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SUMMARY 

The statistical approach to the gust-loads problem, which 
consists in considering flight th1ough turbulent air to be a sta
tionary random process, is extended by including the effect of 
lateral variations of the instantaneous gust intensity on the 
aerodynamic forces and on the resultant motions and stresses of 
rigid and flexible airplanes. By means of some calculations 
of normal and rolling accelerations, as well as of the root bending 
moment, it is shown that these effects may be significant for 
large airplanes. 
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SYMBOLS 

root bending moment 
average chord, S/b 
Theodorsen's unsteady lift function 
generalized Theodorsen function 
wing lift-curve slope 

coefficient of damping in roll 
section loading coefficient 
bending stiffness 
acceleration due to gravity 
response to unit impulsive gust or other input 
response influence function 
complex amplitude of response to sinusoidal 

gust or other input of unit amplitude, Fourier 
transform of h(t) 

complex amplitude of response influence fnnction, 
Fourier transform of h(t, y) with respect to t 

autoconvolution function for H(w, y) 
Fourier transform of H(w, y) with respect toy 
mass moment of inertia about the roll axis 
Bessel function of the first kind, order 1 
reduced frequency, wc/2 U 
dimensionless frequency, wL * / U 
modified Bessel functions of the second kind 
lift per unit span 
lift 
rolling moment 
generalized lift associated with first free-free 

bending mode 
scale of turbulence 
mass per unit span 
airplane mass 
wing mass 
generalized mass associated with the first free

free bending mode 
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number of peaks per unit time above a given level 
load-factor increment 
rate of roll 
dynamic pressure 
wing area 
time 
flying speed 
vertical component of gust velocity 
longitudinal displacement 
lateral displacement 
dimensionless lateral displacement, y/(b/2) 
lateral ordinate of center of pressure 
lateral ordinate of center of wing mass 
normal displacement 
normal displacement of nodal point 
generalized normal displacement for the first 

free-free bending mode 
dimensionless normal displacement, z/(c/2) 
local angle of attack 
spanwise distribution of the influence function 

h(t, y) 
lift influence function, [ccz!cCL)a = 1 

rolling moment influence function, 
[cc1/E(-Czvlla=y* 

autoconvolution of -y(y) 
lateral space displacement, liy 
dimensionless lateral space displacement, 

r,/(b/2) 
mode shape of first free-free bending mode 
airplane mass parameter, SM/ CLO<pSc 
airplane rolling-inertia parameter, Slx/( - C1P)pS2b 
air density 
stress 
time displacement, lit 
one-dimensional correlation function 
two-dimensional correlation function 
one-dimensional power spectrum 
two-dimensional power spectrum 
double Fourier transform of if; 
double Fourier transform of if; for axisymmetric 

case 
Sears' unsteady lift function for gust penetration 
frequency 

INTRODUCTION 

T HE LOCAL AIR velocity :fluctuations sensed by an 
airplane flying through atmospheric turbulence 

are functions of time defined in only a statistical sense~ 
that is, they constitute a stochastic or random process. 
Consequently, the responses of the airplane, such as 
the motions or stresses, can also be known as functions 
of time in only a statistical sense. 

The problem of relating the statistical character
istics of the input of a dynamic system to those of the 
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output gives rise to the relatively new field of statistical 
dynamics. (Some of the fundamental papers in this 
field are compiled in reference 1.) The techniques of 
this field, in particular those related to the generalized 
harmonic analysis of stationary random processes, have 
been applied to the gust-loads problem and related 
problems in aeronautics in recent years to an ever 
increasing extent. 2 - 6 

In these analyses the assumption has been made that 
the variation of the instantaneous gust intensity along 
the span can be disregarded. The type of gust struc
ture envisioned in this approach is thus, in effect, the 
one shown in the upper part of Fig. 1, which will be 
referred to hereafter as the one-dimensional gust. 
The purpose of this paper is to take into account the 
variation along the span and to treat the more realistic 
gust structure represented in the lower part of Fig. 1, 
which will be referred to as the two-dimensional gust. 

Thus, the problem is essentially one of determining 
the response of a linear system--namely, the airplane
to a multidimensional stationary random process-
namely, atmospheric turbulence. (The assumptions 
of linearity and stationarity have been made in refer
ences 2 to 6 and are valid for many practical purposes 
connected with the gust-loads problem.) The some
what similar problem of a finite-length correction for a 
hot-wire anemometer has been treated in references 7 
and 8; some phases of the present problem have been 
considered in reference 9; and a fairly extensive analysis 
of the problem is given in reference 10, which forms the 
basis of the present paper. 

The solution to the problem will be outlined briefly 
in the following, and the results of some calculations 
of the accelerations and bending moments in continu
ous random turbulence will then be presented in an 
effort to indicate the possible magnitude of the effects 
under consideration. The derivation of the solution 
presented here and some of the details of the calcula
tions are given in the Appendixes. 

THE BASIC RELATIONS BETWEEN THE INPUT AND 

OUTPUT OF A SYSTEM SUBJECTED TO A RANDOM INPUT 

Summary of the Relations Appropriate to a 
One-Dimensional Gust Structure 

Before discussing the analysis of the loads and mo
tions corresponding to a two-dimensional random gust 
structure, a brief outline of the analysis for a one
dimensional random gust structure may be in order. 

The bridges which link the statistical characteristics 
of the input and the output of a dynamic system sub
jected to a stationary random input are certain rela
tions between the correlation functions or the power 
spectra of the input and output, respectively. For the 
present case the input is the gust intensity w, and its 
correlation function is defined by 

1/lw(l1x) = w(x)w(x + !1x) (1) 

where the bar designates a time average. The corre
lation function is a statistical characteristic which is a 

ONE - DIMENSIONAL 
GUST 

TWO-DIMENSIONAL 
GUST 

I 
y 

FrG. 1. One- and two-dimensional gusts. 

measure of the extent to which the value of one random 
variable, in this case w(x + !1x), can be predicted 
from a knowledge of that of another random variable, 
in this case w(x); it contains the mean square value of 
the quantity of interest, inasmuch as 

w2 = 1/lw(0) (2) 

and contains certain additional information. For in
stance, the mean square value of the derivative of w is 
given by 

(dw/d;)2 = - ! [d 2/d(!1x)2] 1/lw(l1x) l L\x=O (3) 

A possibly even more useful statistical characteristic 
is the Fourier transform of the correlation function
namely, 

-; f_mm e-iw(L\x/U) 1/lw(f1x) d ( ~) (4) 

(The flying speed U is introduced here because the 
airplane senses the turbulent excitation fundamentally 
as a function of time, whereas the statistical character
istics of turbulence of interest here are functions pri
marily of space displacements. These space dis
placements have to be identified with equivalent time 
displacements in calculating the response of the air
plane.) The function <Pw(w) is referred to as the power 
spectrum of w. It represents the part of the mean 
square value associated with various frequencies. In 
other words, if the random process w were passed 
through a filter which permitted only frequencies 
within a band of unit width about the frequency w to 
pass, the mean square value of the filtered process 
would be cp10 (w). Thus, the information it contains 
includes the mean square value of the process, 

w2 = ( 00 

<Pw(w) dw Jo (5) 

as well as the mean square value of the time derivative 
of the process, 

iv2 = Ia 00 

<Pw(w) w2 dw (G) 

The correlation function and power spectrum of the 
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output-say the load factor increment Lin-are defined 
in a similar manner. The input-output relation for 
stationary random processes then becomes in this 
case 

(7) 

where Hc,.nw(w) is the transfer function of the system, 
which represents the complex amplitude of the load 
factor response of the airplane to sinusoidal gusts of 
unit amplitude and of wave length 271" U / w. 

