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Introduction

• Development and use of 3D 
icing simulation tools.

• Lack of ice accretion and 
aerodynamic data for large-
scale, swept wing 
geometries.

• Aerodynamic understanding 
important for evaluating 
efficacy of 3D icing 
simulation tools.

• Multi-phase research effort.
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Goal and Objectives

Overall Goal
• Improve experimental and computational simulation.

Objectives
• Generate a database of 3D ice-accretion geometry. 
• Generate a database of iced-wing aerodynamic effects. 
• Quantify ice-shape geometric fidelity requirements.
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Research Roadmap

Phase I: 3-D Ice 
Accretion Classification

Phase II: Ice Accretion and Aerodynamic 
Measurement Methods Development

Phase III: Ice Accretion Testing

Phase IV: High-Reynolds 
Number Aerodynamic Testing

Phase V: Low-Reynolds 
Number Aerodynamic Testing

Phase VI: High-Reynolds 
Number Validation Testing

Phase VII: 3-D Ice Accretion and Flowfield Computational Simulation

Completed

Current Work

Future Work
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Phase I: Ice-Shape Classification

Define ice shapes based on their aerodynamic 
characteristics.
• Roughness
• Streamwise ice
• Horn ice
• Spanwise-ridge ice
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Phase II: Measurement Methods Development

• Common Research Model selected as the baseline, full-scale, 
reference geometry for the swept-wing configuration.

• Applied and validated existing 3D laser scanning methods to measure 
highly 3D ice accretion.

• Applied existing 3D wake survey methods to iced swept wings.
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Common Research Model (CRM)

• Commercial transport class 
configuration.

• Contemporary transonic supercritical 
wing design.

• Publically available and otherwise 
unrestricted for world-wide distribution.

• A 65% scale CRM was selected as 
the full-scale, reference swept-wing 
geometry for this research.

• CRM65 size airplane is comparable to 
Boeing 757.



National Aeronautics and Space Administration

www.nasa.gov
10

Phase III: Ice Accretion Testing

• Three spanwise stations 
selected for IRT testing.

• Required hybrid model 
design—see oral presentation 
by Gustavo Fujiwara.

• Related presentations:
− oral presentation by 

Emmanuel Radenac
− SAE paper 2015-01-2122 

by Eric Loth
• A two-week IRT test campaign 

was completed for each model.

83% semispan
Outboard model

64% semispan
Midspan model

20% semispan
Inboard model
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Phase III: Ice Accretion Testing
Models Description
• Full-scale leading edge, truncated 

afterbody.
• Streamwise pressure taps located at 

three spanwise stations.
• Single-element, slotted flap with anti-

icing heater.
• Two removable leading edges

− Pressure instrumentation
− Icing

Model 
Section

Streamwise
Chord 

Length (ft)
Model Scale

Factor
Inboard 13.5 2.25
Midspan 6.3 2.0
Outboard 6.2 1.5
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Phase III: Ice Accretion Testing

Icing Test Matrix Development
• Generate range of ice accretion (Phase I).
• Hold and descent for CRM65 airplane in App. C.
• Large range of temperatures, limited variations in MVD and LWC.
• Large model size limited maximum speed in IRT.

− Conditions were scaled to IRT test speed (130 knots for most 
cases).

− See oral presentation by Paul Tsao.

Baseline Flight Reference Conditions

Case
AoA
deg.

TAS
Knots

Total Temp
deg. C

Static Temp
deg. C

MVD
μm

LWC
g/m3

Exp. Time
min.

33 3.3 230 -18.4 to 1.1 -25.0 to -6.0 20 0.17 to 0.55 45
41 4.4 220 -6.0 to 1.1 -10.0 to -3.0 20 0.51 45
52 2.1 260 -4.1 -13.0 20 0.36 4
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Phase III: Ice Accretion Testing
Inboard Model—Effect of Temperature

Run
AoA
deg.

TAS
Knots

Total Temp
deg. C

Static Temp
deg. C

MVD
μm

LWC
g/m3

Exp. Time
min.

TG2410 3.7 130 -3.8 -6.0 25 1.0 29
TG2402 3.7 130 -8.7 -11.0 25 1.0 29
TG2415 3.7 130 -23.8 -25.0 25 1.0 29

Total Temp = -3.8 
deg. C

Total Temp = -8.7 
deg. C

Total Temp = -23.8 
deg. C
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Phase III: Ice Accretion Testing
Identical Condition Run on Each Model

Run
AoA
deg.

