ACCGE-20 OMVPE-17

August 2-7, 2015

Big Sky, Montana, USA

CHARACTERIZATION OF CdZnTe SINGLE CRYSTALS GROWN UNDER DIFFERENT CADMIUM OVERPRESSURES

Ouloide Yannick Goue¹, Balaji Raghothomachar¹, Michael Dudley¹, Ching Hua Su²

1. Materials Science and Engineering Dpt, Stony Brook University, NY 11794-2275 USA

2. NASA/Marshall space flight center, Huntsville, Al 35812 USA

OUTLINE

Motivation

Formation of Te inclusions/precipitate

Crystal Growth of CdZnTe

Synchrotron X-ray Topography Technique

Correlation between synchrotron white beam X-ray topography (SXRT) and transmission infrared microscopy

Effect of Cd reservoir temperature on Te inclusion density

Summary

MOTIVATION

CdZnTe has gradually become a choice material for radiation detectors due to its:

Direct wide band gap (1.5-2.3 eV) \Rightarrow High bulk resistivity

 \Box Large cross-section \Rightarrow Good photoelectric absorption

□High energy resolution comparable to high quality Ge (0.5% at 662 keV) and high spatial resolution (~µm) for imaging

 \square Ability to operate at room temperature \Rightarrow no cooling required

Current CdZnTe Applications include

National security (nuclear waste management, nonproliferation of nuclear materials,...)

Medical imaging (PET and CT scanners, medical probes,...)

Basic science (astrophysics, γ-spectrometer, synchrotron X-ray research,...)

Industrial imaging (X-ray and γ -ray cameras,...)

Electro-optic modulators and laser windows

Comparison of CdZnTe with detector materials

Average atomic	CdZnTe	Ge	Si
#	49.1	32	14
Density (g/cm3)	5.78	5.32	2.33
Resistivity (W-cm)	1010	47	2.3 x 10 ⁵

bone densitometer

http://www.megamedicals.com/mm-x010-bone-densitometry.htm

Miniaturized probe for radioguided surgery

http://precise-healthcare.com/CrystalPhotonics.aspx

FORMATION OF Te INCLUSION/PRECIPITATES

•Te precipitates (~nm order) form from the retrograde solid solubility effect in CdZnTe during rapid cooling from high temperature, whereas Te inclusions (~ µm order) result from trapping of the excess Te at growth interface because of fluctuation in growth conditions (e.g. temperature, pressure)

- •These secondary phases (Te inclusions/precipitates) reduce infrared transmission and also affect detector performance (e.g. by reducing carrier lifetime)
- ⇒ How to inhibit/prevent the formation of these secondary phase Te particles???
- ⇒⇒ A proposed solution is to use saturated Cd vapor pressure!!!

(Cd_{1-x}Zn_x)_{1-y}Te_y

Partial pressures of Te₂ (left) and Cd (right) for four samples of $Cd_{0.8}Zn_{0.2}$ Te with different Te contents have been measured [1].

One implication from the partial pressure measurements is that the partial pressures of Te_2 and Cd over the melt at growth temperature (1150°C) differ by 3 orders of magnitude. Therefore, an initially stoichiometric sample will be Te-rich during growth because more Cd is lost to the free volume. A Cd reservoir of 818°C will provide the Cd in the vapor phase and maintain the melt at stoichiometry.

[1] Ching-Hua Su and S. L. Lehoczky, "Melt growth of high-resistivity CdZnTe crystals by controlling Cd over-pressures", J. Crystal Growth Vol. 319, 4-7 (2011).

The homogeneity range of $Cd_{0.8}Zn_{0.2}$ Te solid solution determined from partial pressure measurements. Solid squares are the solubility limits at Te-saturated condition. The maximum limit is less than 0.50016. There are no data points on the Cd-rich region and dotted line is arbitrarily drew.

The thermal profile and the initial ampoule position for a typical crystal growth by vertical directional solidification with controlled Cd overpressure.

CRYSTAL GROWTH OF CDZNTE

CdZnTe boules were grown by vertical directional solidification method, and subjected to different Cd

Sample	Start material	T (°C) Cd reservoir	Growth time (hr)	Sample cooling time (hr)	Cd reservoir cooling rate during growth
2G-30	Batch #2	785	120	144	80°C in last 60 hr
2G-31	Batch #2	800	125	96	65°C in last 60 hr, quenching sample when at 480°C
2G-34	Batch #7 (no In dopant)	840-845	125 (1.2 mm/hr)	96	60°C in 60 hr
2G-36	Batch #8	785			
2G-38	Batch #9	810	125 (1.2 mm/hr)	96	60°C in 75 hr

http://alineason.com/index.php/en/kno whow/crystal-growth

SYNCHROTRON X-RAY TOPOGRAPHY (SXRT)

ANKA

Synchrotron

Advanced Photon

CHESS

Storage rin

Booster

ring

ARGONNE NATIONAL LABORATORY

NATIONAL SYNCHROTRON LIGHT SOURCE

High Energy Synchrotron Source

Source

ESRF

> home

CONTRAST FORMATION MECHANISM

beam divergence

Orientation contrast

Origin: misorientation leads to either the absence of diffracted beam or the overlapping/separation of diffracted beams, thus creating contrast.