From the power spectrum of the output such sta
tistical quantities as the mean square value and the 
mean square derivative can then be obtained directly 
by the equivalent of Eqs. (5) and (6). From these 
quantities, in turn, other statistical characteristics of 
interest can be obtained on the basis of certain assump
tions. For instance, if the probability distribution 
of the process is Gaussian, the expected number N 
of peaks in the load factor exceeding a given level Lin 

per unit time can be obtained from Rice's asymptotic 
expression given in reference I -namely, 

N = (l/271") v;~2 / b.nz e -(1/2J [(tln) 2/An 2J (S) 

vaiid for Lin > 2-V An 2 • This expression, which also 
furnishes an estimate of the expected time 1/ N re
quired to encounter a peak load factor increment equal 
to or greater than Lin, is shown plotted in Fig. 2. The 

ratio V M1 2/Y Lin 2 has the dimensions of a frequency 
and can be considered to be a representative or pre
dominant frequency of the time history of Lin. If the 
transfer function has the characteristics of a narrow 
band-pass filter, which may be the case if the airplane 
is on the verge of an instability condition ( due to loss 
of aerodynamic damping or aeroelastic action), this 
representative frequency is the frequency wo at which 
the airplane or wing tends to oscillate. 

The Input-Output Relation for a Two-Dimensional Gust 
Structure 

For the two-dimensional gust, the progression from 
input to output is fundamentally the same. How
ever, some of the concepts referred to in the preceding 
paragraphs have to be generalized. A two-dimensional 
correlation function for the input can be defined as 

fw(Ax, Ay) = w(x, y) w(x + Ax, y + Ay) (9) 

This correlation function relates the gust velocities at 
points x, y and x + Ax, y + Ay. In most cases its 
value should be independent of the orientation of the 
two points relative to each other and depend only on 
the distance between them, so that an airplane flying 
from east to west senses the same gust variation, in a 
statistical sense, as an airplane flying north to south, 
or in any other direction. In this case, the two-dimen
sional correlation function can readily be expressed in 
terms of the one-dimensional function, 

This property of the turbulence is referred to as ax1-

symmetry (with respect to a vertical axis) and repre
sents a less restrictive assumption than that of iso
tropy, which is usually assumed in studies of turbu
lence. In the following, the turbulence under con
sideration will be assumed to have this property. 

A two-dimensional power spectrum may then be 
defined as the Fourier transform with respect to Lix 
of the two-dimensional correlation function, 

In deriving an input-output expression which re
lates the power spectrum of some output, say, the 
stress u at some point in the wing, to this two-dimen
sional input spectrum, a convenient starting point is 
the superposition integral which relates the instan
taneous value of the output to the past history of the 
input at various stations on the wing, 

( ! 2) u(t) = J 00 Jb/2 h(t1, y) w(t - t1, y) dy dt1 
- oo - (b/2) 

The required response function h(t, y) is actually an 
influence function, which defines the influence of the 
gust intensity at a station y and a time t 011 the output. 
This function represents the response, say the stress 
u, to a very narrow impulsive gust which at time t = 0 
impinges on the wing at station y. In principle, such 
a response function could be calculated if the indicial 
pressure or lift distribution on the wing were known for 
impulsive gusts impinging on the wing over a very 
narrow front. For a given location y of gust impinge
ment and a given time t, such a lift-distribution func
tion would tend to look similar to the one indicated 
by cross hatching in the upper part of Fig. :3. The 
desired influence function h(t, y) could then be ob
tained by calculating the integrals and moments and, 
hence, the stresses associated with this lift distribution 
for each value oft and y. For a stress which is propor-

N 
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FrG. 2. Expected number N of peaks above !'J.n per unit time. 
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FIG. 3. Influence functions for two-dimensional gust. 

tional to the total lift or vertical shear, such a function 
is shown at the right in the upper part of Fig. 3. 

For practical purposes, this direct approach suffers 
from the fact that the required indicial pressure- and 
lift-distribution functions are very difficult to calcu
late. However, the integrals and moments of these 
functions and, hence, the desired function h(t, y) can 
be identified with relatively easily calculated lift dis
tributions on the same wing in reverse flow by means 
of the reciprocity theorem of linearized lifting-surface 
theory. 11 

The Fourier transform H(w, y) of h(t, y) represents 
the complex amplitude of the response to sinusoidal 
gusts of unit amplitude and with wave length 21r U / w 

impinging on the wing at station y, as indicated in the 
lower part of Fig. 3. The direct calculation of this 
function again requires a knowledge of pressure or lift 
distributions due to very narrow sinusoidal gusts, 
which are very difficult to calculate, and, for a given 
y and w, would look like the one indicated by cross
hatching. But again, the required integrals and 
moments can be identified with certain lift distributions 
on the wing in reverse flow. The specific nature of 
these lift distributions for the various cases considered 
here is indicated in Appendix B. 

In terms of the two-dimensional input spectrum 
'Pw(w, ~y) and the influence function H,,w(w, y), the 
output spectrum can then be expressed as follows: 

f b/2 fb/2 
cp,,(w) = H,,w (w, Y2) [H,,w(w, Yi)]* X 

- (b/2) - (b/2) 

'Pw(w, Y2 - Yi) dyidy2 (13) 

where the asterisk designates that the complex con
jugate of H,,w(w, Yi) is to be taken. This expression 
then represents the input-output relation for the two
dimensional gust, analogous to Eq. (7) for the one
dimensional gust. 

Once the power spectrum of /J' has been obtained in 
this manner, the mean square value and the value of 
the mean square derivative are obtained by integra
tion [see Eqs. (5) and (6) ], and other statistical char
acteristics, such as the expected number of peaks, can 
then be calculated from these values, as before. 

RESULTS OF CALCULATIONS 

Spectrum of the Lift Due Directly to Turbulence 

One of the basic quantities in any calculation of the 
dynamic response of an airplane to turbulence is the 
lift produced directly by the turbulence. In order to 
indicate how this lift is affected by the averaging 
effect of the spart, the spectrum cpw,(w)-in dimension
less form-of the gust velocity averaged over the 
span (with a weighting factor which depends on the 
lift-producing capabilities of the various stations along 
the span, and which is here taken as unity) is shown in 
Fig. 4. The abscissa is a reduced frequency and the 
parameter a dimensionless span, both of which contain a 
length L* which will be referred to as the scale of 
turbulence. The scale of turbulence is here defined as 
twice the integral of the function fw(~x) divided by w 2-

that is, 

L* = 2 f"' fw(~x) d(~x) 
Jo w2 

or L* = 1rU['Pw(O)/w2 ] 

(14) 

(15) 

Intuitively, it may be thought of as a distance such 
that the instantaneous gust velocities at points sep
arated by less than that amount tend to be similar 
whereas those at points separated by a greater amoun~ 
tend to be substantially independent of each other in a 
statistical sense. 

