

NASA/FAA/ONERA Swept-Wing Icing and Aerodynamics

Summary of Research and Current Status

Andy Broeren NASA Glenn Research Center

SAE Icing Conference

Prague, Czech Republic

June 22-25, 2015

Acknowledgements

Sponsor Organizations:

- NASA
- FAA
- ONERA

Supporting Organizations:

- Boeing
- University of Illinois
- University of Virginia
- University of Washington

Outline

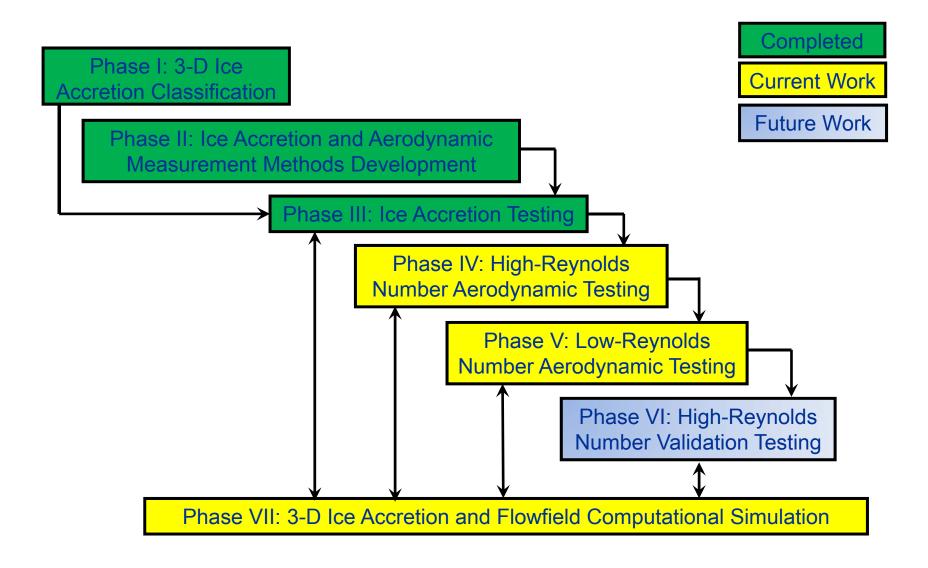
- Introduction
- Goals and Objectives
- Research Roadmap
- **Description of Research Phases**
- Summary
- Advertisement
- References

Introduction

- Development and use of 3D icing simulation tools.
- Lack of ice accretion and aerodynamic data for largescale, swept wing geometries.
- Aerodynamic understanding important for evaluating efficacy of 3D icing simulation tools.
- Multi-phase research effort.

Goal and Objectives

Overall Goal


Improve experimental and computational simulation.

Objectives

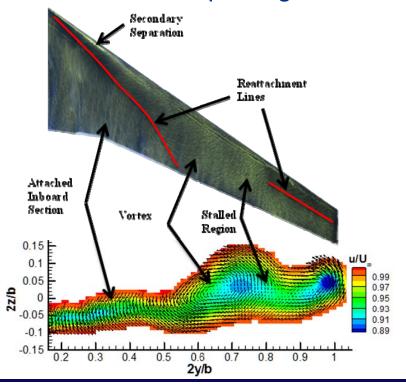
- Generate a database of 3D ice-accretion geometry.
- Generate a database of iced-wing aerodynamic effects.
- Quantify ice-shape geometric fidelity requirements.

Research Roadmap

Phase I: Ice-Shape Classification

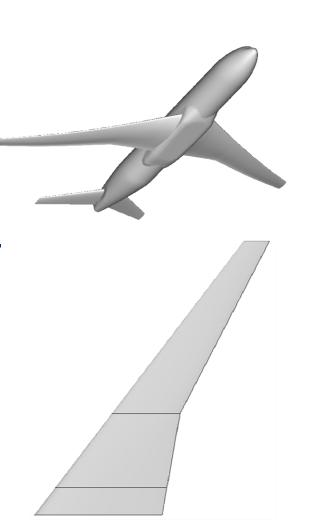
Define ice shapes based on their aerodynamic characteristics.

