General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



X
e

DEC 1 58

AP =y v o

Reprinted from A,I,Ch,E, Journal, September 1959

ongltudmal Lamimar Flow Betweeh Cylinders

“Arranged 1 Regular Array

An analytical solution has be

E. M. SPARROW and A. L. LOEFFLER, JR.

National Aeronautics and Space Administration, Lewis Research Center, Cleveland, Ohio

_obtained for the longitudinal fully developed laminar

flow between cylinders arranged in triangular or square array. Numerical re
pressure drop and the friction factor are given over a wide range of spacmg-t

\\ ratios. For large spacings the results can be represented by a single expression mm H R Y c 0 P v X

The increasing complexity of heat
transfer and process situations which
involve fluid flow has demanded the
frequent use of flow passages of unusual
geometrical configuration. The present
investigation is concerned with one such
novel configuration, namely the longi-
tudinal flow between solid cylindrical
rods which are arranged in regular array.
A schematic diagram of the situation
under study is shown in Figure 1. The
rods may be located either in triangular
or square array. The flow will be taken
to be laminar and fully developed.

The aim of this analysis is to determine
the pressure drop, shear stress, and
velocity-distribution characteristics of
the system. The starting point of this
study is the basic law of momentum
conservation. The resulting differential
equation has been solved in an approxi-
mate, but almost exact, manner by the
use of truncated trigonometric series.
Results are obtained over a wide range of
porosity values for both the triangular
and square arrays. Heat transfer has not
been considered.

The configuration under investigation
has potential application in compact heat
exchangers for nuclear reactors and other
situations. Further the results should
also be of interest in the theory of flow
through unconsolidated porous beds (Za,
2a).

The only related analytical work
known to the authors is that of Emersle-
ben (83), who considered only the square
array. His rather involved solution, based
on complex zeta functions, appears to be
valid only at high porosities. Experiments
covering a porosity range of 0.093 to
0.984 have been made by Sullivan (4)
using parallel-oriented fibers, most of
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N)f the type of array. Plots are also given of velocity distributions and of the variation of
the local shear stress around the periphery of a cylinder.
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the tests being for fibers in random array.
These previous investigations will be
compared with the present theory in a
later section.

ANALYSIS

The Governing Equation and
Its General Solution

The physical principle which governs
the velocity distribution in a (isothermal)
flowing fluid is conservation of momen-
tum. To translate this physical law into
mathematical terms, cylindrical coordi-
nates will be used. The derivation is
facilitated by Figure 2. The conser-
vation principle requires that under
steady state conditions the net change of
momentum must equal the net forces.
However for fully developed flow the net
momentum flux is zero (no accelerations),
and hence the forces must sum to zero.
The forces involved in the problem are
those of pressure and viscosity, and these
must be in balance. Therefore

[:(p + z—fdz) - p]w‘dodr
o ,‘[g—r (gr—“r de dz) ()

d
+ 30 (r Frid dz) do]
When one rearranges, the governing

equation for the velocity as a function of
the coordinates r and 6 is obtained:

lou 19w _1dp
St o

where the pressure gradient dp/dz is a
negative constant. This partial differ-
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ential equation is frequently called
Poisson’s equation.

It is not difficult to write a solution of
this equation, but subsequently one must
face the more challenging task of fitting
the solution to the particular boundary
conditions of specific problems. The
general solution is dealt with here, leaving
specific flow situations to later sections.

In approaching Equation (2) it is
convenient to introduce a reduced ve-
locity defined by

cnu-3i)

By substitution into Equation (2) one
finds that »«* musf obey

o'u* | 1 du* L u*
a Tror a6
which is the well-known Laplace equa-
tion. The general solution of Equation

(4) may be taken from numerous books
on advanced calculus. Therefore

=A+4+Blnr
1]
+ X (Cs* + D™ 5

k=1

=0 4)

-(E, cos k6 + F, sin k6)

where k takes on integral values to
ensure that the velocity is single valued,
that is that the velocity computed at a
location (r, 6) is identical to that com-
puted at (r, 6 + 2x). The constants 4,
B, etc., in Equation (5) are to be de-
termined from the boundary conditions,
as are the number of terms of the series.