Extinction contrast

beam divergence

Direct image($\mu t < 1$ -2): waves diffracted from distorted region kinematically does not undergo primary extinction, thus having higher intensities than the waves from perfect regions.

Intermediary image($\mu t \sim 2-4$): new wavefields created at defect surface interference with original propagating wavefield creating fringe type contrast.

Dynamic image($\mu t > 5$): under high absorption condition, a small amount of deviation from the exact Bragg's condition will result in waves from branch 1 suffering much more absorption, leading to a white contrast.

CORRELATION BETWEEN SYNCHROTRON WHITE BEAM X-RAY TOPOGRAPHY AND INFRARED MICROSCOPY

Pictures of a 38mm diameter grown crystal: (a) as-grown crystal slid inside ampoule (b) twins were observed at the tip shoulder (c) two grains were nucleated at the tip (d) two grains on a cutting surface with the major gain covers about 70% of the area.

X-ray topography

- Sample CZT-36/1 was cut from CZT-36
- Reflection SXRT shows sample consists of two grain of relatively high crystallinity
- Network of subgrain boundaries and dislocation dominate the microstructure of the sample
- No precipitates are resolved on the topographs
- No slip bands or twins observed
- Relative lattice distortion near certain region along periphery most likely due to contact with ampoule walls

IR Microscopy

Left: Transmission infrared micrograph of CZT-36/1 showing crack, and a bed of Te inclusions inside a boundary

Right: Magnified I.R image of a section of Te filled boundary

Sample 2G-30 @ 785°C

Sample 2G-31 @ 800°C

Sample 2G-34 @ 840-845°C

For each sample, left image is reflection SXRT of the whole sample, and right image is I.R micrograph of the sample

- Reflection SXRT reveals network of subgrain boundaries dominate the microstructure of samples
- Presence of inhomogeneous strain near edge of the samples
- G₁ in sample 2G-30 display the largest amount of strain
- I.R shows samples contains microcrack, which is can also cause the lattice distortion observed in the SXRT images

Sample 2G-36 @ 785°C

Transmission SXRT

Reflection SXRT

Sample 2G-38 @ 810°C

Sample 2G-36

- Both transmission and reflection indicate a single crystal, with a network of subgrain boundaries
- Lattice distortion near edges of sample due to inhomogeneous strain
- I.R shows uniform distribution of Te inclusions smaller the $20\mu m$

Sample 2G-38

- Reflection SXRT shows a highly distorted image due to large inhomogeneous strain
- I.R reveals the presence of microcrack, which also contributes to the lattice distortion observed in the SXRT images

Enlarged I.R images showing size and shape of Te inclusions

Sample 2G-30 @ 785°C

Sample 2G-34 @ 840-845°C

Sample 2G-31 @ 800°C

Sample 2G-38 @ 810°C

EFFECT OF Cd RESERVOIR TEMPERATURE ON Te INCLUSIONS

747°C

754°C

800°C

825°C

843°C

865°C

Lowest amount of precipitates were obtained with Cd reservoir temperature at 815<u>+</u>15°C (comparing to 818°C predicted by partial pressure data for stoichiometric melt)

SUMMARY OF RESULTS

Sample #	Cd reservoir (°C)	Cd reservoir cooling rate	Twinning	Strain	Comments
2G-30	785	80°C in last 60hr	none	Severe lattice distortion near the edges, particularly in G ₁	Consists of 2 grains, with G1 showing a cellular microstructure and lattice distortion toward the edge
2G-31	800	65°C in last 60hr, quenching sample when sample at 480°C	none	Relatively small strain in main grain, with several highly distorted small grains	Single grain dominated by subgrain boundaries, and high density of dislocations.
2G-34	840-845	60°C in 60hr	none	Large distortion	Single grain, with relatively low strain dominated by subgrain boundaries and dislocation
2G-36	785		none	Very small strain near the edge	Single grain of good crystalline quality subgrain boundaries and low density of dislocation
2G-38	810	60°C in 75hr	none	Severe distortion due to large inhomogeneous strain	Single grain dominated by large inhomogeneous strain

ACKNOWLEDGMENT

- NASA/Marshall Space Flight Center for support and providing samples
- SWBXT work was carried out at Stony Brook Topography Facility (Beamline X19C) at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory (BNL) and 1-BM at Advanced Photon Source (APS), Argonne National Laboratory
- Anwar Hossain (BNL) for helping with the infrared microscopy measurements