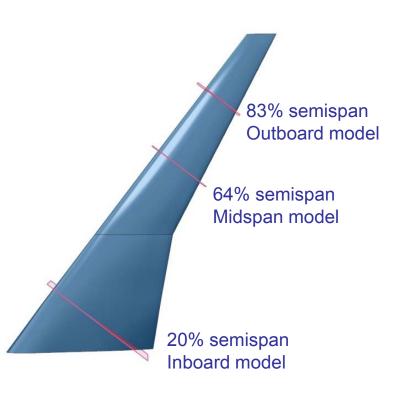
- Roughness
- Streamwise ice
- Horn ice
- Spanwise-ridge ice



Phase II: Measurement Methods Development

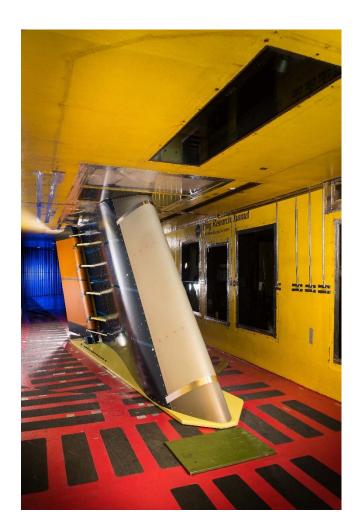
- Common Research Model selected as the baseline, full-scale, reference geometry for the swept-wing configuration.
- Applied and validated existing 3D laser scanning methods to measure highly 3D ice accretion.
- Applied existing 3D wake survey methods to iced swept wings.




Common Research Model (CRM)

- Commercial transport class configuration.
- Contemporary transonic supercritical wing design.
- Publically available and otherwise unrestricted for world-wide distribution.
- A 65% scale CRM was selected as the full-scale, reference swept-wing geometry for this research.
- CRM65 size airplane is comparable to Boeing 757.

- Three spanwise stations selected for IRT testing.
- Required hybrid model design—see oral presentation by Gustavo Fujiwara.
- Related presentations:
 - oral presentation by Emmanuel Radenac
 - SAE paper 2015-01-2122by Eric Loth
- A two-week IRT test campaign was completed for each model.



Models Description

- Full-scale leading edge, truncated afterbody.
- Streamwise pressure taps located at three spanwise stations.
- Single-element, slotted flap with antiicing heater.
- Two removable leading edges
 - Pressure instrumentation
 - Icing

Model Section	Streamwise Chord Length (ft)	Model Scale Factor
Inboard	13.5	2.25
Midspan	6.3	2.0
Outboard	6.2	1.5

Icing Test Matrix Development

- Generate range of ice accretion (Phase I).
- Hold and descent for CRM65 airplane in App. C.
- Large range of temperatures, limited variations in MVD and LWC.
- Large model size limited maximum speed in IRT.
 - Conditions were scaled to IRT test speed (130 knots for most cases).
 - See oral presentation by Paul Tsao.

Baseline Flight Reference Conditions

Case	AoA deg.	TAS Knots	Total Temp deg. C	Static Temp deg. C	MVD µm	LWC g/m ³	Exp. Time min.
33	3.3	230	-18.4 to 1.1	-25.0 to -6.0	20	0.17 to 0.55	45
41	4.4	220	-6.0 to 1.1	-10.0 to -3.0	20	0.51	45
52	2.1	260	-4.1	-13.0	20	0.36	4

Inboard Model—Effect of Temperature

Run	AoA deg.	TAS Knots	Total Temp deg. C	Static Temp deg. C	MVD µm	LWC g/m³	Exp. Time min.
TG2410	3.7	130	-3.8	-6.0	25	1.0	29
TG2402	3.7	130	-8.7	-11.0	25	1.0	29
TG2415	3.7	130	-23.8	-25.0	25	1.0	29

Identical Condition Run on Each Model

Run	AoA deg.	TAS Knots	Total Temp deg. C	Static Temp deg. C	MVD µm	LWC g/m ³	Exp. Time min.
TG2411	3.7	130	-6.3	-8.5	25	1.0	29
TH2450	3.7	130	-6.3	-8.5	25	1.0	29
TI2461	3.7	130	-6.3	-8.5	25	1.0	29