Thus a general solution for the velocity
is obtained by the combining of Equa-
tions (3) and (5) which yields
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TABLE 1. LISTINGS OF A; AND 8; FOR VARIOUS SPACING RATIOS
(a) Values of A;. )
As Aq

A Az As Ay As
—0.0505 —0.0008  0.0000 >
—0.0505 —0.0008  0.0000 —
-0.0502 —0.0007  0.0000 —>
—0.0469  0.0007 _-0.0002  0.0000 —
—0.0416  0.0028  0.0004  0.0000 >
—0.0368  0.0043  0.0003 .—0.0001 0.0000 —>
—0.0357  0.0046  0.0002 —0.0001 0.0000 —>
~0.0345  0.0049  0.0002 - —0.0001 0.0000 >
—-0.0332  0.0051  0.0000 —0.0001 0.0000 —>
—-0.0319  0.0052 —0.0001 —0.0002 0.0000 —
-0.0305  0.0053 —0.0003 —0.0002 0.0000 -
(b) Values of 8; ' 4

S/To & 82 83 'R 85 ds oy
4.0  —0.1253 —0.0106 —0.0006 0.0000 >
2.0  —0.1250 —0.0105 —0.0006 0.0000 —>
) . . 1.5 —0.1225 —0.0091 —0.0002 0.0000 —>
Fig. 1. Schematic of flow configuration. ;5  ToT0l “0'0024  —0.0015 0.0003  0.000L 0.0000 —>
1.1  —0.0987  0.0036  0.0029 0.0005  0.0000 ~————e———3
1.05 —0.0904  0.0073  0.0032 —0.0001 0.0000 ——>

dz

at the inner boundary stems from the
no-slip requirement of viscous flow.
One may now proceed to apply the
boundary conditions to determine the
constants of Equation (6). Starting with
the simplest conditions, one requires
first that du/o0n = u/30 = 0at 8 = 0
deg. and at & = 30 deg. From the first
of these it follows that since cos 0 5 0,
then " :

0.0002

e o

l i r 125
+ Z G,-(r“' — ) cos 636

r

where G; = C;E;. There still remains the
task of determining the @;, and at one’s

, F,=0 (7a)  disposal is the condition that du/dn = 0
; . on the right-hand boundary of Figure
while from the second one finds that 3b, on which r = s/cos 6. It is convenient
: to make use of the identit; ’
k= 6,12, 18- (7py 0 MAEe te O The ddentily
- - ou_du . dusing
Fig. 2. Control volume for deriving momen- fo guarantee that sin km/6 = 0. Next ox  or a6 r

‘tum_equation.

imposing the condition that u = 0 at

' r = 710 one gets

where one may associate z with » on the
boundary under consideration. Intro-

. i D, = —Cury™, ducing Equation (9) and  setting
u=A+Blnr — (..l __Q) _ . du/0n = 0 when r = s/cos 6, one finds
, 4\ ude . : ro (_1dp\ (7¢) after rearrangement
A= —-Blnr, + A\ T2 d

-+ Z‘, (Ce* + D™ (6)

k=1
(E, cos k6 + F,.sin k#)
Now one may turn to the problem of

Further it is required that the total drag
force exerted on the fluid by the solid rod
be  balanced by the net pressure force
acting over the entire cross section of the

i) A; (cos 0)"“[005 6 — 1)6

i=1

" <w>‘2f cos (6j + 1) 0] (7ey

8

specializing this solution to flow parallel tYPical element (Figure 3b); that is V3, 1 0
to cylindrical rods in regular array. . + o8 6. — 5=
Cylinders. in Triangular Array ‘/; .'#<E)r-rgro dé 8) where
Consideration is first given to flow ( A =@ 65 s h

between cylinders arranged on centers
which form the vertices of equilateral
triangles. An end view of the arrangement
is shown in Figure 3. From the symmetry
of the situation it is easily seen that
attention need be focused on only the
cross-hatched element in the left-hand
sketch. An enlarged view is shown at the
right, on which has been noted the
boundary conditions and dimensional
nomenclature. The condition du/dn = 0
is the expression of the symmetry
property, while the condition that u = 0
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_ */8 s/cos 0 - dp)
= /; ~/:. (dz r dr d

The evaluation of this over-all force
balance from Equation (6) yields

B = l/—_?léﬂ(_l ‘12) (7d)
T u dz
Before going on to the final boundary
condition the findings of the previous
paragraph are brought together, and
Equation (6) becomes

A.l.Ch.E. Journal

"_ld_p)z
( /.LdZs

Equation (7¢) provides a means for
determining. the A;(that is G;). The first
thought for attacking this equation
would be to apply the techniques of
Fourier series. Such an approach, if
possible, would provide an infinite set.
of A; while satisfying Equation (7e) at.
all points along the boundary (that is all
0° < 6 < 30°). Unfortunately the nature
of Equation (7¢) precludes the use of
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(a) end view

(b) typteal element

Fig. 3. Diagram of equilateral triangular array.

