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ABSTRACT
To draw inferences about gamma-ray burst (GRB) source populations based on Swift observations, it is es-
sential to understand the detection efficiency of the Swift burst alert telescope (BAT). This study considers the
problem of modeling the Swift BAT triggering algorithm for long GRBs, a computationally expensive proce-
dure, and models it using machine learning algorithms. A large sample of simulated GRBs from Lien et al.
(2014) is used to train various models: random forests, boosted decision trees (with AdaBoost), support vector
machines, and artificial neural networks. The best models have accuracies of & 97% (. 3% error), which
is a significant improvement on a cut in GRB flux which has an accuracy of 89.6% (10.4% error). These
models are then used to measure the detection efficiency of Swift as a function of redshift z, which is used
to perform Bayesian parameter estimation on the GRB rate distribution. We find a local GRB rate density of
n0 ∼ 0.48+0.41

−0.23 Gpc−3yr−1 with power-law indices of n1 ∼ 1.7+0.6
−0.5 and n2 ∼ −5.9+5.7

−0.1 for GRBs above
and below a break point of z1 ∼ 6.8+2.8

−3.2. This methodology is able to improve upon earlier studies by more
accurately modeling Swift detection and using this for fully Bayesian model fitting. The code used in this is
analysis is publicly available onlinea.
Keywords: gamma rays: general, methods: data analysis

1. INTRODUCTION

Long gamma-ray bursts (GRBs) are related to core-collapse
supernovae from the death of massive stars. These are im-
portant for studying star-formation history, particularly in the
early universe where other methods become difficult. The
Swift space telescope (Gehrels et al. 2004) is able to detect
and localize these out to large distances and quickly downlink
the data to the ground. These abilities enable prompt ground-
based followup observations that can provide redshift mea-
surements of the GRBs. To date, Swift has detected over 900
GRBs, of which ∼ 30% have redshift measurements. From
these observations, one can try to infer the intrinsic GRB rate
that is connected to stellar evolution over the history of the
Universe. Many researchers have used Swift’s observations to
study intrinsic GRB redshift and luminosity distributions, and
the implications for star-formation history (e.g., Guetta and
Della Valle 2007; Guetta and Piran 2007; Yüksel et al. 2008;
Kistler et al. 2008; Butler et al. 2010; Robertson and Ellis
2012; Pélangeon et al. 2008; Salvaterra et al. 2009; Campisi
et al. 2010; Wanderman and Piran 2010; Virgili et al. 2011;
Qin et al. 2010; Salvaterra et al. 2012; Coward et al. 2013;

pgraff@umd.edu
amy.y.lien@nasa.gov
john.g.baker@nasa.gov

a https://github.com/PBGraff/SwiftGRB_PEanalysis

Kanaan and de Freitas Pacheco 2013; Wang 2013; Lien et al.
2014; Howell et al. 2014; Yu et al. 2015; Petrosian et al. 2015;
Pescalli et al. 2015).

Several studies have suggested that the GRB rate at high
redshift (z & 5) is larger than the expectation based on
star-formation rate (SFR) measurements (e.g., Le and Der-
mer 2007; Yüksel et al. 2008; Kistler et al. 2009; Butler et al.
2010; Ishida et al. 2011; Tanvir et al. 2012; Jakobsson et al.
2012; Lien et al. 2014). This result could imply several pos-
sibilites, such as a larger star-formation rate in the early uni-
verse(e.g., Kistler et al. 2009; Tanvir et al. 2012), an evolv-
ing luminosity function(e.g., Virgili et al. 2011; Pescalli et al.
2015), or a different GRB to supernova ratio (i.e. a different
scenario of stellar evolution) due to a different environment in
the early universe (e.g., Woosley and Heger 2012).

However, it remains difficult to constrain the GRB rate.
Though Swift has observed a large population of GRBs only
some of these have measured redshifts. Even with a relatively
complete redshift sub-sample, there are complicated selec-
tion effects from the complex trigger algorithm adopted by
the burst alert telescope (BAT) on-board Swift and the diffi-
culty in searching through a large parameter space. It is chal-
lenging to distinguish the luminosity function and the redshift
distribution using the observational data. We address some of
these issues with a machine learning approach to produce a
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fast, but reliable, treatment of Swift’s instrumental selection
effects, thereby enabling a robust Bayesian treatment of pop-
ulation model analysis.

Machine learning (ML) is a field of research that involves
designing algorithms (MLAs) for building models that learn
from generic data. The models are fit to a set of training data
in order to make predictions or decisions. Often, the original
training data come from actual observations or simulations
of a complex process. The models trained by MLAs can be
evaluated very quickly for any new example after a one-time
cost of training the model.