Time lapse video—Midspan Model

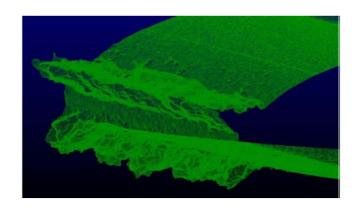
Run	AoA deg.	TAS Knots	Total Temp deg. C	Static Temp deg. C	MVD µm	LWC g/m³	Exp. Time min.
TG2450	3.7	130	-6.3	-8.5	25	1.0	29

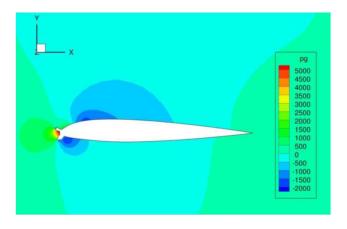
Phase IV: High-Re Aerodynamic Testing

- Build and test 13.3% scale model of the CRM65 in ONERA F1 pressurized wind tunnel.
- Range of Reynolds and Mach numbers up to $Re = 12 \times 10^6$ and M = 0.3.
- Design and build full-span artificial ice shapes from the IRT tests of the 20%, 64% and 83% semispan stations of the CRM65 wing—see oral presentation by Sam Lee.
- Vary the geometric fidelity and quantify aerodynamics.

Phase V: Low-Re Aerodynamic Testing

- Initial test campaign completed in August 2014—see oral presentation by Brian Woodard.
- 8.9% scale CRM65 was built for the Wichita State University 7 ft. x 10 ft. size wind tunnel.
- Aerodynamic performance and 3D wake surveys up to $Re = 2.4 \times 10^6$ and M = 0.27.
- Scale models of the artificial ice shapes used in the ONERA F1 tests.
- Quantify the differences between low and high-Re results.
- Investigate sensitivity to ice features.


Phase VI: High-Re Validation Testing


- Identify critical ice shape configurations from Phase V.
- Build and test these configurations in ONERA F1 pressurized wind tunnel.
- Range of Reynolds and Mach numbers up to Re = 12×10^6 and M = 0.3.
- Quantify the differences in aerodynamic performance and key flowfield features between the low and high-Reynolds number tests.

Phase VII: Computational Simulation

- Identify critical elements for accurate iceshape predictions and iced swept wing aerodynamics.
- NASA will investigate methods for smoothing and gridding of ice-accretion geometry from the 3D scan data of the IRT ice accretion leading to computational flow simulations
- ONERA will investigate the use of the "Immersed Boundary Conditions" (IBC) method in order to take the exact ice shape into account without having to mesh it explicitly.
- Conducted in parallel with the other tasks throughout the project.

Summary

NASA, FAA and ONERA are sponsoring a research effort dedicated to improving computational and experimental simulation methods for swept-wing icing. The anticipated research products are:

- Database of swept-wing ice accretion geometry
- Database of high-Reynolds number aerodynamic data for sweptwing ice accretion.
- An understanding of the geometric fidelity required for accurate aerodynamic simulation of swept-wing ice accretion.
- Hybrid-model design methods for conducting icing-tunnel tests of large-scale swept wings.
- A validated low-cost, low-Reynolds number test capability for evaluation of performance characteristics and aerodynamics of iced-swept-wing geometries.
- Improved methods for quantifying ice accretion geometry and developing high-fidelity artificial ice shapes.

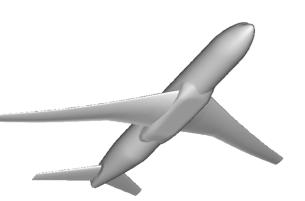
Advertisement

Stay tuned in the next two sessions:

NASA/FA	NASA/FAA/ONERA Swept-wing Icing & Aerodynamics—Part 1 of 2					
Oral Only	NASA/FAA/ONERA Swept-Wing Icing and Aerodynamics: Summary of Research and Current Status	Andy Broeren				
Oral Only	Design of Wind Tunnel Models for Full-Scale Swept-Wing Ice Accretion	Gustavo Fujiwara				
SAE Paper 2015-01-2122						
NASA/FA	NASA/FAA/ONERA Swept-wing Icing & Aerodynamics—Part 2 of 2					
Oral Only	Method to Generate Full-Span Ice Shape on Swept Wing Using Icing Tunnel Data	Sam Lee				
Oral Only	Initial Low-Reynolds Number Iced Aerodynamic Performance for CRM Wing	Brian Woodard				
Oral Only	3D Modeling of Ice Accretion with Application to Swept Wing Test-Cases	Emmanuel Radenac				
Oral Only	Velocity Effect on Swept-Wing Ice Accretion for Scaling Consideration	Paul Tsao				