The correlation function fw(~x) to which these cal
culations pertain is indicated at the right of Fig. 4; 
this correlation function is a simple analytical expres
sion suggested by measurements of turbulence in wind 
tunnels; it agrees fairly well with the available knowl
edge of the correlation function of atmospheric turbu
lence2• 5 and has been used previously for gust-loads 
calculations in reference 4. On the basis of the avail
able knowledge the scale of atmospheric turbulence 
appears to be in the order of at least several hundred 
feet, although near the ground it may be somewhat 
smaller. 

When the span is very small, there is no averaging 
effect, and cpw,(w), the spectrum of the averaged gust 
intensity, becomes cpw(w), the spectrum of the un
averaged gust intensity. This function is the one 
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FIG, 4. Averaged gust spectrum. 
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FIG. 5. Effect of airplane mass on normal acceleration. 

shown for b/L* = 0. As the span increases, the 
averaging effect becomes more and more pronounced 
and serves to attenuate the spectrum at all frequencies, 
but particularly at high frequencies, as may be ex
pected since the tendency for gusts of very short wave 
lengths (or high frequencies) to cancel each other is 
much greater than that of gusts of larger wave lengths. 

The spectrum of the lift is obtained essentially by 
multiplying the spectrum for the averaged gust ve
locity by the absolute square of the unsteady lift 
function for gust penetration (the so-called Sears 
function in the case of two-dimensional incompressible 
flow), and the mean square of the lift is then obtained 
by integrating the lift spectrum. Inasmuch as this 
unsteady lift function is unaffected by the averaging 
process, the effects of averaging on <,ow(w) are reflected in 
similar effects on the lift spectrum and, hence, on the 
mean square lift. 

Mean Square Normal Load Factor Increment 

In calculating the loads produced by the lift discussed 
in the preceding section, the motions of the airplane 
must be taken into account. Before considering the 
averaging effects of the span on these loads, however, 
a brief discussion of some results obtained for the one
dimensional gust case may be in order. 

If the airplane is considered to be subjected to con
tinuous random turbulence with the spectrum \Ow(w) 
given by the curve for b / L * = 0 in Fig. 4, and if the 
airplane is permitted to move vertically only, the mean 
square load factor can be calculated readily. 4 Some 
typical results are presented in Fig. 5. The ordinate 
is the ratio of the root mean square load factor calcu
lated in this manner to the root mean square load factor 
given by the sharp-edged gust formula and, thus, rep
resents an alleviation factor for the value obtained 
from this formula; the abscissa is an airplane mass 
parameter 

K - 8A1/CLapSc 

The results indicate, as may be expected, that the sharp
edged gust formula which, in effect, disregards the mo
tions of the airplane and unsteady-lift effects, is most 
accurate for large values of the mass parameter, which 
imply small motions on the part of the airplane. Also, 
the alleviation factor and, hence, the mean square load 

factor are seen to depend on the ratio of the scale of 
turbulence to the mean chord. 

Now if a two-dimensional gust input is to be used, 
the result will depend on the ratio of the span to the 
scale of turbulence, as was the case in Fig. 4, as well 
as on the ratio of the mean chord to the scale of turbu
lence, as in the case in Fig. 5. However, for a given 
airplane these two ratios are not independent, since 
the ratio of the span to the average chord is fixed. 
Therefore, it was felt that, for a realistic appraisal of 
the averaging effect of the span, the two ratios should 
be varied simultaneously in such a way as to maintain 
a fixed airplane geometry. 

The results of such an analysis are indicated in Fig. 
6, where the ordinate is the ratio of the mean square 
load factor obtained from an analysis using a two
dimensional gust structure to the value obtained 
for a one-dimensional gust for a given value of K

namely, 100. The abscissa is the span ratio b/L*. 
Curves are shown for three aspect ratios. The value of 
the ratio of the scale of turbulence to one-half of the 
average chord can be determined for each point on the 
curves from the relation 

L*/(c/2) = 2A/(b/L*) 

The results presented in Fig. 6 indicate that, if the 
variation of gust intensity along the span is taken into 
account, the mean square normal load factor is reduced 
by an amount which depends on the aspect ratio of the 
wing and the ratio of the span to the scale of turbu
lence. For wings of high aspect ratio and spans of 
the order of one-quarter or more of the scale of tur
bulence, this reduction appears to be quite substantial. 
However, as will be indicated presently, the results 
presented in this Figure do not imply that the stresses 
are necessarily lower. 

Mean Square Rolling Acceleration 

Fig. 7 pertains to a problem which can be analyzed 
only by taking into account the spanwise variation of 
gust intensity-namely, the problem of rolling response 
to vertical gusts-because if the gust intensity is the 
same along the span there is no tendency to roll. The 
mean square rolling acceleration has been calculated 

A=.5 
1.0 

.6 

0 .2 .4. 
SPAN RATIO, b/L.: 

.6 

FIG. 6. Effect of span on normal acceleration. 
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Effect of span on rolling acceleration. 

A=6.25 
12.5 

1.0 

for one value of a rolling moment of inertia parameter 
analogous to the mass parameter-i.e., 

which has a value of 25.75 for the calculations repre
sented in Fig. 7 and for several values of the chord and 
span ratios. 

As may be expected, as the span goes to zero, so 
does the effect of variations in gust intensity along the 
span and, hence, the tendency to roll. (If the span 
were much larger than the scale of turbulence, and, 
therefore, beyond the range of practical interest in 
connection with the gust-loads problem, the local values 
of the gust intensity along the span would tend to 
cancel each other and again produce no tendency to 
roll, although the curves are not shown here for suffi
ciently large values of the span ratio to demonstrate 
this point.) 

In considering these results the fact that the air
plane also rolls due to side gusts acting on the vertical 
tail should be kept in mind. Some estimates indicate 
that for large airplanes the effect considered here is 
likely to predominate. In any event, the two con
tributions to the rolling motion are statistically inde
pendent if the turbulence is isotropic, so that the 
spectra can be added directly to obtain the spectrum 
of the total rolling acceleration. 

Mean Square Root Bending Moment of a Rigid Wing 

In order to obtain a more direct measure of the effect 
of spanwise variation in gust intensity on the stresses 
in an airplane the mean square root bending moment 
has been calculated for a rigid and a flexible wing. 
Fig. 8 pertains to an airplane with a rigid wing, which 
is permitted to move vertically only. The mass 
parameter is 100. The ratio of the mean square bend
ing moment to a mean square bending monient cal
culated from a sharp-edge gust formula, which includes 
no inertia or unsteady-lift effects, is shown as a func
tion of the ratio of the wing mass to the total mass of 
the airplane. The curve labeled b/ L * = 0.25 repre
sents the results calculated by taking spanwise vari-

ations of the gust intensity into account, whereas the 
curve labeled b/L* = 0 represents the results of cal
culations in which these variations are ignored. The 
aspect ratio of the wing considered here is 12.5, and the 
scale ratio L * / ( c/2) is 100 in both cases. 

