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Planar laser-induced fluorescence (PLIF) of naturally occurring nitric oxide (NO) has 

been used to obtain instantaneous flow visualization images, and to make both radial and 

axial velocity measurements in the HYMETS (Hypersonic Materials Environmental Test 

System) 400 kW arc-heated wind tunnel at NASA Langley Research Center.  This represents 

the first application of NO PLIF flow visualization in HYMETS.  Results are presented at 

selected facility run conditions, including some in a simulated Earth atmosphere (75% 

nitrogen, 20% oxygen, 5% argon) and others in a simulated Martian atmosphere (71% 

carbon dioxide, 24% nitrogen, 5% argon), for specific bulk enthalpies ranging from 6.5 

MJ/kg to 18.4 MJ/kg.  Flow visualization images reveal the presence of large scale unsteady 

flow structures, and indicate nitric oxide fluorescence signal over more than 70% of the core 

flow for specific bulk enthalpies below about 11 MJ/kg, but over less than 10% of the core 

flow for specific bulk enthalpies above about 16 MJ/kg.  Axial velocimetry was performed 

using molecular tagging velocimetry (MTV).  Axial velocities of about 3 km/s were measured 

along the centerline.  Radial velocimetry was performed by scanning the wavelength of the 

narrowband laser and analyzing the resulting Doppler shift.  Radial velocities of ±0.5 km/s 

were measured. 
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I. Introduction 

rcjet facilities are a vital tool in the testing and characterization of materials intended for hypersonic vehicles, 

including those designed for planetary entry. Arcjets are capable of producing flows of a higher enthalpy than 

traditional wind tunnels, and are thus better suited for evaluating and characterizing candidate materials for thermal 

protection systems. Like other types of hypersonic facilities, arcjets cannot perfectly simulate all the flow conditions 

relevant to hypersonic flight.  For example, significant dissociation of freestream gases typically occurs in arcjets.   

Determining how to interpret arcjet test results and then extrapolate those results to flight conditions can therefore be 

complicated.  To that end, measurements of the flow conditions of an arcjet facility are needed to validate 

computational tools to allow for reliable comparisons between simulations and test results. This allows for reliable 

predictions of aerodynamic parameters and material response in flight environments that cannot be adequately 

simulated in ground test facilities.  Currently, the flow parameters that can be measured conventionally (or 

calculated from measured quantities) in the Hypersonic Material Environmental Test System (HYMETS) facility at 

NASA Langley include stagnation pressure; heat flux (semi-catalytic hot-wall, fully-catalytic cold-wall, and/or non-

catalytic cold-wall); gas mass flow rates; sonic, stagnation, and bulk specific enthalpy; and arc current, voltage, and 

power [1].  Nonintrusive measurements of additional flow parameters are therefore desired.  An arcjet flow presents 

a challenging environment for making measurements as the flow is typically characterized as high-enthalpy, low 

pressure, chemically reacting, and in nonequilibrium.  Several non-intrusive techniques have been applied at other 

arcjet facilities.  Diode laser absorption has been demonstrated for making simultaneous velocity and temperature 

measurements of an argon arcjet plume [2]. Oxygen (O)-atom and nitrogen (N)-atom laser-induced fluorescence 

(LIF) have been used to provide temperature, velocity and species concentration (number density) measurements at 

a single point or along a line[3-5]. Nitric oxide (NO) and O-atom LIF previously have been used in arcjets to 

measure translational temperature of O and rotational temperature of NO [6,7]. Additional descriptions of 

techniques that have been used to make nonintrusive measurements in arcjets can be found in Refs. [8] and [9].  

Nonintrusive diagnostics are being implemented in HYMETS to obtain 1) flow visualization information, 

including measurements of shock standoff distance and flow uniformity assessments, 2) axial and radial velocity 

measurements in the freestream and near the test sample, 3) species detection and concentration measurements, 

including both species produced by the arcjet itself and gaseous species resulting from the ablation of test samples, 

and 4) measurements of rotational, vibrational, and electronic temperature.  This paper presents results of the first 

A 
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application of NO PLIF flow visualization in an arcjet, as well as the first non-intrusive measurements of radial and 

axial velocity in HYMETS and progress to varying degrees towards all four of the aforementioned goals. Using NO 

PLIF, we have demonstrated that flow visualization, and radial and axial velocimetry can be performed over the full 

flowfield downstream of the nozzle exit for certain ranges of facility test conditions.  The measurements will 

ultimately provide an improved understanding of the operation of the arcjet and will also provide for facility-to-

facility and facility-to-flight scalings for materials tests. 

II. Experimental Methods 

A. HYMETS Arcjet Facility 

The HYMETS facility is powered by a 400 kW supply.  When compared to other, larger arc-heated wind tunnel 

facilities, significant advantages of HYMETS include the relatively small workforce required to operate the facility 

(typically one technician), long run times (up to several hours), short down-time between runs and sample changes 

(less than one hour), and relatively low operating costs. Also, numerous optical ports offer a variety of views of the 

flow and test specimens.  Figure 1 shows an overhead schematic view of the arc plasma generator, nozzle, and test 

chamber. Note that the schematic shows the retracted position of two flow probes, with dashed lines indicating the 

injected position of one of the probes.  (The facility has four such probes, described in more detail below.  When 

looking down the flow axis from the nozzle toward the diffuser, the probes are located at the 45°, 135°, 225°, and 

315° positions with respect to the horizontal.)  This schematic depicts the position of the seven access ports, each of 

which can be fitted with a 51 mm (2 inch) diameter UV-grade fused silica (quartz) window to provide optical access 

at wavelengths down to about 180 nm in the ultraviolet.  Six ports are in the horizontal plane, one is below the 

centerline injected-probe position, and two are above the horizontal plane.  Of the six ports in the horizontal plane, 

four are angled at approximately 45° to the flow axis and two are angled at 90° to the flow axis, just downstream of 

the leading edge of an injected probe.  The laser sheet (shown in purple) enters the test chamber through one of the 

viewing ports.  A periscope (two mirrors, indicated by thick black lines) inside the test chamber then directs the laser 

sheet to the flow. Dashed lines indicate the position of one of the probes when injected into the flow. 

A segmented-constrictor direct-current electric arc-heater serves as an arc plasma generator.  The slightly 

diverging flow issues from a convergent-divergent 8 degree half-angle Mach 5 conical copper nozzle with a 12.7 

mm (0.5 inch) diameter throat and a 63.5 mm (2.5 inch) diameter exit. Process gases consist of nitrogen (N2), 
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oxygen (O2), carbon dioxide (CO2), and argon (Ar).  Test gasses are injected tangentially into the bore of the arc 

plasma generator at six discrete locations, where they are heated by a high-voltage electric-arc maintained between 

the cathode and anode to create a high temperature ionized plasma flow.  The electric-arc is spin-stabilized in the arc 

plasma generator by the vortex motion of the injected test gasses.  The test gasses used in the arc plasma generator 

are supplied by several compressed gas cylinders and can be custom mixed to any desired atmosphere composition.  

Adjustable volume percentages of N2 and Ar are used as shield gasses near the cathode and anode, respectively, to 

protect the electrodes from rapid oxidation. 