Fourier analysis, and some other ap-
proach must be found for solving for the
4;.
The method used here is to apply
Equations (7¢) at a finité number of
points along the boundary. Suppose for
example that one successively evaluates
Equation (7¢) at six values of § between
0 and 30°. This will provide six equations.
If one truncates the series after six terms
(that is [ = 6), then there are sufficient
simultaneous equations to evaluate the
coefficients A;, A, - -+ A, This procedure
may now be repeated with the use of
seven boundary points and seven series
coefficients, and so forth. The sets of
coeflicients A; from these repeated calcu-
lations were compared. It was im-
mediately seen that adding additional
terms to the series did not significantly
affect the numerical values of the first
few coefficients. Further it was found
that only these first coefficients are
important in the computation of the
shear stress and velocity distribution.
In view of these favorable circumstances
the method presented here for deterniin-
ing the A; appears quite adequate. .

Numerical values of A;, computed as
outlined above, have been listed in Table
1. Inasmuch as the ratio s/ro (half
spacing to rod radius) appears in Equa-
tions (7¢), so does it appear as a param-
eter of Table 1. It is noted that for large
spacings (that is large s/ro) the A; are
little affected by increases of spacing, as
might have been expected since s/ro is
raised to a large negative power in
Equation (7¢). The tabulation is given
to four decimal places because this is
sufficient for the shear stress and velocity
‘computations.* i

So with the determination of the A;
(that is, G;) one may return to Equa-
tion (9) and state that the velocity dis-
tribution for the triangular array is now
available. In a later section the authors
will make use of this velocity solution to
compute several quantities of engineering
interest. But first they will solve for the
velocity distribution associated with flow
betwéen rods in square array.

Cylinders in Square Array

‘An end view of the configuration for
flow between cylinders in square array is

*Additional figures were used in satisfying Equa-
tion (7e).
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shown schematically in Figure 4. Béecause
of symmetry considerations attention is
confined to the cross-hatched element of
the sketch. This element has essentially
the same form as that shown in Figure

3b, except that now the opening angle is

45 deg. rather than 30 deg. as before.

The velocity solution as given by
Equations (6) applies, and one now has
to find the constants- 4, B, ---
priate to the square array. The pro-
cedure is identical to that followed in
the preceding section for the triangular
array. From the conditions that du/dn =
du/d0 = 0 atd = 0deg. and 8 = 45 deg.,
there is obtained, respectively

F.=0 (10a)

and

E=4,812-.- (100)
Imposing the requirement that u = 0
at r = 7, gives

2k
D, = —Cuy™,

2
A= Bl + (<L) (09
4 u dz
while the over-all force balance between
net pressure and wall shear, Equation
(8) with x/6 replaced by w/4, provides
the following value of B:

‘_‘22_1412)
B—ﬂ_s( 2 dz) (10d)

Introducing these findings into (6)
results in the following equation for the
velocity:

:
(e o

] 8i )
+ 2 G,-(r” - :%—) cos 470

where the G; (= C;E;) still remain to be
determined. The condition that du/dn =
0 on the right-hand boundary of Figure
3b, on which r = s/cos 8, may be used.
The procedure for determining the G
follows along the lines previously dis-
cussed. For several values of 8 between

A.l.Ch.E. Journal

appro-

Fig. 5. Diagram for pressure-drop and
friction-factor derivation.

0 and 45 deg. one successively applies
the condition of zero normal derivative;
that is :

“L,“ 8; (cos 0)"“[cos (45 — 1)8

8i ‘
n (rf, c;)s 0) cos (4] + 1)0] (12a)

2cos" 9

1
+— 5—0

where

45

47 s

"'_zd_p>z
( ydzs

The result is [ simultaneous equations for
81, 8 + -+ 8;. Sufficient terms are retained
in the series to assure good accuracy in
shear-stress and velocity-distribution
calculations. Numerical values of the §;
obtained in this manner are listed in
Table 1 as a function of 8/ro.

So with the determination of the §;
(that is G,) the velocity solution for the
square array, Equation (11), can be
regarded as known, and one can pass on
to the presentation of results of engineer-
ing interest.