In this study, we look to aid the analysis of GRB data by
using MLAs to train models that emulate the Swift trigger al-
gorithm. Our training data comes from simulations of GRB
populations computed by Lien et al. (2014).

The structure of this paper is as follows. In Section 2 we de-
scribe the aspects of Swift and its model for triggering on in-
cident GRBs that are relevant to GRB population inferences.
Then, in Section 3 we describe the machine learning algo-
rithms used and compared in this study. Section 4 presents
the results of training the different ML models on the training
data from the Swift pipeline. We apply a trained ML model
for accelerating Bayesian inference with faster likelihoods in
Section 5, fitting the parameters of the intrinsic GRB rate dis-
tribution. Section 6 compares our study to previous work es-
timating the intrinsic distributions of long GRBs with Swift
observations. Lastly, in Sections 7 and 8 we summarize and
propose future projects to follow-up.

2. THE Swift DETECTION ALGORITHM

The burst alert telescope (BAT) on-board Swift adopts over
500 rate trigger criteria based on photon count rate in the
raw light curve. Moreover, the burst needs to pass the “im-
age threshold” determined by the signal-to-noise ratio esti-
mated from an image generated on-board based on the dura-
tion found by the rate trigger criteria. Each rate trigger crite-
rion uses a different energy band, different part of the detector
plane, and different foreground and background durations for
calculating the signal-to-noise ratio. In addition to the rate
trigger algorithm, the BAT also generates an image every &
minute to search for bursts that are missed by the rate trigger
method (which is the so-called “image trigger”) (Barthelmy
et al. 2005; Fenimore et al. 2003, 2004; McLean et al. 2004;
Palmer et al. 2004).

This complex trigger algorithm successfully increases the
number of GRB detections. However, it also increases the dif-
ficulty of estimating the detection theshold, which is curcial
for probing many intrinsic GRB properties from the observa-
tions. To address this problem, Lien et al. (2014) developed
a code that simulates the BAT trigger algorithm, and used it
to study the instrinsic GRB rate and luminosity function. This
“trigger simulator” follows the same trigger algorithm and cri-
teria for the rate trigger as those adopted by the BAT, and
mimics the image threshold and image trigger (see Lien et al.
(2014) for detailed descriptions). Although the trigger simu-
lator can be used to address the complex detection thresholds
of the BAT, it takes∼ 10 seconds to a few minutes to simulate
the trigger status of a burst using a common PC with the 2.7
GHz Intel Core processor (the speed mainly depends on the
number of bins in the light curve). Therefore, it is computa-
tionally intensive to perform a large number of simulations to
cover a wide parameter space. This is where machine learning
is able to accelerate our analysis.

3. MACHINE LEARNING ALGORITHMS

To generate a fast emulator for the Swift trigger simula-
tor, we consider a variety of supervised learning algorithms,
where the goal is to infer a function from labeled training data.
Each example consists of input properties which are used to
predict the output label.

Here we briefly describe each of the machine learning algo-
rithms used in this study. We denote the set of input features
by x and the machine learning model’s predicted output is
given by y(x). The inputs are a set of 15 parameters describ-
ing the GRB and detector as detailed in Table 1. Depending
on the MLA, the output may be a discrete label, e.g. {0, 1},
or it may be a continuous probability in [0, 1] and is designed
to be the probability that a GRB, as specified by the features
in x, is detected by Swift’s BAT. The true output is given by t
and is 0 for a non-detection and 1 for a detection.

3.1. Random Forests and AdaBoost
Random forests and AdaBoost both involve creating en-

sembles of decision trees, so we first introduce these as a ma-
chine learning model. In a decision tree, binary splits are per-
formed on the training data input features, the dimensions of
x. In training a tree on data, a series of splits are made that
choose a dimension and a threshold that optimize some crite-
rion. Examples of this criterion are the accuracy of the result-
ing classifications (maximize; equivalently minimize errors)
or the Gini impurity (minimize) which given by

G = 1−
∑

i={0,1}

f2i , (1)

where fi is the fraction of correctly classified samples labeled
with value i. This measure aims to make each sub-set result-
ing from a branch as “pure” as possible in the class labels of
its members. Each split creates a pair of “branches”, one with
each class label. These splits are made until a stopping con-
dition is reached (e.g. the samples are all of uniform class,
a maximum number of splits has been reached, or the num-
ber of samples left to split among has fallen below a mini-
mum value). This branch now becomes a “leaf” that assigns
a class to all samples ending there. When a new event of un-
known class is put into the tree, the tree will pass it through the
learned splits/branches until it reaches a leaf, at which point it
will be labeled according to the label of the leaf. An example
tree fit to this data (with a hard limit of 3 in depth) is shown
in Figure 1; it has a classification accuracy of 93.9% on the
training data to which it was fit. Trees fit in the later models
will be much larger and thus more accurate.