The plasma flow from the arc plasma generator is accelerated through the nozzle and exhausted into a 0.6 m (2 

ft) diameter by 0.9 m (3 ft) long vacuum test chamber where it stagnates on one of four water-cooled 

specimen/instrumentation injection stings arranged symmetrically around the inside circumference of the test 

chamber.  The flow is then captured by a collector cone with a 0.2 m (8 inch) diameter inlet plane, a 0.15 m (6 inch) 

diameter constant cross-section diffuser, and a coiled-copper tubing heat exchanger to decelerate and cool the flow.  

A two-stage, continuous-flow, high-mass-capacity, mechanical pumping system, is used to evacuate the plasma flow 

from the facility.  The whole facility is cooled by a re-circulating chiller with associated booster pumps and heat 

exchangers. 

Four probes can alternately be hydraulically injected into the flow 51 mm (2 inches) downstream of the nozzle 

exit. Three of these probes typically consist of a pitot tube to measure stagnation pressure, a Gardon gauge and a 

copper slug calorimeter to measure fully-catalytic cold-wall heat flux.  The fourth probe is usually configured as 

either a Teflon
®
 slug calorimeter to measure non-catalytic cold-wall heat flux, a silicon carbide (SiC) probe to 

measure semi-catalytic cold-wall heat flux, or a test specimen.  For the results presented herein in which a probe was 

inserted into the flow, the probe used was a 25 mm diameter SiC probe.  

A more thorough description of the facility, including detailed explanations of the gas injection system, the 

instrumentation available in the facility, schematics and photographs, comparisons with other similar facilities, and 

measured free stream quantities across a wide range of flow conditions can be found in [1]. 
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Fig. 1.  Schematic of the HYMETS test section. 

B. Test Conditions 

Two different gas mixtures were used for the present study.  The first is used to simulate atmospheric entry 

conditions on Earth and consisted of a 75% nitrogen (N2), 20% oxygen (O2), 5% argon (Ar) mixture by volume.  

The second is used to simulate atmospheric entry conditions on Mars and consisted of a 71% carbon dioxide (CO2), 

24% N2, 5% Ar mixture by volume. The total mass flow rate was varied from 76 standard liters per minute (slpm) to 

404 slpm.  The arc current was varied between 100 A and 200 A.  These run conditions resulted in an arc plenum 

pressure (upstream of the nozzle) of between 31 kPa and 130 kPa, and a specific bulk enthalpy between 6.5 MJ/kg 

(2,790 BTU/lbm) and 18.4 MJ/kg (7,910 BTU/lbm).  Hereafter, the conditions of a given run will be referenced by 

the specific bulk enthalpy and by the test gas mixture (“Earth” or “Mars” for short).  We estimate an upper bound on 

the average free stream static translational temperature to be ~1,300 K (~1,900°F) for the 6.5 MJ/kg Earth condition 

and ~1,600 K (~2,400 °F) for the 10.8 MJ/kg Mars condition.  See section III.C.4. for an explanation of how this 

estimate was obtained.  Table 1 contains additional flow parameters for selected runs corresponding to cases for 
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which results are presented in this paper. Asterisks indicate estimated or interpolated values based on measured data 

from similar runs. 

Table 1.  Test conditions of runs described in this paper. 

 

C. NO PLIF Flow Visualization 

The PLIF laser system includes a tunable Nd:YAG-pumped dye laser with a Rhodamine dye mixture followed 

by a mixing crystal. Optics formed the beam into a laser sheet ~50 mm wide by ~0.2 mm thick (FWHM) in the 

measurement region.  The laser sheet was oriented in the horizontal plane relative to the laboratory frame of 

reference and perpendicular to the axis of the primary flow.  Fluorescence was imaged through the optical access 

port on the bottom of the test chamber, onto a gated, intensified CCD at a viewing angle approximately normal to 

the laser sheet.  Images were acquired at 10 Hz with a 1s camera gate.   

The laser was tuned to the N=13 line of the Q1 branch near 225.7053 nm. (In this notation, “N” is the rotational 

quantum number of the state probed by the laser and “Q” indicates a set of transitions for which the change in 

rotational quantum number between the probed state and the laser-excited state is zero. The subscript 1 indicates that 

the parity of both the upper and lower states is positive, meaning that in both states, the electronic spin is aligned 

Run 

#

Test 

Gas

Bulk 

Enthalpy

Arc 

Current

Mass 

flow

Arc

Pressure

Chamber 

Pressure

Stagnation Probe 

Pressure
Measurement Type

MJ/kg Amps slpm kPa kPa kPa
4 Earth 15.4 105 102 34 0.104 0.091 Flow Visualization

5 Earth 15.4 105 102 34 0.015 NA Signal Fraction

9 Earth 15.9 125 128.6 44 < 0.024 NA Signal Fraction

10 Earth 18.4 150 128.6 46 0.127 0.11 Flow Visualization

11 Earth 18.4 150 128.6 46 < 0.028 NA Signal Fraction

13 Earth 16.7 150 154.6 54 < 0.032 NA Signal Fraction

15 Earth 15.5 151 178.5 62 < 0.044 NA Signal Fraction

17 Earth 14.7 150 203 69 < 0.031 NA Signal Fraction

19 Earth 13.7 150 228 77 < 0.029 NA Signal Fraction

21 Earth 12.8 150 254 84 < 0.033 NA Signal Fraction

22 Earth 12.8 150 254 84 0.025 NA Signal Fraction

24 Earth 12.0 150 280 91 0.028 NA Signal Fraction

25 Earth 11.4 150 304 98 0.189 0.18 Flow Visualization

26 Earth 11.4 150 304 98 0.031 NA Signal Fraction

29 Earth 15.2 200 304 107 0.043 NA Signal Fraction

35 Earth 10.9 174 404 130 0.041 NA Signal Fraction

37 Earth 8.0 125 404 117 0.220 0.21 Flow Visualization

39 Earth 8.0 125 404 117 0.039 NA Signal Fraction

44 Earth 6.5 100 403 109 0.039 NA Signal Fraction

77 Mars 14.0* 100 100 38* 0.079* 1.90* Flow Visualization

80 Mars 15.5 100 76 31 0.073 1.62 Flow Visualization

81 Mars 10.8 100 152 53 0.093 2.51 Flow Vis and Sig Frac

85 Mars 10.8 100 152 53 0.093 2.51 Radial Velocity

114 Earth 6.5 100 400 109 0.228 0.21 Radial Velocity

157 Earth 6.5 100 400 109 0.228 0.21 Axial Velocity
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with the total angular momentum of the molecule.) While the fluorescence signal levels were comparable for the 

more commonly used N=1-3 lines, N=13 is a well-isolated line, which is desirable for obtaining a good Doppler-

shift velocity measurement. 

For most arc jet conditions, we acquired 100 single shots with the sample injected.  If arc jet conditions 

permitted, we also acquired some images without the sample in order to look at the core flow of the arc jet.  If the 

sample is left out of the flow for too long the cooling lines in the diffuser are damaged, so obtaining images of the 

core flow with no sample was not possible at some conditions. 