5, =G (12b)

RESULTS

Attention will first be focused on the
pressure drop-flow relationship, which is
generally the result of greatest practical
importance. Then this information will
be rephrased in terms of the friction
factor and Reynolds number. Finally
plots will be given of velocity contours
and also of the distribution of the wall
shear stress around the periphery of a rod.
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Pressure-Drop—Flow Relationship

First the volume rate of flow Q which
may be calculated by intégrating the
velocity over the flow area is introduced.
As before, only a typical element of the
flow configuration need be used (Figure
5). In terms of symbols given there the
integral for @ becomes

Q = ff ur dr dé
Al
0o s/cos @
=f f ur dr dé
o To

In evaluating Equation (13) one intro-
duces u from either Equations (9) or (11)
depending whether a triangular or square
array is being considered. As is shown in
the Appendix the end result of inserting
the velocity expressions takes the form

(13)

Q = (—%) %-ﬁmction (s/ro) (14)

or

_dp _ Qu 1

dz  7,"* function (s/ro) (14a)

The function of s/r, is different for each
array and has been computed by the

use of the integrals given in the Appendix.

Before numerical results are discussed,
an important fact may be drawn from
Equation (14a): for a given array with
fixed-rod diameter and spacing (that is,
fixed configuration) the pressure drop is
directly proportional to flow rate. This
finding is in aceord with previouslaminar-
flow analyses.

As a final prelude to presenting the
pressure-drop results, the authors chose
to replace the ratio s/ro by the more
general variable, the porcsity, which
is-the fraction of the total cross section
available to flow. In terms of Figure 5
one may write

(15)
=1 ___00—
T 7 (s/ro)* tan 6,

where the facts that (A, + A4.) is a right
triangle and A, is a circular sector have
been used in deriving the last expression.
For the triangular array, 6, = 30 deg.,

and :
1 \/§1r
e=1— 6(3_/7'0)5 (15a)
while for the square array, 8, = 45 deg.,
and
e=1

™
Gyt A%
With these expressions, plus the evalu-
ated integrals of the Appendix, one is
able to plot the pressure-drop—flow
relationship as a function of porosity on
Figure 6. There are several aspects of the
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curves worthy of discussion. First it is

seen that for the same flow, ro and ¢, the -

triangular array gives rise to a higher
pressure drop. This might have been
intuitively expected because each rod in
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Fig. 6. Pressure-drop—flow parameter as a
function of porosity.
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Fig. 7. Friction factor-Reynolds number as a
«function of porosity.
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Fig. 8. Representative velocity contour lines
for equilateral triangular array.
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the triangular array is surrounded by
more neighbors and hence feels more flow
disturbance than does a rod in the square
array.

It would appear that the two curves of
the figure have generally the same shape,
with possibly a growing deviation at
smaller values of e. Consideration of the
system suggests that, except for large
spacings (large ¢), similar flow perform-
ance need not necessarily be expected
from the different arrays. At large
spacings, where there is little effect of
neighboring rods, the flow passages of the
two arrays are almost geometrically
similar. But at small spacings the flow
passages of the two arrays are very
different indeed. For the case of cylinders
touching (s/ro = 1) the passages of the
square array are curvilinear squares, and
those of the triangular array are curvi-
linear triangles. One would have no
reason to expect that at small spacings
the curves for the two arrays should be
identical in form. (These observations
will have even greater meaning when the
friction-factor curves are given.) :

That the curves of Figure 6 should give
increasing ordinate values with decreas-
ing porosity is intuitively reasonable.
If the flow and rod radius are regarded as
fixed, and the porosity is decreased, this
will give rise to an increase in flow
velocity and a decrease in passage
dimensions. Both these effects would be
expected to contribute to an increase in
pressure drop, and this is in accord with
the findings of Figure 6. '

The rod radius is used here as a
characteristic dimension because it can
be easily measured and identified in an
experiment or application. The equivalent
diameter, = ed/(1 — €), was also con-
sidered but not used because it is physi-
cally somewhat obséure in the present
instance and did not assist in correlating
the results.