The effect of taking spanwise variations into account 
is to decrease the mean square bending moment 
slightly if most of the mass of the airplane is contained 
in the fuselage, but to increase it if much or most of 
the weight is in the wing. For the airplane with most 
of the weight in the fuselage the decreased moment 
reflects to a large extent the decreased normal load fac
tor. On the other hand, for the extreme case of a 
flying wing, which contains its entire mass in the 
wing, the net root bending moment is zero if the gust 
is uniform along the span, provided the mass distri
bution and lift distribution have the same lateral 
centroid location, because the bending moments due 
to the turbulence directly, due to the motion of the 
airplane, and due to the inertia effects then cancel each 
other. If, for the same case, the vafr:1.tion of the gust 
intensity along the span is considered, however, a net 
bending moment does exist. Thus, the mean square 
bending moment shown in the Figure for a mass ratio 
of unity is due entirely to the spanwise vafri.tion of 
gust intensity, and, at mass ratios between one-half 
and one, this effect results in large increases in the 
mean square bending moment. 

Mean Square Root Bending Moment of a Flexible Wing 

The mean square root bending moment of an air
plane with a flexible wing and a higher value of the 
mass parameter K-namely, 175-is shown in Fig. 9. 
The airplane is now considered to be free to move 
vertically, and the wing is assumed to distort in the 
first symmetrical free-free bending mode. The fact 
that the fundamental bending frequency and the mode 
shape change as the mass is redistributed from the 
fuselage to the wing is taken into account. 

For this case a one-dimensional gust produces a 
bending moment even when all the mass is in the wing. 
The effect of taking the spanwise variation of gust 
intensity into account is again to reduce the mean 
square bending moment when most of the mass is in 
the fuselage and to increase it if most of the mass is in 

• 

.2 
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(BMs)2 
.I 

0 

FIG. 8. 

.2 .4 ,6 
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Effect of span on bending moment (rigid wing). 
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the wing; however, the magnitude of the effect appears 
to be considerably greater than it was for the rigid 
wing. (In view of the different mass parameters the 
results presented in Figs. 8 and 9 should not be com
pared with each other in an attempt to deduce the 
effects of wing flexibility.) 

DISCUSSION 

Some Limitations of Analyses of Airplane Response to 
Continuous Random Excitation 

The purpose of the analysis presented here has been 
to determine how the results of an analysis based on a 
one-dimensional random gust are modified if a two
dimensional random gust is considered. Before dis
cussing the results presented, a short discussion of 
some of the limitations and implications of this type 
of analysis may be in order. 

The assumptions of linearity and stationarity com
monly made in analyses based on a one-dimensional 
gust structure have been carried over. Linearity pri
marily implies small motions superimposed on a 
steady mean motion. Stationarity, in a statistical 
sense, implies that the statistical characteristics of the 
turbulence along the flight path remain substantially 
invariant for a sufficiently long period of time-that 
is, a period of time several times longer than either 
the time required for any transient aerodynamic and 
dynamic effects to subside or the time required to 
travel a distance equal to the scale of turbulence, 
whichever is greater. This condition is likely to be 
satisfied in turbulence of low or medium intensity; 
however, whether or not the turbulence encountered 
in thunderstorms satisfies this condition is not known 
at present. 

The present study of the response to two-dimensional 
turbulence, as well as the previous studies of the re
sponse to one-dimensional turbulence, are thus con
cerned with only a part of the gust-loads picture. 
They furnish an estimate of the expected number of 
peak loads per unit time above a given level for any 
specified mean square intensity of the turbulent input, 
but this information must be combined with the 
probability of encountering a given input intensity in a 
given period of time, which represents a meteorological 
and operational problem, in order to arrive at an esti
mate of the time required to exceed a given peak load 
in a given type of operation. This problem is discussed 
in reference 12. 

The additional assumption of axisymmetry made in 
this paper is valid whenever the turbulence has no pre
ferred direction in the horizontal plane. This condi
tion is likely to be satisfied in general, except near the 
ground (where the turbulence may be the result of 
obstacles on the ground which have a definite orienta
tion, such as a mountain range) and possibly at the 
edges of the jet stream. If the turbulence does not 
have this property, the analysis of this paper can read
ily be extended to cover this situation; however, more 
knowledge, in the form of two-dimensional correlation 
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FIG. 9. Effect of span on bending moment (flexible wing). 

functions or the corresponding power spectra, would 
then be required than is now available. 

A characteristic of atmospheric turbulence which 
appears to play a prominent part in the calculation 
discussed here is the scale of turbulence, although if an 
experimentally obtained input spectrum had been 
used instead of the analytical expressions used here 
this quantity would not have appeared explicitly. It is 
very difficult to obtain experimentally, because its 
measurement requires long periods of time, during which 
the assumption of stationarity is likely to be violated. 
Therefore, if this quantity is to be obtained from experi
mental results, the best procedure may be to fit an ex
perimentally obtained correlation function or spectrum 
by an analytic expression and then to deduce the scale 
of turbulence from this expression, using Eq. (14) or 
(15). 

Appraisal of the Calculated Results 

As pointed out in this paper, the lateral variation of 
gust intensity may affect the response to turbulence to 
various extents. In some problems this effect con
stitutes a refinement of an analysis based on a one
dimensional gust structure, as in the case for the nor
mal load factor, for instance; in others this effect is the 
primary cause of the response, as in the case for the 
rolling accleration or the root bending moment on a 
rigid flying wing. 

On the basis of the results of the calculations, the 
effects considered here may be significant if the span 
of the airplane is one-tenth or more of the scale of tur
bulence, that is, for airplanes with a span as low as 
50 ft. in some cases. However, in other problems 
these effects may be significant only for the very 
largest airplanes. As was demonstrated, they may 
serve to increase or decrease the loads and motions, 
although some of the problems where the increase is 
very large, such as the root bending moment on a 
flying wing, may be those for which gust loads are not 
likely to be critical. The effects considered here 
appear to be more significant for relatively flexible than 
for relatively rigid airplanes, and on the basis of cal
culations performed elsewhere13 they appear to affect 
the response in the higher modes to an even larger 
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extent than the response in the lower modes considered 
in the calculations of the present paper. 

Although only calculations of mean square values 
have been presented, the values of the mean square 
derivatives could have been presented as well, inasmuch 
as they can be obtained directly from the spectra 
which were used to obtain the mean square values. 
Hence, the expected number of peaks could have been 
calculated. It is not expected that such calculations 
would alter the conclusions reached here. 

Application to Other Problems 

The effects discussed here may find application to 
other problems. For instance, some phases of the 
buffeting problem may be amenable to analysis on the 
basis of assumptions of linearity and stationarity. If 
so, the effects of spanwise variation of input intensity 
are likely to be very much larger than in the gust
loads problem, because the scale of turbulence is small 
compared to the wing span in this problem. Whether 
the assumption of axisymmetry will yield useful results 
or whether two-dimensional input correlation functions 
and spectra will have to be obtained remains to be 
seen. 