Difficulties with the placement of optics (in particular, two mirrors which form a periscope inside the test 

section, shown in Fig. 1) resulted in a laser sheet which did not quite reach to the nozzle exit on the upstream edge 

of the laser sheet (although diffuse scatter off the nozzle is visible in the images, if the contrast is adjusted).  This is 

an area for improvement in later tests, and in fact was improved for the quantitative velocity measurements shown 

below.  The downstream edge of the laser sheet skimmed the face of the sample.  Vertically, the horizontally-

oriented laser sheet was aligned with the center of the flow. The laser sheet was fairly uniform in intensity, although 

a few striations are noticeable in the images.  

The camera (a Princeton Instruments PIMAX-II intensified 512x512 pixel CCD camera) is effectively looking 

up through a round window port in the bottom of the test section.  Since this port is directly below the sample and 

since the desired field of view is upstream of the sample, the camera is looking back toward the nozzle at an angle. 

The intensifier gate width was set to 1 μs with a constant gain of 250. 

D. Molecular Tagging Velocimetry (MTV) for Axial Velocity Measurements 

The NO PLIF MTV method involves writing a pattern of lines into the flowfield and observing these lines at two 

different times.  The displacement of the lines is used determine the flow velocity component perpendicular to the 

lines.  To form a laser sheet, the collimated 226 nm beam was passed through a cylindrical lens, which focused and 

then diverged the beam, expanding it in one direction while leaving it collimated in the other. A spherical lens then 

collimated the diverging axis of the beam and focused the other axis into a thin sheet approximately 60 mm wide by 

0.5-mm thick. To tag multiple lines of NO in the test section for a velocimetry measurement, a 50 mm long, 

LaserOptik GmbH diffusion welded lens array of 25, 1 m focal length cylindrical lenses focused the laser sheet into 
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25 lines, running parallel to the model surface in the spanwise direction. The spacing of the lines was approximately 

2 mm.  

To image the tagged lines, a Cooke DiCAM-PRO camera, with an intensified 1280x1024 pixel array interline 

progressive scan CCD, was used. The camera used a 100 mm focal length, F/2.0 Bernhard Halle Nachfolger GmbH 

lens. When used in double shutter mode, the camera is capable of acquiring an image pair with a minimum 500 ns 

delay between the end of the first gate and the beginning of the second. Each gate has a minimum duration of 20 ns, 

with delay settings and durations set in increments of 20 ns. A detailed discussion of a timing sequence methodology 

similar to the one used in this NO PLIF experiment is provided in Refs. [10] and [11]. The magnification of the 

images (pixels/mm) factors directly into the measurement of the velocity, and into the error analysis.  To determine 

the magnification accurately, images were acquired of a planar surface imprinted with a regular pattern of dots that 

was placed in the same plane as the laser sheet.  Use of this so-called dotcard allowed perspective distortions to be 

corrected as well [10].  

E. Doppler Velocimetry for Radial Velocity Measurements 

Doppler-shift-based PLIF velocimetry is an established measurement technique and has been demonstrated on 

various supersonic and hypersonic flow applications [12-16]. The Doppler effect shifts the location of the spectral 

line center relative to the static vacuum center if the flow has a velocity component in the direction of the laser.  This 

Doppler shift, and thus the flow velocity, can be determined from NO PLIF imaging in a variety of ways, including 

both fixed- and tunable-frequency methods.  Fixed-laser-frequency measurement schemes can measure velocity 

instantaneously and so are preferred when time-resolved velocity measurements are required.  The process of 

scanning the laser frequency limits this method to measuring time-averaged velocity. Tuned-frequency schemes, 

however, are less susceptible to systematic error [17] and the dynamic range of the technique is not limited by the 

finite width of the spectral line or laser line as is with fixed-frequency schemes [18]. In the current study, Doppler-

shift based velocimetry was used to obtain quantitative distributions of radial velocity for two flow conditions 

simulating a 10.8 MJ/kg Mars atmosphere (Run 114) and 6.5 MJ/kg Earth atmosphere (Run 85).  By scanning the 

laser over a small wavelength range, the excitation spectrum of the relatively well-isolated Q1(13) transition of NO 

was captured on a series of images using the Princeton Instruments PIMAX-2 intensified CCD camera with 512 x 

512 pixel resolution.  Specifically, the scan ranges were 3.5 pm (λL = 225.7075—225.7040 nm) with a scan step size 

of 0.05 pm and 10 images per wavelength for the 10.8 MJ/kg Mars case (a total of 720 images acquired over 72 
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seconds); and 4.4 pm (λL = 225.7079—225.7038 nm) with a scan step size of 0.1 pm and 10 images per wavelength 

for the 6.5 MJ/kg Earth case (a total of 450 images acquired over 45 seconds).  Post-analysis of these images 

revealed a shift in the excitation spectra, which was used to determine absolute magnitudes of radial velocity. 

III. Analysis and Results 

A. Flow Visualization Results 

1. Single-Shot Images 

Figures 2, 3 and 4 show flow visualization results for selected enthalpy conditions for Earth and Mars, 

respectively.  For each condition, three false-color single-shot images are shown. The flow is from left to right.  The 

nozzle exit is clearly visible on the left side of Fig. 2, and the face of the 1-inch diameter silicon carbide sample is 

clearly visible on the right side of the images.  The intensity in Fig. 2, which is an averaged image, has been adjusted 

so that reflected light from the nozzle can be seen relative to the luminosity of the sample. 

 

 The instantaneous NO PLIF images in Figs. 3 and 4 show highly non-uniform flow containing large-scale flow 

structures ahead of the bow shock. (Note that false-color maps with arbitrary scaling have been applied. The images 

in Fig. 4 appear grainier than those in Fig. 3 because the absolute signal intensity was generally lower in the Mars 

cases than in the Earth cases for comparable enthalpies.) These highly irregular structures appear mushroom-shaped 

in some images. NO fluorescence was observed over a large percentage of the core jet flow on a shot-to-shot basis at 

 
Fig. 2.  Location of laser sheet relative to nozzle exit and SiC probe. 

 

Flow 

Nozzle

Sample

Laser sheet
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the lower enthalpy conditions. As enthalpy was increased, NO fluorescence became more intermittent in the core jet 

flow. NO fluorescence was observed only on the edges of the jet flow for the highest enthalpy conditions.  

One phenomenon that we observed while analyzing data from many runs was the variable nature of the observed 

luminosity between the bow shock and the surface of the sample. For some runs, the observed intensity in this 

region was roughly symmetric, relatively constant, and independent of laser wavelength, so we attributed it mainly 

to natural flow luminosity—probably line emission from different atomic and molecular species in the flow. For 

other runs, the intensity in this region was highly variable from one image to the next, and showed spatial 

asymmetries that were anticorrelated with the fluorescence intensity upstream of the bow shock. Further study is 

warranted to ascertain the nature of the flow in the region between the bow shock and the sample, including the 

spectral profile of the natural flow luminosity and the dependence of both natural flow luminosity and laser-induced 

fluorescence on flow enthalpy, composition, laser excitation wavelength, and laser intensity. See section 5  below 

for a more detailed discussion. 

The bow shock on the sample probe is clearly visible in many of the single-shot images, and can be seen in a few 

of the selected sample images shown in Fig. 3.  The shock is evidenced by a sudden decrease in fluorescence in front 

of the sample probe.  As described above, images of dotcards were acquired which allow for the determination of 

absolute scale in the images.  Using an average of 100 single shots from a low-enthalpy air run where the bow shock 

in front of the stagnation probe was clearly visible (6.5 MJ/kg Earth, Run 36), the shock standoff distance was 

measured to be 9.5 ± 1.1 mm. 
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Fig. 3.  Single-shot NO PLIF images in false color for Earth atmosphere simulations, at various enthalpies. 
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Fig. 4.  Single-shot NO PLIF images in false color for Mars atmosphere simulations, at various enthalpies. 