TAS
Knots

Total Temp
deg. C

Static Temp
deg. C

MVD
μm

LWC
g/m3

Exp. Time
min.

TG2411 3.7 130 -6.3 -8.5 25 1.0 29
TH2450 3.7 130 -6.3 -8.5 25 1.0 29
TI2461 3.7 130 -6.3 -8.5 25 1.0 29

Inboard Midspan Outboard
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Phase III: Ice Accretion Testing
Time lapse video—Midspan Model

Run
AoA
deg.

TAS
Knots

Total Temp
deg. C

Static Temp
deg. C

MVD
μm

LWC
g/m3

Exp. Time
min.

TG2450 3.7 130 -6.3 -8.5 25 1.0 29
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Phase IV: High-Re Aerodynamic Testing

• Build and test 13.3% scale 
model of the CRM65 in 
ONERA F1 pressurized wind 
tunnel.

• Range of Reynolds and Mach 
numbers up to Re = 12×106

and M = 0.3.
• Design and build full-span 

artificial ice shapes from the 
IRT tests of the 20%, 64% and 
83% semispan stations of the 
CRM65 wing—see oral 
presentation by Sam Lee.

• Vary the geometric fidelity and 
quantify aerodynamics.
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Phase V: Low-Re Aerodynamic Testing

• Initial test campaign completed in 
August 2014—see oral presentation 
by Brian Woodard.

• 8.9% scale CRM65 was built for the 
Wichita State University 7 ft. x 10 ft. 
size wind tunnel.

• Aerodynamic performance and 3D 
wake surveys up to Re = 2.4×106 and 
M = 0.27.

• Scale models of the artificial ice 
shapes used in the ONERA F1 tests.

• Quantify the differences between low 
and high-Re results.

• Investigate sensitivity to ice features.
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Phase VI: High-Re Validation Testing

• Identify critical ice shape configurations from Phase V.
• Build and test these configurations in ONERA F1 

pressurized wind tunnel.
• Range of Reynolds and Mach numbers up to Re = 

12×106 and M = 0.3.
• Quantify the differences in aerodynamic performance 

and key flowfield features between the low and high-
Reynolds number tests.
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Phase VII: Computational Simulation

• Identify critical elements for accurate ice-
shape predictions and iced swept wing 
aerodynamics.

• NASA will investigate methods for 
smoothing and gridding of ice-accretion 
geometry from the 3D scan data of the IRT 
ice accretion leading to computational flow 
simulations.

• ONERA will investigate the use of the 
“Immersed Boundary Conditions” (IBC) 
method in order to take the exact ice shape 
into account without having to mesh it 
explicitly.

• Conducted in parallel with the other tasks 
throughout the project.
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Summary
NASA, FAA and ONERA are sponsoring a research effort dedicated to 
improving computational and experimental simulation methods for 
swept-wing icing.   The anticipated research products are:

• Database of swept-wing ice accretion geometry
• Database of high-Reynolds number aerodynamic data for swept-

wing ice accretion.
• An understanding of the geometric fidelity required for accurate 

aerodynamic simulation of swept-wing ice accretion.
• Hybrid-model design methods for conducting icing-tunnel tests 

of large-scale swept wings.
• A validated low-cost, low-Reynolds number test capability for 

evaluation of performance characteristics and aerodynamics of 
iced-swept-wing geometries.

• Improved methods for quantifying ice accretion geometry and 
developing high-fidelity artificial ice shapes.
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Baseline Swept-Wing Model Selection

• Common Research Model (CRM).
• Commercial transport class 

configuration.
• Contemporary transonic supercritical 

wing design.
• Publically available and otherwise 

unrestricted for world-wide distribution.

Reference:  Vassberg, J.C., DeHann, M.A., Rivers, S.M., and Wahls, R.A., “Development of a 
Common Research Model for Applied CFD Validation Studies,” AIAA Paper 2008-6919, Aug. 2008.
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Baseline Swept-Wing Model Selection

• A 65% scale CRM was selected 
as the full-scale, reference 
swept-wing geometry for this 
research.



National Aeronautics and Space Administration

www.nasa.gov
26

3D Ice Accretion Measurement
• Requirement for ice accretion database and for artificial 

ice shapes used in aerodynamic testing.
• Commercial, laser-based scanning system adapted for ice 

accretion measurement.
• Research and validation efforts have been completed.
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3D Aerodynamic Measurement Methods

• 3D wake survey 
method applied to ice 
swept wing.

• Understand origin of 
ice-wing performance 
degradation.

• Development and 
validation of 
computational 
simulation tools.