CONCLUDING REMARKS 

An approach has been outlined for taking into ac
count the spanwise variations in instantaneous in
tensity of a continuous random gust structure. The 
results of some calculations have been presented which 
indicate that this effect, which may serve to decrease 
or increase the loads and motions, depending on the 
individual case, may be significant even on medium
sized airplanes for certain gust responses. One such 
response is the root bending moment, particularly if 
the wing is flexible, and another is the rolling acceler
ation. However, for other responses, such as the nor
mal acceleration, this effect is likely to be small even for 
the larger airplanes. Thus, in quantitative studies of 
some, but not all, responses to continuous random tur
bulence, the effects of spanwise variation of gust in
tensity will have to be taken into account for large 
airplanes. 

APPENDIX A-DERIVATION OF THE INPUT-OUTPUT 

RELATION AND VARIOUS TRANSFER FUNCTIONS FOR 

A ONE-DIMENSIONAL GUST STRUCTURE 

In this Appendix the relation between the power 
spectra of the input and output of a linear dynamic 
system subjected to a stationary random input will be 
derived in a form which can readily be generalized to 
the analyis of a two-dimensional gust structure. (See 
references 3, 4, and 6 for greater detail.) The trans
fer functions required in the calculations discussed in 
this paper will then be derived for the case of a one
dimensional gust structure. 

The Input-Output Relation 

The correlation function of a stationary random proc
essj(t) will be defined as 

(A-1) 

where the bar designates a time average, 

( ) = lim J__ f T ( ) dt 
T-m 2T -T 

For many purposes the Fourier transform of this 
function is very useful. This transform will be re
f erred to as the power spectrum of j(t) and defined by 

(A-2) 

If now this process represents the input to a linear 
dynamic system, the output of which is g(t), the 
functions f(t) and g(t) can be related by the superposi
tion integral 

where h(t) is the response of the given system to a unit 
impulse. 

The correlation function for g(t) can be defined in 
the same way as the one for f(t); upon substituting 
Eq. (A-:3) into this defining equation and making use 
of Eq. (A-1), this correlation function can be written 
as 

fo(T) f_00

m J_"'oo h(t1) h(t2) fr(T + ti - t2) dt1dt2 

(A-4) 

and upon defining a power spectrum for g(t) in the 
same way as the one for J(t), substituting Eq. (A-4) 
into this defining relation and using Eq. (A-2), this 
spectrum can be written as 

ipu(w) = I H(w) j 2 'Pr(w) 

where H(w) is the Fourier transform of h(t), 

H(w) = .[_00

00 
h(t)e-iwt dt 

(A-5) 

(A-6) 

and represents the complex amplitude of the output 
of the system when subjected to a sinusoidal input of 
frequency w and unit amplitude. 

When the system is an airplane flying at a mean 
speed U and the input to the system is the gust in
tensity w, cognizance should be taken of the fact that 
along the flight path w is a function of only one vari
able, either the distance traveled along the flight 
path, x, or the time required to travel that distance, 
namely t = x/ U. In the body of this paper w has 
been considered as a function of distance, with the 
result that the definitions of f w and 'Pw given in the 
body take special forms of those given in this Appendix. 

The reason for this convention is that if an airplane 
flies sufficiently rapidly the gust velocity at any point 
of its flight path does not vary significantly during 
the time the airplane is in the vicinity of the point, so 
that the statistical characteristics, in particular the 
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correlation function, are functions of space displace
ments only. (The term "vicinity" is used here to 
designate the space surrounding the point and of such 
extent that there is a strong correlation between the 
gust velocities at all points of that space with those 
at the given point.) The assumption has been made 
in previous analyses of the response of an airplane to 
continuous random atmospheric turbulence, and will 
be made here, that this condition, which is equivalent 
to Taylor's hypothesis made in studies of turbulence 
in wind tunnels, is satisfied. From available informa
tion concerning the properties of the atmosphere the 
required speed appears to be in the order of about 
100 or 200 ft. per sec., so that for all higher flying 
speeds time displacements r can be identified with space 
displacements t,.x = Ur, and vice versa. 

In the calculations of this paper the following ex
pression for the correlation function of atmospheric 
turbulence has been used. 4,6 

The power spectrum corresponding to this correlation 
function is 

where 

(w 2L*j,rrU) [(l + 3k' 2)/(l + k' 2) 2 ] (A-8) 

k' = wL*/U 

The Transfer Functions for the Normal-Load-Factor 
Increment and the Root Bending Moment of a Rigid 
Airplane 

The equation of motion of an airplane subjected 
to sinusoidal gusts and free to move vertically only 
can be written as 

Mz = - ( CLaqS' U) C(k )± + Lo (A-9) 

where L 0 = CL qS(w/ U)¢(k); and C(k) is an unsteady-
a 

lift function for changes in angle of attack, which for 
incompressible two-dimensional flow is the Theodorsen 
function C(k) (see reference 14) plus an apparent-mass 
term ik/2; the function ¢(k) is an unsteady-lift func
tion for gust penetration, and is for two-dimensional 
incompressible flow the function first given in reference 
15 and usually referred to as the Sears function. Hence, 
if a normal load factor increment and a mass parameter 
are defined by 

6n = z'g 

and 

this equation can be written as 

6n = {1/(K/2) + [C(k)/ikl} (2U2/gc)¢(k) (w/U) 
(A-10) 

The factor multiplying w on the right side of Eq. 
(A-10) constitutes the required transfer function. 
Using a refrence value of the load factor increment 
defined by the sharp-edge gust formula 

(CLsS/Jvlg) (wlU) 

(2/,() (2U2/gc) (w!U) (A-11) 

and Eqs. (5) and (A-8), the mean square value of 
6n can be written as 

where (6n 8 ) 2 represents the mean square value of 6n as 
calculated by the sharp-edge gust formula. In the 

calculation of (6n) 2 discussed in this paper the quasi
steady value of C(k) ~ l and the approximation 
used in references 4 and 6 for I ¢(k) / 2~namely, 

l¢(k)/ 2 ~ 1/(1 + 21rk) 

have been used. 
If the gust is uniform along the span, the aerody

namic loads due directly to the gust and due to the 
motion of the airplane have the same lateral center of 
pressure. Hence, the bending moment due to sinu
soidal gusts can be written as 

BAJ= (CL qS/U) (y/2) [¢(k)w - C(k)±] -a . 

(M,j2)yz (A-12) 

However, using Eq. (A-9) this equation can be simpli
fied to 

BM = [(y/2)M - (y/2)2vfw]z 
= (y/2)Af[l - (y/y) (111w/M)]z 

Therefore, the transfer function for BlVI is equal to the 
transfer function for 6n multiplied by the factor 

(y/2)M[l - (y/y) (Mw/M) ]g 

In the calculations of the bending moments dis
cussed in this paper the values of C(k) and ¢(k) for two
dimensional incompressible flow (as corrected for 
finite-span effects by using the appropriate value of 
CLa instead of 21r) were used. A reference value of the 

bending moment as calculated from the equivalent 
of the sharp-edge gust equation, 

(A-13) 

was used to reduce the results to dimensionless form. 
The values of y and y were assumed to be identical. 