 

2. Variation in Fluorescence Signal Intensity with Enthalpy 

One approximate indication of the concentration of NO in the flow is the magnitude of the fluorescence signal; 

while fluorescence intensity depends on many factors (including temperature, pressure, density, species mole 

fractions/quenching), in general, more fluorescence correlates with a higher concentration of NO.  Figure 5 shows 

measurements of the mean signal intensity in the core region of the flow over a range of enthalpies.  The curve is 

fitted to “Mean Intensity (Air)” data only. In order to calculate the mean signal intensity, averaged images were 

cropped to exclude all but the core of the flow.  The boundaries defining this region of interest are depicted by a 

white dashed rectangle in Fig. 6.  For the Earth runs, the SiC probe was retracted briefly to allow images to be 

acquired of the unperturbed free stream arcjet flow.  For Mars conditions, the probe was not retracted, and so the 

images used to calculate signal fraction were of flows with the SiC probe injected.   

Enthalpies below about 14 MJ/kg produced detectable signal levels, whereas the images obtained at higher 

enthalpies were relatively noisy.  For all conditions examined, the shot-to-shot standard deviation in the mean 

intensity level was of the same order as the mean intensity. First, the mean intensity value was calculated for each 
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pixel in the measurement region.  Then, the standard deviation in the intensity at each pixel in the measurement 

region was calculated.  Finally, the mean value of this standard deviation was calculated for all pixels in the 

measurement region.  The standard deviation relative to the mean signal may provide a qualitative indication of the 

level of unsteadiness or the presence of turbulence in the flow.  Note that the absolute signal levels were lower for 

Mars cases than for Earth cases at the same specific bulk enthalpy.  One possible reason could be that the chemical 

pathways leading to the creation of NO are different for the two gas mixtures, and so the amount of NO produced 

with the Mars mixture is less than the amount produced with the Earth mixture at an equivalent enthalpy.  All of the 

flow conditions which we examined in this series of tests exhibited unsteady behavior as indicated by the varying 

non-uniform PLIF signal distributions in the single-shot images.   

 

 
Fig. 5.  Measured NO fluorescence intensity versus specific bulk enthalpy. 
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3. Fraction of Core Flow with Fluorescence Signal vs. Enthalpy 

 In addition to overall intensity, another metric for the usefulness of NO PLIF as a diagnostic technique in this 

facility is the percentage of the flow where fluorescence signal is observed.  In order to calculate this quantity, 

hereafter called signal fraction, single-shot images were cropped in the same manner as above, with the boundaries 

of the measurement region shown in Fig. 6.  As in the measurement of mean signal intensity in the previous section, 

the SiC probe was retracted for Earth runs but not retracted for Mars runs.  After cropping, a uniform background 

intensity value was subtracted from all the images from a given run.  An arbitrary threshold level of 500 counts 

(about 3% of the maximum signal intensity obtained) was then applied and the percentage of pixels with an intensity 

above 500 counts was calculated.   

 
Fig. 6.  Indication of relative location and size of measurement region for Figures 7 and 8. 

 



15 

American Institute of Aeronautics and Astronautics 

 

 

 
Fig. 7. Signal fraction measurements for Earth stimulant at various enthalpies. 

 

Figure 7 depicts false-color and black and white cropped single-shot images for a range of enthalpies for Earth 

runs, and Fig. 8 depicts similar images for Mars runs.  Percentages indicate the mean proportion of the core flow for 

each condition with nitric oxide fluorescence signal. The false-color images show a representative single-shot for the 

given run condition (i.e. the signal fraction in the selected single-shot images is very close to the mean signal 

fraction for all images in that run).  The corresponding black and white images show the effect of background 
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subtraction and threshold application, with white pixels representing those with an intensity of greater than the 

threshold level of 500 counts.    

 
Fig. 8. Signal fraction measurements for Mars stimulant at various enthalpies. 

 

Figure 9 shows a graph of the mean signal fraction as a function of enthalpy.  The error bars indicate the 

standard deviation in the signal fraction for all of the single shot images used to calculate the mean signal fraction 

for each run.  The exponential fitted line was fit to the Earth data; however, the Mars data appears to follow the 

same trend.  Enthalpies below 10 MJ/kg had signal over almost the entire flow, but over about 12 MJ/kg, less than 

half of the flow had signal.  This provides a guideline for the flow conditions where NO PLIF velocimetry 

measurements should be feasible, as well as those for which low signal fractions make single-shot molecular tagging 

velocity measurements unfeasible. This finding was in good agreement with the results of Mizuno et al. who 

reported that “total enthalpy of under 10 MJ/kg is suitable” for NO LIF in JAXA’s (the Japanese Aerospace 

Exploration Agency’s) 750kW arc heated wind tunnel [7].
  

One additional observation is that for two runs at 

identical conditions (the two points with an enthalpy of 12.8 MJ/kg), two different mean signal fraction values were 

obtained.  The reasons for this are not entirely clear.  The difference could be an indication of real variations in the 
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arcjet flow, or could perhaps be a byproduct of variations in the probe laser intensity.  Future measurements should 

include simultaneous measurements of laser intensity.   

 
Fig. 9. Fraction of core flow with NO fluorescence signal as a function of specific enthalpy. 

 

4. Upstream Influence of Stagnation Probe 

An unexpected finding of the flow visualization images was the effect that the presence of a stagnation probe 

had on the flow upstream of the probe.  Figure 10 shows three false-color images from an 8.0 MJ/kg Earth run.  The 

center image is a composite of the two other images. Note that in all three images, the contrast has been enhanced 

over the left and right side of the images to show the positioning of the nozzle exit and the SiC probe (if present).  

The red image on the left is an average of 42 single shots without a probe in the flow; the green image on the right is 

an average of 54 single shots from the same run where a SiC probe is injected into the flow.  The center image 

shows the composite of the two, highlighting the differences between the flow with and without the probe.  With the 

probe in place, the NO PLIF signal extends to the top and bottom of the image.  With the probe removed, the NO 

PLIF is localized closer to the core.  In a purely supersonic flow, pressure disturbances cannot propagate upstream.  

However, in this wind tunnel flow, the subsonic region of the shear layer and the nearly stagnant (perhaps 

recirculating) flow outside the core of the open jet flow provide mechanisms for pressure disturbances to propagate 

upstream.  Because HYMETS has a diverging conical nozzle, the flow is expected to be slightly diverging as it exits 

the nozzle.  This can be seen in both the averaged image of the unperturbed core flow (i.e. without a probe inserted 

into the flow) and in the averaged image of the flow with the probe injected.  Additionally, there appears to be 
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relatively little NO outside the core flow in the no-probe case, but a significant amount of NO fluorescence can be 

seen in this region in the probe-in case.  In the images with the probe inserted into the flow, the angle of divergence 

appears to be somewhat greater than in the no-probe case.  This interpretation is likely misleading because the 

differences in the images are probably due to different amounts of NO and/or different quenching environments in 

the shear layer between the core flow and the nearly stagnant flow for the two different conditions.  Quenching is a 

process by which fluorescence intensity is reduced due to collisional energy transfer from excited NO molecules to 

other molecules.  Oxygen is particularly effective at quenching NO fluorescence, so the additional NO present in the 

stagnant region in the probe-in case may displace ambient oxygen, thereby reducing the amount of quenching in the 

shear layer.  

