϑ>1 f̃
f

1 (t)− η1(t) . (66)

On the other hand, it follows from (32) and (49) that

x̃f2 (t) = ef2 (t) + σ1,1(uf )− x̃2(t)− êf2 (t)− σ̂1,1(ûf ) . (67)

From Lemmas 4.2 and 5.2 it follows that σ1,1(uf ) =
g1(uf ) +O (ε) and σ̂1,1(ûf ) = g1(ûf ) +O (ε), therefore

x̃f2 (t) = ef2 (t)− x̃2(t)− êf2 (t) +O (ε)

−b1x̃f2 (t)− ϑ>1 f̃
f

1 (t)− η1(t) . (68)

Solving (68) for x̃f2 (t) and recalling that 1 + b1 = a10, we
conclude

x̃f2 (t) =
ef2 (t)− x̃2(t)− êf2 (t) +O (ε)− ϑ>1 f̃

f

1 (t)− η1(t)

a1
,

from which we obtain

|x̃f2 (t)| ≤ 1
|a1|
[
‖e0(0)‖κe−ν2t + β2,3e

−νt +
β2,4

λ
√
γ

+β2,5e
−ν2t +

β2,6

ν2λ
√
γ + ‖ϑ1‖

[
βf,1e

−ν2t +
δf,1√
γ

]
(69)

+β1,1e
−νt +

β1,2√
γ

]
+O (ε) ≤ βx,2e−ν2t +

δx,2√
γ +O (ε) ,

where βx,2 and δx,2 are readily computed. Taking into
account (69), we conclude from (66) that

|g̃f1 (t)| ≤ |b1|
[
βx,2e

−ν2t +
δx,2√
γ

]
+ ‖ϑ1‖

[
βf,1e

−ν2t +
δf,1√
γ

]
+β1,1e

−νt +
β1,2√
γ +O (ε) ≤ βg,1e−ν2t +

δg,1√
γ +O (ε) .



To prepare the next step, we observe that the signals
σ̃i,1(t) = σ0

i,1(t) − σi,1(t) and σ̃i,2(t) = σ0
i,2(t) − σi,2(t)

satisfy the operator equations

σ̃i,1(s) = G1(s)g̃fi (s), G1(s) = ω2

s2+2ζωs+ω2 (70)

σ̃i,2(s) = G2(s)g̃fi (s), G2(s) = ωs
s2+2ζωs+ω2 .

Since ‖G1(s)‖H∞ = 1 for ζ ≥
√

2/2 and ‖G2(s)‖H∞ =
(2ζ)−1, it follows from (70) that

|σ̃i,2(t)| ≤ βσ,1e−ν2t +
δσ,1√
γ

+O (ε) , (71)

where βσ,1 = (2ζ)−1βg,1 and δσ,1 = (2ζ)−1δg,1. Using
again (34) and (51) we compute

g̃f2 (t) = −b2x̃f3 (t)− ϑ>2 f̃
f

2 (t)− η2(t) + ωσ̃1,2(t) .

Now, we use (32) and (49) to write

x̃f3 (t) = ef3 (t) + σ2,1(uf )− x̃3(t)− êf3 (t)− σ̂2,1(ûf ) , (72)

where σ2,1(uf ) − σ2,1(ûf ) = g̃f2 (t) + O (ε) according to
Lemmas 4.2 and 5.2. Therefore

x̃f3 (t) = ef3 (t)− x̃3(t)− êf3 (t)− b2x̃f3 (t)− ϑ>2 f̃
f

2 (t)

−η2(t) + ωσ̃1,2(t) +O (ε) , (73)

which after solving for x̃f3 (t) reduces to

x̃f3 (t) = 1
a2

[
ef3 (t)− x̃3(t)− êf3 (t)− ϑ>2 f̃

f

2 (t)− η2(t)