Transfer Function for the Root Bending Moment of a 
Flexible Wing 

The method of calculating the transfer function for 
the root bending moment of a flexible wing is based on 
the modal approach of reference 16. 

The equation for the bending distortion of a flexible 
wing can be written as 

where l0 and lm are, respectively, the aerodynamic 
loads per unit span due to the gust directly and due 
to the airplane mot10n, and where li is the load per unit 
span due to inertia effects. If the airplane is restricted 
to vertical motion and to distortion in the first free
free bending mode, the function z(y) can be written as 

z(y) = zo + Z1 t(y) (A-li5) 
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The mode shape t(y) must satisfy the equation 

(A-16) 

where wo is the frequency of the oscillation in the first 
free-free bending mode, as well as the orthogonality 
condition 

Jb/2 

mt dy = 0 
- [(b/2) 

(A-17) 

As a result of Eqs. (A-15) and (A-16), Eq. (A-14) can, 
for sinusoidal gusts of frequency w, be written as 

Z1Wo 2mt = lg - (zo/ U)l1 -
(z1/ U)l1 + w2m(zo + z1t) (A-18) 

where l1 and l1 are the lift distributions due to an angle 
of attack equal to unity and an angle of attack dis
tribution equal to t, respectively. Integrating this 
equation and using Eq. (A-17) and then multiplying it 
by t first and then integrating yields the pair of equa
tions 

0 = Lu - (zo/U)L1 - (zi/U)L1 + w 2Mzo } 
Z1Wo2 Iv[' = Ly" - (zo/ U)Li" - (z1/ U)Lr" + 

w 2M'z1 
(A-19) 

where M' is the generalized mass associated with the 
first free-free bending mode, 

Jb/2 

M' = m g- 2 dy 
-(b/2) 

and where the actual and generalized lifts due to motion 
are defined by 

and K = {1 (_r;_r;__z_) dy* 
Jo cCLa a=r 

K = ( 1 (_r;_r;__z_) t dy* 
Jo cCLa a=l 

(A-20) 

K' = {1 (_r;_r;__z_) t dy* 
Jo cCLa a=r 

For an unswept wing, which is the only case considered 
in the following, the constants K and K are identical 
by virtue of the reciprocity relations of linearized lift
ing surface theory. 11 Hence, both will be designated 
by Kin the following. 

For subsonic flow the required lift distributions can 
be obtained from reference 17. In the calculations, 
discussed in the present paper the mode shape t was 
taken as 

t = -a + (1 + a)y* 2 (A-21} 

and the lift distributions given in reference 17 for a 
wing of aspect ratio 12, taper ratio 1/2 with uniform 
angle of attack and with parabolic twist were used. 

Similarly, for a gust which is uniform along the 
span, 

Lu = CLaqS<f,(k) (w/ U) } 
Lg" = CLaqS¢(k)K(w/ U) 

(A-22} 

In terms of these lifts, Eq. (A-19) can be written in 
dimensionless form as 

[
- ~ k 2 ~ ikC(k) 

ikKC(k) 

ikKC(k) ] 

(k02 - k 2) ~ + ikK'C(k) 

zo* 
= <f,(k) 

w 

u 
w K~ 
u 

(A-23) 

where 

and 

ko = woc/2U 

K 1 = 8M'/CLapSc 

Now, the root bending moment can be expressed as 

where 

so that 

BM = Eio(d2z/dy 2)y=O 

= Eio[(c/2)/(b/2) 2]z1*t 110 

t 110 = [d 2g-/dy* 2 ]y*=O 

BM= H1(w/U) + H2K(w/U) (A-24) 

where the transfer functions H 1 and H 2 are obtained by 
solving Eq. (A-23) for z1* and are defined by 

H _ EI c/2 11 -ikKC(k) ( ) 
i- o(b/2)2to D(k) ¢k 

H = EI c/2 11 - (K/2)k 2 + ikC(k) (k) 
2 o (b/2)2 t o D(k) ¢ 

(A-25) 

where 

D(k) 

Hence, for the one-dimensional gust structure, the 
desired transfer function from the gust to the root bend
ing moment is 

APPENDIX B~DERIVATION OF OUTPUT SPECTRA FOR 

A Two-DIMENSIONAL GusT STRUCTURE 

The General Input-Output Relations 

In analogy with Eq. (A-3), a superposition integral 
for an output, say u(t), of a system subjected to a 

two-dimensional input can be written as 

u(t) = f"' Jb/2 h(t1,y)w[U(t-t1),y]dydt1 (B-1) 
- 00 -(b/2) 
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where the function h(t, y) has been discussed in the 
body of the paper. If now the correlation function 
for u is written in terms of this integral, a time average 

of the type w(x, y) w(x + b.x, y + b.y) occurs on the 
right side of the equation. This function will be de
fined as the two-dimensional correlation function 
fw(b.x, b.y) for the vertical component of the gust 
velocity. 

As mentioned in the body of this paper, by assuming 
the turbulence to be axisymmetric this function can 
be expressed in terms of the one-dimensional correla
tion function as follows: 

(B-2) 

This relation will be assumed to be valid in the follow
ing. 

The correlation function for u can then be written as 
follows: 

if,,,,(T) = J 00 J 00 

Jb
12 

Jb
1\(ti, Yi) h(t2, Y2) X 

- oo - oo - (b/2) -(b/2) 

il'w [V U2( T + !1 - t2) 2 + (y2 - Yi) 2] dy1 dy2 dti dt2 
(B-3) 

By taking the Fourier transform with respect to T of 
both sides of this equation, the equivalent relation for 
the power spectrum of u is obtained, 

J
b/2 Jb/2 

,cp,,(w) = H(w, Y2) [H(w, Yi)]* X 
- (b/2) - (b/2) 

'Pw(w, Y2 - Yi) dy1 dy2 

J
b/2 Jb/2 

= ffi{H(w,y2) [H(w, Yi)]*} X 
- (b/2) - (b/2) 

'Pw(w, Y2 - Yi) dy1 dy2 
(B-4) 

where (R { } designates that the real part is to be taken, 
and where the asterisk designates that the complex 
conjugate of H(w, yi) is to be taken. The functions 
.fpw and H are the Fourier transforms of -./,, w and h, 

1! 00 

(~) <Pw(w, b.y) = :;. _ 
00 

e-iw(t>x/U) -./,,w(b.x, b.y) d U 

and 

Eq. (B-4) represents the input-output relation for a two
dimensional stationary stochastic input to a linear sys
tem. 

For axisymmetric turbulence the two-dimensional 
spectrum 'Pw(w, b.y) can be obtained from the one
dimensional spectrum 'Pw(w) by means of the relation 

I 7/1 r 00 'Pw(w') v w' x 
J [wl w' 2 - w2 

Ji([7J[vw' 2 - w2) dw' (B-5) 

where 7/ = b.y. 
For the correlation function and spectrum of Eqs. 