 
Fig. 10.  Comparison of averaged probe-out (left), averaged probe-in (right), and averaged composite (center) 

false images for Earth simulation. 

 

5. Correlation of Pre- and Post-shock NO Fluorescence 

 Analysis of a sequence of low enthalpy Earth (6.5 MJ/kg) single-shot images shows a possible anti-correlation 

between the uniformity of the fluorescence signal upstream of the bow shock and the intensity between the bow 

shock and the surface of the stagnation probe. In Fig. 11a, the result of averaging all 66 single-shot images from Run 

44 is shown. In this image, signal is observed both before and after the bow shock. Figure 11d shows a single-shot 

image from this set in which the NO fluorescence was non-uniform upstream of the bow shock and relatively 

moderate signal is observed between the bow shock and the surface of the stagnation probe. 

 Figure 11b displays the average of 11 single-shot images from Run 44 that all showed relatively uniform NO 

fluorescence upstream of the bow shock. Figure 11d shows a single-shot from this image set. In these images, NO 

fluorescence is relatively uniform upstream of the bow shock generated by the stagnation probe. Between the bow 

shock and stagnation probe surface, almost no signal is observed. 
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 Figure 11c shows the result of averaging 12 single-shot images from Run 44 in which relatively higher intensity 

was observed betweeen the surface of the stagnation probe and the bow shock. In this figure, a significant decrease 

in NO fluorescence signal along the centerline flow ahead of the bow shock is observed. Downstream of the bow 

shock, the signal intensity gradually increases with downstream position, appearing to have a maximum at the 

surface of the probe. This increased intensity between the bow shock and the probe surface stands in contrast with 

the signal observed over the same region in Fig. 11b and, to a lesser extent, with Fig. 11a. Figure 11f shows a single-

shot from this image set. In this image, the NO fluorescence ahead of the bow shock appears much more intermittent 

with respect to Figs. 11d and 11e. The signal intensity in this image between the bow shock and the surface of the 

probe is also higher relative to Figs. 11d and 11e. 

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) (f) 

Fig. 11. Average (top) and single-shot (bottom) comparison of images from Run 44 (6.5 MJ/kg, Earth) with (a, 

d) uniform NO ahead of the bow shock, (c, e) all images, and (d, f) relatively high signal after the bow shock. 

 

 Figure 12 shows the mean signal within a region immediately in front of the bow shock (pre-shock) and plotting 

it against the mean computed within a region between the bow shock and the surface of the sample (post-shock) on a 

single-shot basis. The two selected regions are shown in the inset image in Fig. 12. The figure shows that NO 

fluorescence in the pre-shock region is, to some extent, anti-correlated with the intensity observed in the post-shock 

region, though the correlation is imperfect. Observation of the single-shot images also shows that the intensity in the 

post-shock region appears to be aligned with streamlines emanating from pre-shock regions in which NO 

fluorescence is absent. Additionally, a gradual increase in the post-shock luminosity up to the probe surface was 

observed in the single-shot images. If the observed intensity is in fact laser-induced fluorescence rather than natural 

flow luminosity, it would suggest that NO is being formed in the post-shock stagnation region from cold pre-shock 

gas that experiences a sharp temperature increase as it is passes through the bow shock. Further study is needed to 

better understand this observed behavior. 
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Fig. 12. Relationship between measured mean signal in pre-shock and post-shock regions (positions shown in 

inset figure). 

 

B. Axial Velocity Analysis and Results 

1. Axial Velocity Uncertainty Analysis:  

The method used to process both single-shot and average velocities and associated uncertainties is similar to the 

approach outlined in [10,11,19]. However, to investigate the potentially unsteady nature of the core flowfield, the 

previous method of determining the spatial uncertainty has been modified. 

In the previous estimates of single-shot spatial uncertainty, which has been documented in [10,11], the flow is 

assumed to remain essentially laminar in nature. This assumption led to a formulation of single-shot velocity 

uncertainty,       , based upon the standard deviation in the measured single-shot tagged profile shifts, which had 

been defined as: 
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In the above equations, C is the correction factor to the software-specified time separation,     , between 

sequential frames that results in the effective time delay between frames,     is the standard deviation of the 
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observed tagged profile shift in pixels,          is the student t-statistic at 95 percent confidence for total number of 

data points,  , at a particular pixel location used to obtain    , and     is the uncertainty in the measured profile 

shift. For this paper the calculation of the correction factor, which has a dependence on the ratio of peak signal 

intensities between the initial,       , and delayed,        , frames, can be described by the following relation: 
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with the coefficients a, b, and c being 0.987, 9.128x10
-5

, and -2.780x10
-3

, respectively, for an effective first gate of, 

    , of 5 ns. 

In this paper, we have obtained single-shot spatial measurement uncertainty estimates based on signal-to-noise 

considerations alone, since the signal-to-noise ratio is the largest contributor to the measurement uncertainty in 

single-shot measurements. In order to make this estimate, measurements of displacement along several tagged 

profiles were made in regions well outside of the core nozzle flowfield where the mean axial velocity was measured 

to be essentially zero for a set of 96 sequential image pairs. Additionally, over the duration of these measurements, 

the laser was tuned from 226.025 nm to 226.020 nm to excite the Q1(12) + Q2(20) transition in NO.  Tuning the laser 

away from the absorption peak decreased the PLIF intensity significantly, so a dependence of spatial precision 

uncertainty on fluorescence intensity could be established. Data points are grouped together in bins according to the 

maximum intensity measured in the first gate. The bins start with points having peak intensities between 0 and 10 

counts and are incremented by 10-count bins up to a maximum of 300 counts. By analyzing the standard deviation 

of the measured shifts for each bin, the spatial uncertainty is obtained.  The calculated spatial uncertainty is then 

plotted against the average intensity values for each 10-count bin, as shown in Fig. 13. As the signal intensity in the 

first frame decreases, the measurement uncertainty (and the standard deviation) increases.  Based upon these 

measurements, empirical curve fits of the single-shot standard deviation,    (      ), and uncertainty,    , as 

functions of peak signal intensity in the initial frame are obtained: 
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with    and    being 6.327x10
-1

 pixels
-1

 and 4.558x10
-3

 pixels
-1

∙counts
-1

, respectively, and    and    being 

3.212x10
-1

 pixels
-1

 and 2.297x10
-3

 pixels
-1

∙counts
-1

, respectively. 

 

 
Fig. 13. Determination of spatial uncertainty as a function of signal-to-noise ratio. 