+ωσ̃1,2(t) +O (ε)
]
, (74)

wheref̃
f

2 (t) satisfies the bound

‖f̃
f

2 (t)‖ ≤ βf,2e−ν2t +
δf,2√
γ

+O (ε) , (75)

which follows from the smoothness of f2(·) with respect to
x1 and x2 and from the bounds (64) and (69). Substituting
the corresponding bounds in (74) we obtain

|x̃f3 (t)| ≤ βx,3e−ν2t +
δx,3√
γ

+O (ε) , (76)

which enables us to compute the following bound for g̃f2 (t)

|g̃f2 (t)| ≤ |b2|
[
βx,3e

−ν2t +
δx,3√
γ

]
+ β2,1e

−νt +
β2,2√
γ

+‖ϑ2‖
[
βf,2e

−ν2t +
δf,2√
γ

]
+ ω

2ζ

[
βσ,1e

−ν2t +
δσ,1√
γ

]
+O (ε) ≤ βg,2e−ν2t +

δg,2√
γ +O (ε) . (77)

Continuing in the same manner, we can derive the follow-
ing bounds

‖f̃
f

i (t)‖ ≤ βh,ie
−ν2t +

δh,i√
γ

+O (ε)

|x̃fi (t)| ≤ βx,ie
−ν2t +

δx,i√
γ

+O (ε)

|g̃fi (t)| ≤ βg,ie
−ν2t +

δg,i√
γ

+O (ε) (78)

for all i = 1, . . . , n.

Now, we are ready to derive a bound for the control signal.
To this end, we recall that uf (t)− u0(t) = O (ε) according
to Lemma 6.1. Therefore

u0(t)− ûf (t) = O(ε) + uf (t)− ûf (t) . (79)

Substituting the expressions of uf (t) from (36) and ûf (t)
from (53) into (79) we obtain

u0(t)− ûf (t) = O(ε)− bngn(uf )− ϑ>n fn(uf )

+b̂n(t)gn(ûf ) + ϑ̂
>
n (t)fn(ûf ) (80)

= −ηn(t)− bng̃n(t)− ϑ>n f̃
f

n(t) +O(ε) ,

which upon substitution of the corresponding bounds results
in

|u0(t)− ûf (t)| ≤ |bn|
[
βg,ne

−ν2t +
δg,n√
γ

]
+ β2,1e

−νt

+
β2,2√
γ + ‖ϑn‖

[
βf,ne

−ν2t +
δf,n√
γ

]
+O(ε)

= β5e
−ν2t + β6√

γ +O (ε) ,

which completes the proof.
Remark 6.1: It follows form Theorem 6.1 that the bounds

on the input and output tracking errors can be systematically
decreased by choosing large values for ω and γ. It should
be notice that ω appears in the bounds of the control signal
not only in O (ε) term as ε = 1

ω , but also in the coefficient
β6 in the form of a factor ωn. Therefore in order to make
the term β6√

γ smaller the adaptation must be much faster than
the command filter’s response.

VII. NUMERICAL SIMULATIONS

As a simulation example we consider a third order system
with f1(x1) = 2.2x21, f2(x1, x2) = 1.3x1x2 and f3(x) =
0. For the numerical simulations the uncertain parameters
are set to ϑ1 = 2.2, ϑ2 = 1.3, a1 = 1.2, a2 = 2.4 and
a3 = 2.5. The reference model is implemented with kx =
[8 10.4 5.2]> and kr = 16. The frequency and damping ratio
of the command filters are respectively set to ω = 500 and
ζ = 0.8. The adaptation rate is set to γ = 50000 and the
error feedback gain is λ = 2

√
γ.

Figure 1 displays the controller performance for the exter-
nal step command of magnitude 2. Clearly asymptotic track-
ing is achieved for both output and input signals with a small
transient error. System’s sinusoidal response is presented in
Figure 2. Good tracking performance can be observed in this
case as well.

VIII. CONCLUDING REMARKS

We have presented a certainty equivalence adaptive back-
stepping control method for nonlinear systems with un-
matched uncertainties and unknown virtual control coeffi-
cients without over-parametrization. The approach uses a fast
identification model, which is independent of the control
design, and the command filtered backstepping method.
This separation of the estimation and control design is an
important feature that enables the designer to achieve desired
transient and steady state properties by the proper choice of
the control parameters.
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Fig. 1. Step response and the corresponding control signal history.
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Fig. 2. Sinusoidal response and the corresponding control signal history.
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