Friction-Factor—Reynolds-Number Relationship

The pressure-drop information may be
rephrased into a friction-factor-Reynolds-
number relationship. To begin, the defini-
tion of the friction factor is

-2
./ (16
The shear stress may be related to the

pressure drop, dp/dz. When one refers
to Figure 5, a force balance yields

f

i

7_"7'000 dz = _dp' Az,
or ' a7
- __ _(p/ddA,

T Tobo
With this Equation (16) becomes

_ _2(dp/dz)As

700 P"22 ( 16)
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Fig. 9. Representative velocity contour lines for square array.

and, after further rearrangement

o = [ () |44
v = [ () 153 oo

where N ,, is based on the rod diameter
d(= 2r) and is given by

N Reda — iu—p
In writing Equation (16b) the authors

have used the fact that 2 = Q/A,.
The first bracket of Equation (16b) is

the pressure-drop—flow ratio, which for a -

given array has been previously shown to
depend only on the porosity. The second
bracket is purely geometrical. When one
uses the definition of ¢, Equation (15),
in conjunction with the geometry of
Figure 5, it is easy to show that for a
given array the second bracket also is a
function of porosity alone.

The friction-factor-Reynolds-number
relationship has been computed for each
array from Equation (16b), and the
results are plotted on Figure 7 as a func-
tion of porosity. The curve representing
the triangular array lies higher than that
for the square array, but intuitive in-
terpretation is not easy because, in
addition to the pressure drop, compli-
cated geometrical factors enter into the
friction factor. For low porosities it
would appear that the curves for the two
arrays are not completely similar in
shape, but, as previously discussed,
similarity is not to be expected in the
low-porosity range.

For high values of porosity it is
possible to find a very accurate analytical
representation of the friction-factor
results. Under these conditions, where the
rods are relatively wide apart, the
velocity distribution around any one rod
depends very little on the angular
position. So the velocity can be accurately
represented by the first two terms of
Equations (9) and (11). The friction-
factor-Reynolds-number relationship cor-
responding to both these abbreviated
velocity expressions is

f'AYRu
_ 8(1 — ¢*)*
. 2* — Ine* — (¢%)7/2 — 1.5

where ¢* = 1 — e

(18)
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By the comparison of the predictions of
this relation with Figure 7 (which is
based on the more complete velocity
solution) it is found that Equation (18)
is an excellent representation of the
results for the conditions

€ > 0.80, triangular array
e > 0.90, square array

In addition to the curves of the
present analysis, Figure 7 also includes
the results of related work. The analysis
of Emersleben, represented by the
triangles* and the dashed line, was
carried out for the square array with
complex zeta functions used. The nature
of his solution is such that it can be valid
only for large values of ¢, but heretofore
the actual range of validity has not been
known. Inspection of Figure 7 shows that
Emersleben’s results are in close agree-
ment with those of the current work for
e > 09, and this may be taken to
define the limit of validity of his analysis.

Sullivan’s experiments were carried

.out with parallel-oriented filaments of

goat’s wool, blond hair, Chinese hair,
glass wool, copper wire, and segments of
drill rod. Each of these materials was
used separately. The tests utilizing the
drill rods corresponded to the situation of
cylinders touching, and the associated
data points are shown as black circles in
Figure 7. For the triangular array these
data are in excellent agreement with the
present predictions and thereby provide
support for the theory. For the.square
array the theory was not carried out for
the situation of cylinders touching
because of the relatively slower con-
vergence of the truncated series. However
inspection of Figure 7 leads to the belief

_that good agreement would also be

obtained for this case. For the other tests
(aside from those with the drill rods) the
filaments were inserted in a tube in an
array which was presumably random.
Hence the experimental conditions corre-
sponded to neither of the two regular
arrays studied here. The data, shown as
open circles in Figure 7, generally fall
below the analytical curves. It is es-
pecially interesting that the data con-
tinue to fall substantially lower than

*The points shown on Figure 7 are those reported
by Carman (£).
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IR

Fig. 10. Local wall shear-stress distribution
for equilateral triangular array.

W1 T 7 7T T 7T 1 71T VT T T1°¢

Fig. 11. Local wall shear-stress distribution
for square array.

theory even for ¢ > 0.9, where the rela=
tively large spacing essentially removes
the effect of rod orientation. This sug-
gests the possibility of a shortcoming in
the experimental apparatus, the most
likely of which would be. that the cylin-
drical filaments were not tightly packed
against the wall of the bounding tube.
Such an occurrence would lead to rela- -
tively large, open flow areas near walls
and a consequent. decrease in pressure
drop and friction factor.

Velocity Contours

The distribution of the velocity may
also be of some interest. The authors
have confined themselves to representa-
tive situations, selecting results for a
spacing ratio s/ro of 1.1 to represent
close packings and those for a ratio 2.0 to
represent open packings. Dimensionless
velocity contours (lines of constant
velocity) are plotted on Figure 8 for the
triangular array for a typical flow
element. Inspection of Figure 8a (rela-
tively large spacing) reveals that the
velocity contours are essentially circular
for a sizable region near the rod surface,
an indication that the neighboring rods
have little effect there. In Figure 8b,
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where the spacing has decreased, the
influence of the neighbors extends to
regions very near the rod surface. Similar
findings may be observed on'the velocity
contours of Figures 9a and b for the
square array.