References 2012-2013

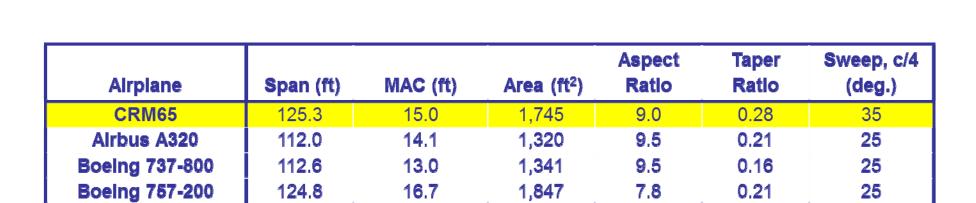
- Diebold, J.M., Monastero, M.C., and Bragg, M.B., "Aerodynamics of a Swept-Wing with Ice Accretion at Low Reynolds Number," AIAA Paper 2012-2795, June 2012.
- 2. Lee, S., Broeren, A.P., Addy, H.E., Jr., Sills, R., and Pifer, E.M., "Development of 3-D Ice Accretion Measurement Method," AIAA Paper 2012-2938, June 2012, also NASA TM—2012-217702, Sept. 2012.
- Diebold, J.M., "Aerodynamics of a Swept Wing with Leading-Edge Ice at Low-Reynolds Number," M.S. Thesis, Dept. of Aerospace Eng., Univ. of Illinois, Urbana, IL, Aug. 2012.
- Mortonson, A.J., "Use of Hybrid Airfoil Design in Icing Wind Tunnel Tests of Large Scale Swept Wings," M.S. Thesis, Dept. of Aerospace Eng., Univ. of Illinois, Urbana, IL, 2011.
- Diebold, J.M., and Bragg, M.B., "Study of a Swept-Wing with Leading-Edge Ice Using a Wake Survey Technique," AIAA Paper 2013-0245, Jan. 2013.
- Broeren, A.P., Diebold, J.M., and Bragg, M.B., "Aerodynamic Classification of Swept-Wing Ice Accretion," NASA TM 2013-216381, DOT/FAA/TC-13/21, May 2013.
- Broeren, A.P., Potapczuk, M.G., Riley, J.T., Villiedieu, P., Moens, F., Bragg, M.B., "Swept-Wing Ice Accretion Characterization and Aerodynamics," AIAA Paper 2013-2824, June 2013, also NASA TM—2013-216555, Sept. 2013.
- Broeren, A.P., Diebold, J.M., and Bragg, M.B., "Aerodynamic Classification of Swept-Wing Ice Accretion," AIAA Paper 2013-2825, June 2013.
- Fujiwara, G.E.C., Woodard, B.S., Wiberg, B.D., Mortonson, A.J., Bragg, M.B., "A Hybrid Airfoil Design Method for Icing Wind Tunnel Tests," AIAA Paper 2013-2826, June 2013.
- 10. Wiberg, B.D., "Large-Scale, Swept-Wing Ice Accretion Modeling in the NASA Glenn Icing Research Tunnel Using LEWICE3D, M.S. Thesis, Dept. of Aerospace Eng., Univ. of Illinois, Urbana, IL, 2013.
- 11. Monastero, M.C., "Validation of 3-D Ice Accretion Documentation and Replication Method Including Pressure-Sensitive Paint," M.S. Thesis, Dept. of Aerospace Eng., Univ. of Illinois, Urbana, IL, 2013.