 

To obtain an estimate of the magnitude of fluctuating axial velocity component,   
 , a relation for the 

dependence of the standard deviation of the mean velocity,    ̅̅ ̅̅ , must be made that separates out the signal-to-noise 

dependency identified in Fig. 13. Using the relation for standard deviation of the profile shift precision for single-

shot measurements as a function of signal intensity put forth in Eq. (3), the standard deviation of the mean profile 

shift precision as a function of mean signal intensity is    ̅̅ ̅̅ (       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅     (       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅  Dividing the standard deviation of 
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the mean profile shift,    ̅̅ ̅̅ (       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, through by the corrected time separation between the undelayed and delayed 

frames,       , and squaring the result provides the variance in the measured mean velocity due to random 

fluctuations in the mean signal intensity at the measurement location.  

Based upon observations of single-shot velocity distributions throughout each image and the corresponding 

signal intensities, no apparent correlation between the signal and measured mean velocity magnitude exists. 

Therefore, the variance in measured mean velocity due to random fluctuations in signal intensity is assumed to be 

independent of the variance in the measured mean velocity magnitude due to random turbulent fluid mechanical 

fluctuations. The sum of these two independent variance values results in the total variance (or covariance) in the 

measured mean axial velocity. 

Using the signal-dependent velocity variance relation from Eq. 3 and the total variance in the measured mean 

axial velocity, (   ̅̅ ̅̅ )
 
 , the standard deviation of the axial velocity component due to fluid mechanical fluctuations 

is: 

 

  
  √(   ̅̅ ̅̅ )

 
 (

   ̅̅ ̅̅ (       )̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

      
)
 

            (5) 

 

2. Image Pre-Processing: 

The spatial resolution for the axial velocity experiments was measured by acquiring an image of a matrix of 

square marks separated at equal spatial intervals, known as a dotcard, mentioned above and detailed in [20]. To 

correct for optical and perspective distortion of the images in these experiments, the image of the dotcard in the test 

section was acquired with the cameras and a corresponding undistorted image of the same dotcard was created with 

Adobe Acrobat software. An image registration algorithm, UnwarpJ, was then used to correct for distortion [21]. 

This software is a plug-in created for the image processing software, ImageJ, a freeware image processing program 

available from National Institutes of Health.
§§

 For the axial velocity measurements, once the undistorted axial 

velocity images were obtained, an undistorted background image, acquired in the absence of any fluorescence, was 

subtracted from the set.  

                                                           
§§

 Software available at http://rsb.info.nih.gov/ij [version 1.43 retrieved January 2010]. 

http://rsb.info.nih.gov/ij
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To improve the signal-to-noise ratio, MATLAB® was used to bin the images by 16 pixels in the radial direction. 

This improved the signal-to-noise by consolidating the signal along profiles tagged by the laser.  However, the 

spatial resolution of the measurement was degraded by a factor of 16 in the spanwise direction because of this 

processing. 

 

3. Axial Velocity Processing: 

 The processing of velocity data is similar to that outlined in [10]. A 1-dimensional cross-correlation method was 

used to calculate both averaged and instantaneous velocity from the displacement of single profiles. In this paper, no 

estimations of the radial velocity contribution to uncertainty in the axial velocity measurement have been made. Due 

to the reduced spatial resolution of this experiment, the tagged profiles appear more closely spaced, 25 pixels peak-

to-peak, than in previous analyses [10,19]. Additionally, the axial velocity magnitudes encountered in the current 

test are about three times larger than in prior work, resulting in relatively large observed shifts in the profiles 

between the initial and delayed frames. This presents a difficulty in automating the cross-correlation-based velocity 

measurement algorithm: a correlation window fixed about the tagged profile, with the same width as the peak-to-

peak profile separation in the initial frame, will occasionally result in erroneous correlations with neighboring 

profiles. To avoid this potential error, an initial estimate of the profile shift is provided to the processing software. 

Prior to processing the data, the initial shift estimate at each point along a given profile is additionally shifted by 2 

pixels towards the mean of the all the shift estimates along the respective profile. This is done in order to help 

identify any correlations which are not consistent with the overall distribution of axial velocities along any one 

profile. A data rejection threshold that estimated the quality of the cross-correlation coefficient data returned by the 

measurement software was also used to limit erroneous velocity data. In fitting the data, the root-mean- square 

(RMS) of the R
2
 value from a 2

nd
-order polynomial fit to the peak of the normalized cross-correlation coefficients 

and the peak value of the normalized cross-correlation coefficients were computed at each measurement location. 

Any points with RMS values below a threshold of 0.95 were rejected in this study. An additional analysis was 

performed in which a cross-correlation of 2 adjacent profiles was obtained in an attempt to further improve the 

velocity results. This resulted in a reduction of 10-20% in uncertainty of the mean velocity compared to the single 

profile method. However, by using the 2-profile correlation method, there is a tradeoff made between the reduced 
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uncertainty and axial spatial resolution, which is reduced by a factor of 2. Therefore, in this paper only results from 

the single-profile correlation method are presented. 

 

4. Axial Velocity Results: 

Figures 14a and 14b show averaged undelayed and delayed images, respectively. These images were obtained by 

averaging the 240 pre-processed individual sequential image pairs used to compute both single-shot and mean axial 

velocities for a 400 slpm flow with a 100 A arc current applied (6.5 MJ/kg Earth). The effective time separation 

between the two images is 550 ns.  Each line is approximately 13 pixels wide, and typical displacements along the 

centerline are approximately 20 to 21 pixels. The sample is seen to the right side of the images.   

Figure 15a shows the mean axial velocities measured along the 4
th

, 11
th

, and 16
th

 tagged lines. The center of the 

black data points correspond to the measured mean velocities and the widths of these points correspond to two times 

the associated uncertainty of the mean velocity at each measurement location. The portions of these profiles lying 

outside of the core flowfield have noticeably smaller (near zero) mean velocities and uncertainties, relative to the 

core flow region downstream of the nozzle. Along the 11
th

 profile located 1.97 cm downstream of the exit plane of 

the nozzle, the mean velocity outside the core flow is approximately 5 m/s with an uncertainty of 16 m/s. This 

relatively low uncertainty is attributed to the increased signal-to-noise levels, persistence of signal throughout all of 

the sequential image pairs, and negligible fluid mechanical unsteadiness relative to the core nozzle flow. Within the 

core of the flow, an increase in both mean velocity and uncertainty is observed. For this same profile, located 1.97 

cm downstream of the nozzle exit plane, the mean velocity and uncertainty within a 1-cm region centered about the 

axis of symmetry are 3,035 m/s and 59 m/s, respectively. Figure 15a also provides the fluctuating velocity 

component,   
 , computed from Eq. (5), and represented by the open circle data points. For this same 1-cm region 

about the centerline along the 11
th

 profile, the mean value of the standard deviation,   
 , is 243 m/s. This represents 

velocity fluctuations that are approximately 8.0% of the mean velocity. 
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(a) (b) 
Fig. 14. Pre-processed average image from (a) undelayed and (b) delayed frame obtained during axial velocity 

measurements. 

 

Figure 15b provides a set of single-shot velocity measurement data along the same profile regions shown in Fig. 

15a.  While the single-shot profiles shown in Fig. 15b are well populated with data points, the intermittent presence 

of NO and reduced signal levels in the core of the nozzle flow often result in single-shot velocity profiles that are 

sparsely populated with data. Typically within the core nozzle flow, only 10 to 70 percent of the total image pairs at 

a particular pixel location yield a measureable shift. Outside of the core of the nozzle flow, the approximate yield 

increases to greater than 85 percent.  
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(a) 

 
(b) 

Fig. 15. Axial (a) average and (b) single-shot velocity profiles. 
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Fig. 16. Mean axial velocity field interpolated from MTV velocity profiles. 