(A-7) and (A-8) the spectrum ip,v(w, 7J) is 

'Pw(w, 7/) = (w 2L*/1rU) /(7J/L*) [(l + 3k'2) 

(l + k' 2) 312 ]K1 [(7J/L*) Vl + k' 2] -

(7J/L*) 2 [1/(1 + k' 2)]Ko[(7J/L*) Vl + k' 2 ]/ (B-6) 

The double integral of Eq. (B-4) can be reduced to 
a single integral by introducing an autoconvolution 
function of H(w, y), 

J(b/2)-n 

H(w, 7J) = 2 CR { H(w, y) [H(w, y + 7J) ]* dy 
-(b/2) 

(B-7) 

The expression for rp,,(w) then becomes 

rp,,(w) = lb j-J(w, 7J) 'Pw(w, 7J) d7J (B-8) 

An alternative method of evaluation consists in 
using the double Fourier transform of the two-dimen
sional correlation function, 

If the turbulence is axisymmetric, this double Fourier 

transform is a function only of the frequency V wi 2 + w2 2 

-that is, 

where 'Pw can be obtained from 1/lw or 'Pw by means of 
the following relations: 

~ { 
00 b.x Jo (w b.x) X 

1rJo U U 

1/lw(b.x) d ( ~) 

- 3 { 00 drpw(w') X 

7r J lwl dw' 
dw' 

(B-9) 

Vw' 2 - w 2 

- ~ F.P. { { 00 'Pw(w') X 
1r J lwl 

w'dw' } 
(w'2 _ w2)3/2 

where F.P. designates "the finite part of." 
For the correlation function and spectrum given in 

Eqs. (A-7) and (A-8), the function 'Pw(w) is 

'Pw(w) = (w2L*2;u2) (3/1r) [k'2/(1 + k'2)5/2] 

In terms of the spectrum 'Pw and the Fourier trans
form with respect to y of H(w, y)-namely, 

Jb/2 
H(w, w') = e-iw'(y/U)H(w, y) dy 

-(b/2) 
(B-10) 

Eq. (B-4) can be written as 
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- f H(w, w') f 2 ~w(V w2 + w' 2) dw' 1 f"' 
2 - "' 

(B-11) 

which thus constitutes an alternative input-output 
relation. 

In many cases the influence function h(t, y) and, con
sequently, also its Fourier transform H(w, y), have the 
property that they can be written as a product of func
tions depending on time ( or frequency) and space alone 
-that is, 

and 
h(t, y) = h(t) "((y) l 
H(w, y) = H(t) 'Y(Y) f (B-12) 

where H(w) is the Fourier transform of h(t). For this 
case the evaluation of the integral of the input-output 
relation is simplified considerably. For instance, 
Eq. (B-8) now becomes 

'P.-(w) = bf H(w) f 2 .( I'(17) 'Pw(w, 11) d11 (B-13) 

where the function r(17) defined by 

2 J(b/2)-~ 
I'(11) = -b 'Y(Y) 'Y(Y + 11) dy 

-(b/2) 
(B-14) 

is independent of frequency. 
In many cases when h(t, y) and H(w, y) do not have 

forms indicated in Eqs. (B-12), they can be expressed 
as a sum of functions which do have those forms, that 
is 

The manner in which this property can be used to ad
vantage will be indicated in one of the examples that 
follow. 

Spectrum of the Lift Due Directly to Turbulence 

According to the reciprocity theorem of linearized 
lifting surface theory, 11 the lift influence function is 
equal to the lift distribution for unit angle of attack 
in reverse flow. If the wing is unswept, as is the case 
for the calculations described herein, there is no dis
tinction between the lift distributions in direct and re
verse flow. Inasmuch as the distribution of the lift 
on an oscillating unswept wing appears to be substan
tially independent of frequency, as indicated by the 
results calculated in reference 18, the influence function 
for the lift due directly to turbulence will be assumed 
to be expressible in the form indicated in Eq. (B-12), 
specifically, 

where "/L(y) is the section loading coefficient for unit 
angle of attack, (eei/cCL)a=l• 

Hence, the function r(11) becomes 

r(11*) = J~;~* 'YL(y*) 'YL(y* + 11*) dy* 

For instance, if the lift distribution is uniform across 

the sp:m, 'YL = 1, so that 

r(11*) 

Eq. (B-13) then becomes 

2 - 17* (B-16) 

In analogy with the expression for a one-dimensional 
random gust-namely, 

'PLg(w) = [CLaqS/U]2 f <f.,(k)f 2 'Pw(w) 

Eq. (B-17) can be written as 

<p(whu = [CLaqS/ U]2 f <f.,(k) f 2 'Pw.(w) (B-18) 

where 'Pwe(w), an effective spectrum for the vertical 
component of the gust velocity, is defined by 

'PweCw) = ~ I: r(11*) 'Pw(w, 11) d17* 

Using the functions r(11*) and 'Pw(w, 11), defined by 
Eqs. (B-16) and (B-6), respectively, the function 
'Pwe has been calculated and is shown in Fig. 4. From 
this spectrum, or its equivalent obtained with the dis
tribution 'YL appropriate to any given case, the spectrum 
of the lift can then be obtained from Eq. (B-18). 

Spectrum of the Normal Load Factor Increment 

If the spanwise variation of gust intensity is taken 
into account, the term Lu on the right side of Eq. (A-9) 
is the lift discussed in the preceding section. How
ever, the other terms in the equation are independent 
of the nature of the input, so that the transfer function 
in Eq. (A-10) is the same as before. Consequently, 
the power spectrum for b,.n can be written in the same 
way as before, with 'Pw replaced by the function 'Pwe de
fined in the preceding section. The results shown in 
Fig. 6 have been obtained by integrating the spectrum 
for b,.n obtained in this manner. 

Spectrum of the Rolling Acceleration 

The equation of motion of an airplane in roll due to 
sinusoidal vertical gusts can be written as 

(B-19) 

where L'u, the rolling moment due directly to gusts, 
can be written as 

(- CL )qSb 1 JI 
L 'u = P <f,(k) - 'Y L'(y*) w(y*) dy* u 4 -1 

where the rolling moment influence function 'YL' is 
equal to the lift distribution in roll-that is, [ee 1 + 
e(-C1P) la=y*• Hence, the rolling acceleration jJ can 
be expressed in terms of w as follows: 

pb 
2g 

[U 1 ] bf1 

Sg Kr+ [G(k)/ik] q,(k) 2 -1 "/L'(y*) X 

w(y*) dy* 
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so that the influence function relating pb/2g to w has 
the form indicated in Eq. (B-12), with H(w) being the 
function in brackets in the preceding equation, and -y(y) 
being the function 'Y dy *). 

The spectrum of the rolling moment can thus be 
obtained in the manner employed previously for the 
lift, by calculating an "effective" gust spectrum and 
multiplying it by I H(w) I 2. 

In the calculations discussed in this paper, Kr was 
taken as 2,5.75, U = 400 ft. per sec., and S = 1,250 
sq. ft. 