References 2014-2015

- 12. Moens, F., Costes, M., Terracol, M., Radenac, E., Trontin, P., and Villedieu, P., "Rapport D'advancement du Projet SUNSET 2 en 2013," ONERA Rapport Final N° RF 1/21372 DMEA/DAAP/DSNA, Mars 2014.
- 13. Lee, S., Broeren, A.P., Kreeger, R.E., Potapczuk, M.G., and Utt, L., "Implementation and Validation of 3-D Ice Accretion Measurement Methodology," AIAA Paper 2014-2613, June 2014.
- 14. Broeren, A.P., Lee, S.L., Addy, H.E., Jr., and Monastero, M.C., "Validation of 3-D Ice Accretion Measurement Methodology for Experimental Aerodynamic Simulation," AIAA Paper 2014-2614, June 2014.
- 15. Monastero, M.C., and Bragg, M.B., "Validation of 3-D Ice Accretion Measurement Methodology Using Pressure-Sensitive Paint," AIAA Paper 2014-2615, June 2014.
- 16. Fujiwara, G.E.C., Wiberg, B.D., Woodard, B.S., and Bragg, M.B., "3D Swept Hybrid Wing Design Methods for Icing Wind Tunnel Tests," AIAA Paper 2104-2616, June 2014.
- 17. Wiberg, B.D., Fujiwara, G.E.C., Woodard, B.S., and Bragg, M.B., "Large-Scale, Swept-Wing Icing Simulations in the NASA Glenn Icing Research Tunnel Using LEWICE3D," AIAA Paper 2014-2617, June 2014.
- 18. Jun, G., Oliden, D., Potapczuk, M.G., and Tsao, J-C., "Computational Aerodynamic Analysis of Three-Dimensional Ice Shapes on a NACA 23012 Airfoil, AIAA Paper 2104-2202, June 2014.
- 19. Fujiwara, G.E.C., "Design of 3D Swept Wing Hybrid Models for Icing Wind Tunnel Tests," M.S. Thesis, Dept. of Aerospace Eng., Univ. of Illinois, Urbana, IL, 2014.
- 20. Diebold, J.M., Woodard, B.S., Monastero, M.C., and Bragg, M.B., "Experimental Study of Splitter Plates for Use with Semispan Wing Models," AIAA Paper 2015-1227, Jan. 2015.
- 21. Costes, M., Terracol, M., Michel, B., Radenac, E., Gaible, H., and Bezard, H., "Rapport D'advancement du Projet SUNSET 2 en 2014," ONERA Rapport Final N° RF 1/22549 DMEA/DAAP/DSNA, Avil 2015.

Baseline Swept-Wing Model Selection

- Common Research Model (CRM).
- Commercial transport class configuration.
- Contemporary transonic supercritical wing design.
- Publically available and otherwise unrestricted for world-wide distribution.



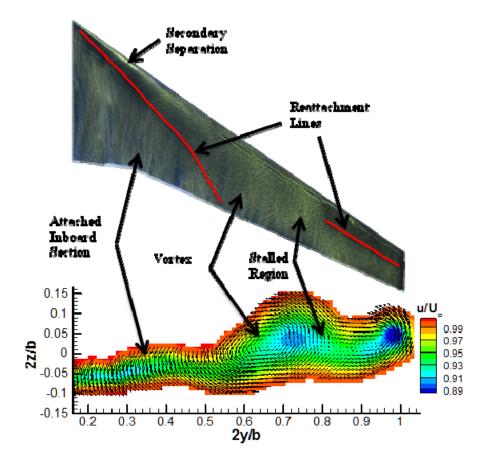
				Aspect	Taper	Sweep, c/4
Airpiane	Span (ft)	MAC (ft)	Area (ft²)	Ratio	Ratio	(deg.)
CRM	192.8	23.0	4,130	9.0	0.28	35
Airbus A330-200/300	198.0	23.9	3,892	9.5	0.22	30
Boeing 777-200	199.9	26.5	4,389	8.7	0.27	31
Boeing 787-9	197.0	20.6	3,880	9.6	0.18	32
Boeing 747-400	211.4	29.8	5,417	7.7	0.28	37

Reference: Vassberg, J.C., DeHann, M.A., Rivers, S.M., and Wahls, R.A., "Development of a Common Research Model for Applied CFD Validation Studies," AIAA Paper 2008-6919, Aug. 2008.

 A 65% scale CRM was selected as the full-scale, reference swept-wing geometry for this research

3D Ice Accretion Measurement

- Requirement for ice accretion database and for artificial ice shapes used in aerodynamic testing.
- Commercial, laser-based scanning system adapted for ice accretion measurement.
- Research and validation efforts have been completed.



3D Aerodynamic Measurement Methods

- 3D wake survey method applied to ice swept wing.
- Understand origin of ice-wing performance degradation.
- Development and validation of computational simulation tools.