 

Figure 16 shows the axial velocity flowfield, interpolated over the entire region encompassing the measurements 

obtained along each tagged profile shown in Fig. 14a.  The flow propagating down the centerline of the flow appears 

to have a nearly constant velocity, despite the fact that the nozzle is conical so the flow is diverging and continuing 

to expand.      

C. Radial Velocity Analysis and Results 
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1. Analysis Method 

Using post processing software, ImageJ, a temporal distribution of the fluorescence signal was extracted from 

the image sequence at each spatial location. Since the laser scanning rate was synchronized to the camera system, a 

spectrum of the fluorescence signal versus wavelength could be obtained from the image data: each pixel in the flow 

resulting in an NO PLIF excitation spectrum.  As stated in the Experimental Methods section, acquiring the data for 

a full wavelength scan at a given condition took approximately one minute. Figure 17 shows three typical spectra, 

obtained from three 4x4 binned regions located 4 cm downstream of the nozzle exit. (P1 is a region outside the core 

flow; P2 is a region of large positive radial velocity, and P3 is a region of large negative radial velocity. Figure 20a 

shows the location of regions P1, P2, and P3 relative to the overall flowfield.) In Fig. 17, scatter points correspond 

to experiment and solid lines indicate a Gaussian curve fit.  The locations from which spectra are extracted are 

depicted as points in Fig. 20a: P1 (x = 4 cm, y =4.4 cm), P2 (x = 4 cm, y =2.8 cm), P3 (x = 4 cm, y =-2.8 cm). 

 
Fig. 17. Three typical spectra obtained from various locations in the flow. Symbols are experimental data and 

lines are Gaussian curve fits 
 

The equation for the Gaussian curve fit shown in Fig. 17 is defined as: 

 
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where Np, A,  λc , and Δλ are the signal level, signal coefficient, transition center wavelength, and the apparent 

transition linewidth, respectively. The error, E, between the experimental data, Np,exp, and Np is defined as:  

 
max 2

,expp pE N N




 
                 (7) 

By differentiating Eq. (7) with respect to A, λc, and Δλ it was possible to minimize the total error using the 

iterative Newton-Raphson method: 
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To verify that each fit variable was properly optimized, the algorithm monitored the residual error between old 

and corrected values. If the calculated error for each fit parameter was less than the specified tolerance of 10
-10

, the 

optimization process would stop and the algorithm would proceed to the next spatial location. If the error exceeded 

the specified tolerance, the total number of iterations would double and an updated residual error would 

subsequently be calculated. For most regions of the flow, the optimization process would complete after 500 

iterations. In regions of low signal-to-noise, the algorithm would require substantially more iterations to complete 

the process. If an upper limit of 1,000,000 iterations was reached at a single location, the algorithm would discard 

that portion of the experimental data. The discarding of measurements usually occurred in regions of very low 

signal-to-noise ratio or regions outside of the laser sheet interrogation volume (shadow regions or at the sample). By 

filtering out regions with low signal (i.e.  < 25 counts) prior to optimization, faster processing was achieved.  

After obtaining the values of λc and Δλ it is possible to calculate quantitative values of radial velocity.  Since the 

laser sheet was projected normal to the axial hypersonic flow produced by the facility, any radial component of 

velocity will cause an apparent shift in the transition center frequency, νc, relative to the laser center frequency, νL. 

This shift is termed the Doppler shift and is defined as: 

LcDS vvv                (11) 
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The wavelength, λ, and Doppler shift in wavelength, ΔλDS, are related to the spatial frequency, ν (which is the 

frequency in Hz divided by the speed of light in cm/s), and the Doppler shift in spatial frequency, ΔνDS, through the 

following equations: 
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The Doppler shift is related to the component of radial velocity, Vr, and the speed of light, c, by: 
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The measured shifts in the excitation spectra were assumed to be due entirely to the Doppler shift, thereby 

ignoring the collisional shift (also known as pressure shift), which is significant at higher pressures.  Errors resulting 

from this assumption are considered below.  Also, in the analysis, symmetry was invoked only to determine where 

the centerline frequency reference was for stationary molecules. By symmetry, we assumed that the radial flow 

velocity in the outermost regions of the flow were equal in magnitude but opposite in sign.  However, the Doppler 

shift was observed to be equal in these two regions.  Thus the velocity in both of these regions must be zero, 

providing a convenient reference for zero Doppler shift.  

                            

2. Uncertainty Analysis 

The main sources of random error are due to randomness in the data and low signal-to-noise ratio. As the 

tolerance in the optimization algorithm was set to 10
-10

, the corresponding uncertainty in the velocity is 

approximately ±10
-5

 m/s, which is negligible. The uncertainty due to low signal-to-noise is demonstrated by looking 

at the effect of binning (Fig. 18). The effect of binning is to increase the total signal-to-noise ratio, but also to 

decrease the spatial resolution of the velocity measurement. 
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Fig. 18. Effect of binning on the radial distribution of radial velocity (10.8 MJ/kg Mars, Run 114). 

 

It was determined that a 4X4 binning provided adequate spatial resolution to capture small scale structures and 

also provided sufficient smoothing to reduce random noise observed in the unbinned data of Fig. 18. Regions in the 

flow at the centerline and near the top and bottom wall surfaces have a near zero radial velocity component. By 

analyzing the fluctuation in velocity in those regions, an estimate for the uncertainty due to random noise and flow 

fluctuations could be determined. Near the top and bottom wall surfaces, the uncertainty was ±16.8 m/s (95% 

confidence).  A more conservative estimate of the error due to random noise and flow fluctuations could be 

determined from analyzing the variation in radial velocity near the flow centerline. This uncertainty was ±26 m/s.  

Sources of systematic error in the measurement include laser beam attenuation, wavelength linearity of laser, and 

collisional shift.  Due to Beer’s law of absorption, the laser intensity decreases approximately exponentially as the 

laser passes through the flow. The black curve in Fig. 19a shows the measured radial distribution of signal level (A) 

at a streamwise position of 4 cm downstream of the nozzle exit. By assuming that the absorption coefficient is 

constant along the path of the light and by imposing symmetry on the fluorescence intensity profile, it is possible to 

calculate a radial profile of laser intensity and fit it with an exponential function (green curve in Fig. 19a). 

Correcting the measured fluorescence profile (black curve) by the attenuated laser beam profile (green curve) 

recovers a nearly symmetric fluorescence profile (red curve).  The attenuation in laser intensity will be more 
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significant near the center of the absorption transition. Doppler shifted spectra near the bottom of the image will 

therefore have a different laser intensity that varies depending on the Doppler shift (and resulting absorption) of the 

gas above.   This error is simulated in Fig 19b.  After applying a simulated laser intensity profile to the experimental 

data and re-fitting the shifted spectra (shown as dashed lines in Fig 19b), a systematic error in λc can be calculated 

(see red and blue curves in Fig. 19b). Laser beam attenuation acts to artificially amplify ΔνD in regions of high 

absorption and large radial velocity, which results in an over prediction in the magnitude of radial velocity. The 

maximum uncertainty due to laser beam attenuation was measured to be ±56 m/s.     

