ACCGE-20 ABSTRACT

Growth of InSb and InI crystals on earth and in microgravity

A. G. Ostrogorsky^a, A. Churilov^b, M.P. Volz^c, V. Riabov^a, and L. Van den Berg^d

^aIllinois Institute of Technology, Chicago, IL 60616, USA ^bRadiation Monitoring Devices, Watertown. MA 02472, USA ^cNASA, Marshall Space Flight Center, EM31, Huntsville, AL 35812, USA ^dConstellation Technology Corporation, Largo, FL 33777, USA

Abstract

During the past 40 years, dozens of semiconductor crystal growth experiments have been conducted in space laboratories. The subsequent analysis of the space-grown crystals revealed (i) that weak convection existed in virtually all melt-growth experiments, (ii) dewetting significantly reduced the level of stress-induced defects, and (iii) particularly encouraging results were obtained in vapor-growth experiments. In 2002, following a decade of ground based research in growing doped Ge and GaSb crystals, a series of crystal growth experiments was performed at the ISS, within the SUBSA (Solidification Using a Baffle in Sealed Ampoules) investigation. Te- and Zn-doped InSb crystals were grown from the melt. The specially designed furnace provided a side-view of the melt and precise seeding measurement of the growth rate. At present, under sponsorship of CASIS (Center for the Advancement of Science in Space, www.iss-casis.org), we are conducting ground-based experiments with indium mono-iodide (InI) in preparation for the "SUBSA II" ISS investigation, planned for 2017. The experiments include: i) Horizontal Bridgman (HB) growth and ii) Vapor Transport (VT) growth. Finite element modeling will also be conducted, to optimize the design of the flight ampoules, for vapor and melt growth.