Variation of Local Wall Shear Stress

Since the velocity distribution around
a rod varies with angular position, so
also will the local shear stress exerted by

" the wall on the fluid. The manner in
which the shear stress varies is shown
respectively on Figures 10 and 11 for the
triangular and square arrays. Using
symmetry considerations as before one
need consider only the typical elements
which are shown cross hatched in Figures
3 and 4.

The curves of Figures 10 and 11
graphically illustrate the role of neighbor-
ing rods on the flow pattern around a
given rod. For large spacings, for example
s/ro = 4.0, the local shear stress is
essentially a constant around the
periphery of the rod, showing that
neighbors have little effect on the flow
pattern. As the spacing decreases, the
angular dependence of the local-wall
shear stress increases, testifying to the
increasing asymmetry of the flow due to
interference of neighbors.

" As would be expected on physical
grounds the highest shear stress is
associated with the location of highest
velocities (8 = 30 and 45 deg., re-
spectively), and the smallest shear stress
is at the location of lowest velocity
(6 = 0deg.).

CONCLUDING REMARKS

In the investigation reported here the
analytical procedure based on truncated
trigonometric series has been applied to
symmetrical arrays such as the square
and the equilateral triangle. However
the same methods can be applied with
no essential modification to unsym-
metrical arrangements, examples of which
., are the rectangular and the isosceles
triangular with various apex angles.

APPENDIX

Integration to Compute Flow Rate

Equation (13) is the integral for the
volume flow. For purposes of illustration

attention is focused on the square array; -

the result for trmngular array will be
given later.

The exprjesswn for the velocity for the
square array is given by Equation (11).
The G; are related to the tabulated con-
stants §; (Table 1) by

&=at@%ﬁ (A1)

For purpose of integration the dimension-
less variable
& =r/ro (A2)
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" where 6, =

is introduced. Then substituting Equa-
tions (11), (A1), and (A2) into the flow-

rate integral (13), one gets

Q= (_%Z;) 7%4{/;”4 j:-/r.no.a
.[2 (8_
T \r

Jme - Lo -
+ Z 5; (To/s)h -

i=1

(Y = %) coaﬁ?]s‘ d¢ do}

/4 has been introduced for
the square array. Inspection of the con-
tents of the brace shows that the only
parameter is the ratio (s/ro), ¢ being
a dummy integration variable. So the
assertion of Equation (14) is shown to be
correct.

The integrals appearing in- Equation
(A3) can be carried out in a straight-
forward way, giving

_Qu (s_>
(—dp/dz)ry To
-_5;(2m§0+1n2—3) +é]

(A3)

-~ 7o =
Erehs ;“) rr= 2]
+0) - (a0
where
a=[" o do,

The definite integrals represented by A;
and B; were computed numerically by
the Kutta-Runge method.-

For the triangular array the authors
proceed as above, with the exception
that the velocity is taken from Equation

_(9) with

Gi = A; (gjp%_)s (A5)

The final result for the flow rate for the
triangular array is

(—d;%z)r; B @[i (h‘rio
13v/3 ]
216

—lncos30 —§>+

A.1.Ch.E. Journal

where
X = f cosef)igoa’ do
NOTATION

A,B,C,D,E,F,G = constants in velocity

solution

Ay = solid area normal to flow direc-
tion

A, = flow area

d = cylinder diametér, 2r,

f = friction factor, 27/pu2

n = direction of the normal

N, = Reynolds number, dip/u

p = static pressure

Q@ = volumetric rate of flow through

typical element (See Figures 3a
and 4.)

r = radial coordinate measured from
center of cylinder

ro = cylinder radius

s = half spacing between cylinders

# = velocity in 4z direction

u* = reduced velocity deﬁned by
Equation (3)

% = mean velocity

z = longitudinal coordinate

Greek Symbols

8; = constants defined by Equation .

(12b) .
4A; = constants defined by Equation
()
= porosity, 4./(4, + A.)
= solidity, 1 — €
fluid density
angular coordinate
angle subtended by flow element
shear stress at cylinder wall
average shear stress
fluid viscosity

M om
*
I

>0

® N
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