 
(a) 

 
(b) 

Fig. 19. Effect of laser beam attenuation on the measurement of Doppler shift. 

 

There is also an uncertainty in the radial velocity measurement due to non-linearity in the laser scanning drive. 

Such an error would be caused by the laser’s drive software not indicating the actual change in wavelength (absolute 

wavelength inaccuracy does not lead to an error in the current measurement).  Based on the scan linearity 

measurements obtained from the manufacturer, a worst case error of approximately ±0.0045 cm
-1

 in ΔνD per wave 

number scanned was measured. This is equivalent to a systematic error in radial velocity of approximately 

±0.009(Vr). Thus, the maximum error in velocity due to non-linearity of the laser scanning is ±4.5 m/s.  

The collisional shift also contributes to a systematic error in radial velocity measurements. Although this is a 

chemically reacting flow for which a perfect gas analysis does not strictly apply, such an analysis can be useful for 

estimating static conditions in the jet for the purposes of this uncertainty analysis.  For an isentropically expanded 

Mach 5 jet having a stagnation pressure (arc pressure) of 1.1 atm, the pressure shift at the nozzle exit is 
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approximately 0.0016 cm
-1

, which corresponds to a systematic error of just 1 m/s.  This error was partially mitigated 

by the method by which the center wavelength, λL, was calculated. Since λL is calculated from regions in the flow 

without a radial velocity component, any pressure shift resulting from a large uniform pressure field would be 

accounted for.  

 In summary, the total uncertainty in the flow velocity depends somewhat on the spatial location. The maximum 

velocity uncertainty measured in the flow is ± 62 m/s, which includes both random and systematic errors. This error 

is dominated by the laser beam attenuation.  Table 2 shows the contribution of errors at three representative 

locations in the flow.  In future experiments, weaker NO transitions could be probed to minimize the error caused by 

absorption. 

 

Table 2  Contribution of random and systematic errors at three positions (P1-P3 located at x = 4 cm) 

Uncertainty Type P1 (y = 4.4 cm) P2 (y = 2.8 cm) P3 (y = -2.8 cm) 

Random Noise (m/s) 25.9 25.9 25.9 

Laser Beam Attenuation (m/s) 0.1 14.6 55.9 

Laser Non-Linearity (m/s) 0.0 3.0 4.5 

Collisional Shift (m/s) 1.1 1.1 1.1 

Total Uncertainty (m/s) 25.9 29.9 61.8 

 

3. Radial Velocity Results 

Figure 20a shows a vector plot for the 6.5 MJ/kg Earth condition (Run 114) overlaid with contours of radial 

velocity. The streamwise component of velocity was determined from the MTV technique (Run 157).  Fig. 20b 

shows distributions of radial velocity at four different streamwise locations labeled L1-L4. The position of lines L1-

L4 are shown as white dashed lines in Fig. 20a. The white points, labeled P1-P3 are the positions where the spectra 

shown in Fig. 17 were obtained.  Due to a varying systematic error, the magnitude of the error bars in Fig. 20b also 

vary with radial and streamwise position. Due to the systematic nature of these errors, the error bars are also 

positioned asymmetrically to reflect the direction that laser beam attenuation and laser wavelength non-linearity 

affect radial velocity. The regions of Fig. 20a not containing measurements correspond to regions of the flow where 

the optimization algorithm discarded data due to low signal.  
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(a) 

 
(b) 

Fig. 20. Map (a) and profile (b) distributions of radial velocity for 6.5 MJ/kg Earth condition (Run 114). 

 

Figure 21 shows a comparison between the velocity field measured from the 6.5 MJ/kg Earth condition (Run 114 

and Run 157; black vectors) to a theoretical velocity field (red vectors) assuming a perfectly expanded jet with a 

nozzle half-angle of 8 degrees. To construct the field, a point source was located upstream of the nozzle, the location 

of which was determined by projecting the nozzle walls back to a single point. In the theoretical velocity field, the 

total velocity magnitude was considered constant downstream of the nozzle at a value of 2994 m/s, which 

corresponds to the average centerline streamwise velocity in the experimental data. Although qualitative, there is 

close agreement between the two cases, which confirms the essentially point-source nature of the flow produced by 

the facility and gives overall confidence in both the Doppler-shift based velocimetry and MTV techniques. 

P1 

P2 

P3 

L1 L2 L3 L4 
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Fig. 21. Comparison of an experimental velocity field (black vectors) to an ideal diverging point-source 

velocity field (red vectors). 

 

Figure 22 shows a comparison of maps of measured radial velocity for facility runs corresponding to the 6.5 

MJ/kg Earth condition (Run 114) and the 10.8 MJ/kg Mars condition (Run 85). Although the overall magnitudes in 

radial velocity are similar in the top portion of the image, the magnitude of radial velocity measured for the 6.5 

MJ/kg Earth condition is 25% larger in the lower portion of the image. For the 10.8 MJ/kg Mars condition, the 

magnitudes in radial velocity are similar for both the top and bottom portions of the image. This may indicate that 

the systematic error in radial velocity due to laser beam attenuation is larger for the 6.5 MJ/kg Earth condition 

compared to the 10.8 MJ/kg Mars condition.   
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Fig. 22. Comparison of radial distribution of velocity shown as a contour plot for the 6.5 MJ/kg Earth 

condition (Run 114) and 10.8 MJ/kg Earth condition (Run 85). 

 

4. Free Stream Static Temperature Estimation 

From measurements of the spectral width, DB, of the Doppler-broadened Gaussian distribution such as shown 

in Fig. 17, it is possible to extract the translational temperature, T, from the following relationship:  

 

       √
  (  ( ))   

(    )  
 

(16) 

where k, NA, c, MWNO are the Boltzmann constant, Avogadro’s number, speed of light, and the molecular weight of 

NO, respectively. The average translational temperature in the core of the jet at the nozzle exit was measured to be 

~1,300 K (~1,900 °F) for the 6.5 MJ/kg Earth condition and 1,600 K (2,400 °F) for the 10.8 MJ/kg Mars condition. 

When determining DB in the fitting process, collisional broadening was neglected.  Additionally, we assumed that 

the laser’s linewidth of 0.07 cm
-1

 added in quadrature with DB to fit the measured linewidth. The effect of laser 

beam absorption and saturation are systematic errors that both artificially broaden the transition. Therefore, the 

actual translational temperature is likely cooler than measured here if saturation and absorption are significant. Thus, 

the above reported temperature is an estimation of the upper limit of the average free stream static translational 

temperature.  

6.5 MJ/kg Earth  
(Run 114) 

10.8 MJ/kg Mars 
(Run 85) 
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IV. Conclusion 

NO PLIF has been successfully applied to the HYMETS facility at NASA Langley Research Center for the first 

time.  Flow visualization, velocity measurements, and a calculation of an upper bound on the flow temperature have 

helped to characterize previously uncertain flow parameters by providing both qualitative and quantitative 

temporally and spatially resolved information about the arcjet flow.  The techniques demonstrated in this paper are 

expected to be applicable in arc-jet flows having enthalpies of less than 10 MJ/kg, where most images exhibit strong 

fluorescence.  At higher enthalpies, O-atom and N-atom LIF can be used to determine flow properties, although 

these are point measurements as opposed to planar measurements. 
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