Spectrum for the Root Bending Moment of a Rigid Wing 

If variations of the gust intensity along the span are 
taken into account, Eq. (A-12) becomes 

l CL qS - M 
BM = - 2 U yC(k)z - ·--:,/' yz + 

CL qSb fl 
_a_ ¢(k) 'Yn(y*) w(y*) dy* 

4U -1 
(B-20) 

where 'Yn(y*) is an influence function for the bending 
moment and is, according to the reciprocity theorem, 
the lift distribution ccJcCLa for an angle of attack dis_ 

tribution which is O on the left wing and equal to y* 
on the right wing. As a result of the superposition 
principle, this lift distribution is equal to one-half the 
sum of the lift distribution due to unit symmetrical 
linear twist and the lift distribution due to unit anti
symmetrical linear twist (damping-in-roll condition). 
For the calculations described herein these lift distri
butions, as well as 'YL(y*), were obtained from the re
sults given in reference 17 for a wing of aspect ratio 12, 
taper ratio 1/2. 

Inasmuch as z and z can be expressed in terms of Lu 
by means of the transfer function discussed in connec
tion with the normal load factor increment, the bending 
moment can be expressed in terms of w by means of 
an expression of the form of Eq. (B-15), with 

H1(w) = 
-(1/2) [CL qS/ U] y[C(k)/ik] - (Mw/2)y 
~----a---------~ ~ X 

(K/2) + [C(k)/ik] 
(2U/S) ¢(k) 

(B-21 

'}'1(y) 'YL(y*) 
'Y2(Y) 'Y n(y*) 

The spectrum for ENI may therefore be derived as 
follows. The bending moment may be written as a 
sum of two superposition integrals involving the 
Fourier transforms h1(t) and h2(t) of II1(w) and II2(w), 

Joo J (b/2) 

B M(t) = h1 (t1)rit1 'Y1 (y) w(t - t1, y) dy + 
- oo - (b/2) 

Joo f (b/2) 
h2(t2) dt2 'Y2(Y) w(t - t2, y) dy 

- oo - (b/2) 

Upon forming the correlation function for BM, intro
ducing the assumption of axisymmetry, and calculating 

the Fourier transform of the correlation function, the 
power spectrum for the bending moment is obtained as 

'PB,1I(w) = IHi(w)l 2 'Pw,(w) + 2Cll/H1(w) [H2(w)J*} X 
'Pw,,(w) + I H2(w) I 2 'Pw,,(w) (B-22) 

where CR and the asterisk designate "the real part of" 
and call for the complex conjugate, respectively, as 
before; the spectrum 'Pw/w) has been defined pre
viously, and the other spectra are defined as 

'Pw,,(w) = i fo2 I'1(17*) 'Pw(w, 17) d17* 

'P,cr,(w) = ~ f 2 I'2(11*) 0w(w, 11) d11* 
2 Jo 

where, in turn, 

J~;"* 'YL(y*) '¥ 1 s(y* + 17*) dy* 

J~;"* ['Y' n(y*) '}' 1 B(y* + 17*) + 

(B-23) 

'}' 11 B(y*) 'Y B11 (y* + 17*)] dy* 

where -y' s(y*) and -y" 8 (y*) are, respectively, the sym
metrical and antisymmetrical part of "/B(y*) and, as 
was pointed out previously, are equal to one-half of 
the lift distributions cci/cCLa for a unit linear sym
metric twist and unit linear antisymmetric twist, 
respectively. 

The contribution of the antisymmetric part of 'Yn 
to r 2 and, hence, to the spectrum for the bending mo
ment stems basically from the asymmetry of the in
stantaneous distribution of gust intensity over the 
span. This asymmetry gives rise to a rolling moment 
and, hence, to rolling motions, which were considered 
in the preceding section of this Appendix, and which 
contribute additional bending moments due to the aero
dynamic and inertia loads associated with these motions. 
If, for the purpose of calculating the bending moment 
due to symmetrical flight through turbulent air, these 
motions are disregarded, the contribution of -y" B to 
r 2 should be disregarded as well, so that the second 
part of the expression for r 2 is generally spurious and 
should be ignored. As pointed out in reference 10, the 
net bending moment due to the symmetrical part of the 
instantaneous gust distributions and the resulting ver
tical motions and the net bending moment due to the 
antisymmetrical part and the resulting rolling motions 
are statistically independent, so that their power 
spectra can be added directly to obtain the total net 
bending moment · due to atmospheric turbulence and 
the resulting airplane motions. 

Inasmuch as 

- r1(y*) cly* 1 i2 y 
2 0 b/2 

and 
1 2 ( - )2 _.: i r (y*) dy* = _y__ 
9 2 b/9 _,. 0 .:..., 

the functions ,p,,e(w), 'Pw,,(w) and 'Pwe,(w) reduce, respec

tively, to ,p,,,(w), [y/(b/2) ].:Pw(w), and [y/(b/2) ]2 'Pw(w), 
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as the ratio of the span to the scale of turbulence ap
proaches 0. Consequently, by introducing these 
values and the definitions of H1(w) and H2(w) given in 
Eq. (B-21) into Eq. (B-22), the value of r.p 8 ,w(w) given 
there can readily be shown to reduce the one obtain
able directly from Eq. (A-12) when the span ratio ap
proaches 0. 

Spectrum for the Root Bending Moment of a Flexible Wing 

The technique of the preceding section can readily 
be adapted to the flexible wing. The two functions 
H 1(w) and H2(w) defined in Eq. (A-25) can now be used 
directly, provided that the functions 'Yi(y) and 'Y2(y) 
are defined as 

where 'Y,(y*) is an influence function for L" ,, and ac
cording to the reciprocity theorem is equal to the lift 
distribution cci/cCLa due to an angle of attack dis

tribution equal to t-that is, the lift distribution used 
previously in defining K and K' in eq. (A-20). 

Eqs. (B-22) and (B-23) can thus be used directly for 
the flexible-wing case provided r 1 and r 2 are redefined 
as 

l f 1-~* ( *) ( * + *) d * 
u2b2 -1 'YL Y 'Yr Y YJ Y 

l f 1-~* 
I'2(YJ*) = u2b2 -1 'Y,(y*) 'Y,(y* + YJ*) dy* 

and provided 'Pwe(w) is now divided by U2b2• The 
power spectrum for the bending moment obtained in 
this manner can, again, be shown to reduce to the one 
obtainable from Eq. (A-24) when the span ratio ap
proaches zero. 

For the flexible-wing calculations discussed in this 
paper the following quantities were used: 

K = 175 
Eio = 22 X 108 lb. ft. 2 

b = 125 ft. 
c = 10 ft. 

The wing mass was assumed to be distributed along 
the span in the following manner, regardless of how 
much of the airplane mass was in the wing: 

Mw 
b 

1.6 

• 6 

0 1 
Y* 

The mode shape, in particular the constant a in Eq. 
(A-21), was permitted to vary with the mass ratio 
Mw/ M in such a way as to satisfy the orthogonality 
condition. Consequently, the frequency w0 and the 

generalized-mass parameter K 1 varied with this ratio. 
For a value of this ratio of 0.2i5 the following values were 
used: 

Wo 15.4 a - 0.147 8.7:3 
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