
20th American Conference on Crystal Growth and Epitaxy (ACCGE-20)

Determination of the Contact Angle Based on the Casimir Effect
Konstantin Mazuruk, UAH  and  Martin P. Volz, MSFC/NASA

August 2-7, 2015 Big Sky, Montana, USA  

research motivation• we propose to investigate a slope correction to the Casimir force that governs the contact angle 
value.  For our microgravity project on detached Bridgman crystal growth, this is the angle that is 
formed between the Germanium melt and the crucible (BN or quartz).  

• better understanding of the microscopic picture near the contact lines is necessary to develop more 
accurate models of detached Bridgman solidification and other growth technologies.

• microscopic theoretical approach to the meniscus shape is required for detached Bridgman growth 
as the gap width between the growing crystal and the crucible wall is typically in the range of several 
micrometers. This is the range of the Casimir forces. Therefore, a macroscopic theory of menisci for 
such small distances is questionable.
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On a macroscopic scale, a nonreactive liquid partially covering a 
homogeneous solid surface will intersect the solid at an angle called 
the contact angle. For molten metals and semiconductors, the contact 
angle is materially dependent upon both the solid and liquid and 
typical values fall in the range 80-1700, depending on the crucible 
material. On a microscopic scale, there does not exist a precise and 
sharp contact angle but rather the liquid and solid surfaces merge 
smoothly and continuously. Consider the example of the so called 
detached Bridgman crystal growth process. In this technique, a small 
gap is formed between the growing crystal and the crucible. At the 
crystal/melt interface, a meniscus ring is formed. Its width can be in the 
range of a few micrometers, approaching a microscopic scale. It then 
becomes questionable to describe the shape of this meniscus by the 
contact angle. A more advanced treatment of the interface is needed 
and here we propose such a refined model. The interaction of the 
liquid surface with the solid can be calculated by considering two 
forces: a short-range repulsive force and a longer range (up to a few 
micrometers) Casimir or van der Waals force. 

microscopic meniscus shape

Equating  the two forces:  the disjoining pressure and the capillary force due to the 
curvature of the surface, we obtain the Laplace equation for the microscopic meniscus 
shape 
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role of zero-point energy
The "physical vacuum" consists primarily of quantum fluctuations of electromagnetic fields.  The 
average energy density of these fluctuations is enormous, and usually it is referred to as the zero-
point energy, signifying its existence at zero temperature. One of the effects of these fluctuations is 
the so called van der Waals or Casimir attraction between the macroscopic bodies.  The theory of this 
effect between the two flat bodies has been developed by Lifshitz in 1956 and an elegant formalism 
based on photon Green functions has been given by  Dzyaloshinskii, Lifshitz, and Pitaevskii.  This 
theory provides the value for the disjoining pressure. The disjoining pressure is the force normal to 
the unit surface element, derived from the Maxwell electromagnetic stress tensor.  Below is displayed 
a set of equations to be solved:
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The disjoining pressure is the normal to the unit surface force coming from the Maxwell stress tensor  T 
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For flat collinear surfaces,  Txx=Txy=Tyx=0. Such an approximation leads to the formula        
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Here  AH is the Hamaker constant.  This formula yields the following equation for the contact angle
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This formula yields a slightly smaller angle than the contact angle a proposed by Derjaguin :  
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A second model.  A Casimir force for the wedge geometry could provides its required angular 
dependence [5]:
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This formula is valid for two perfect conductors and defines the Casimir force (retardation limit).  No 
similar formula exists for the van der Waals force (non-retardation limit, small gaps), which would be 
more appropriate. The other disadvantage is that the higher order derivatives of the surface shape 
are neglected. The numerical solution of the meniscus shape for this approximation follows closely 
the Derjaguin's solution, and only for large angles, > 450, is shows a small difference.  

Below, we display two menisci derived for the same Hamaker constant.  The distance is scaled by the 
microscopic gap between the melt and solid.  For consistency, the wedge approximation was 
compared with  Derjaguin’s formula with a Casimir force factor of 4: 

z

0 1 2 3 4

h2, h

0

1

2

3

4

Derjaguin’s approximation

Derjaguin’s
approximation

wedge approximation 

Zero-order approximation

 
4

6

H
yy

A
T

h z
 

The slope correction for the contact angle is small for small angles.  For larger angles, the slope 
correction has to be taken into account.  Therefore, the macroscopic concept of balancing forces as 
applied to the interface intersections is not accurate, and a microscopic picture should be 
implemented. The available models of Casimir force that can be implemented for the discussed issue, 
are not well justified.  An accurate numerical evaluation of the van der Waals force is needed at this 
point to reach more conclusive results.  The presented idea can further be extended to include effects 
of electrostatic fields, or other forces.  In the forthcoming paper, a more elaborate evaluation of the 
shape effect on the Casimir pressure will be presented. The discussed here idea can also be used to 
study capillary surface waves, close to the contact line, induced  by fluctuating electromagnetic fields. 
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The basic model of the contact angle is due to Derjaguin and 
Frumkin (1938) [2].  It relies on the concept of the disjoining pressure 
(Derjaguin, 1936).  Below, we will outline this theory.  The Fig.(1) 
depicts the drop of fluid on the surface for a semi-wetting case.  
When the gap between the drop and the solid is large, the disjoining 
pressure is zero, and the horizontal surface tension is .  At the drop 
positioned on the solid as depicted in Fig.1, the horizontal surface 
tension is scosa. The difference is due to the potential energy 
difference, which can be expressed through the disjoint pressure P as
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