3.1.1. Random Forests

Random forests (RFs) (Breiman 2001) improve upon clas-
sical decision trees by training an ensemble of trees that vote
on the final classification. A “strong learner” (the RF) is cre-
ated from an ensemble of “weak learners” (decision trees).
In a RF, many decision trees are trained on the data – often
hundreds. To obtain many different trees, at each split in a
tree, a random subset of the dimensions of x are chosen and
the optimal binary split to be made out of these dimensions is
made. Furthermore, each tree is trained on a bootstrap sample
of the data; the original K points are sampled with replace-
ment to form a new set of K points that may contain repeats.
A RF thus guards against overfitting to the training data and
potentially badly performing individual trees. A single tree
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Figure 1. A decision tree fit to the Swift training data with a maximum depth of 3. An accuracy of 93.9% is achieved. Each box shows the parameter chosen
for branching and the threshold used, as well as the total number of samples used to make that decision. The Gini factor shown is that from Equation (1) for the
subset at that location. At the leaves, the number of items with class 0 and class 1 are shown; the tree can assign class probabilities based on this split at the leaf
that any new sample arrives at after following the branches down.

can provide a probabilistic classification, yDT(x) ∈ [0, 1],
and combining many allows us to obtain a near-continuous
probability, yRF(x) ∈ [0, 1] by using

yRF(x) =
1

N

N∑
n=1

yDT,n(x), (2)

with N being the number of trees in the forest. This value
we obtain as yRF(x) is simply the probability that the GRB
described by x is detected by Swift.

We use the implementation of RFs in the
scikit-learn1 Python library (Pedregosa et al. 2011).

3.1.2. AdaBoost

AdaBoost is short for “Adaptive Boosting”, a meta-
algorithm for machine learning (Freund and Schapire 1997).
It creates a single strong learner from an ensemble of weak
learners, much like RFs. However, in the boosting frame-
work, the decision trees are trained iteratively and when added
together (as in Equation (2)) are weighted, typically based on
their accuracy. Additionally, unlike for RFs, the training ex-
amples will not be all equally weighted when evaluating the
accuracy. After an individual decision tree is added to the en-
semble, the training data is reweighed so that examples that
are misclassified increase in weighting and those classified
correctly decrease in weighting. Therefore, future decision
trees will attempt to better fit examples previously misclassi-
fied. In this way, the overall ensemble prediction may become
more accurate.

Boosting may be applied to any machine learning algo-
rithm, but in this work we apply it only to the decision tree
weak learner (the other classifiers qualify as strong learners
on their own and would thus likely not benefit significantly
from boosting). We use the implementation of AdaBoost for
decision tree classifiers in scikit-learn. We note that
the predicted probability, yAB(x) ∈ [0, 1], is approximately
continuous, similarly to yRF(x).

3.2. Support Vector Machines
Support vector machines (SVMs) (Cortes and Vapnik 1995)

are a tool for binary classification that finds the optimal
hyper-plane for separating the two classes of training sam-
ples. Events are classified by which side of the hyper-plane
they fall on. The hyper-plane that maximizes the separation

1 http://scikit-learn.org/stable/index.html

from points in either class will (in general) have minimal gen-
eralization error for new data points.

In a linear SVM, we label the two classes with ti ∈ {−1, 1}
corresponding to an un-detected GRB and a detected GRB,
respectively. A hyper-plane separating the two classes will
satisfy w · x − b = 0, where w and b must be found by
training on the data {x}. If the classes are separable, we can
place two parallel hyper-planes that separate the points and
have no points between them in the “margin”. This can be
seen for a toy example in Figure 2. We describe these hyper-
planes mathematically as

w · x− b = ±1, (3)

Examples will lie on either side of the two planes such that

ti (w · xi − b) ≥ 1 (4)

for all samples, xi. As the samples are typically not sepa-
rable, we introduce slack variables ξi ≥ 0 that measure the
misclassification of xi by setting

ti (w · xi − b) ≥ 1− ξi . (5)

We then seek to minimize

Cost(w, ξ, b) =
1

2
‖w‖2 + C

∑
i

ξi (6)

subject to the constraint in Equation 5. The C parameter is a
penalty factor for misclassification and this optimization will
face the trade-off between a smaller margin and smaller mis-
classification error. The cost function seeks to maximize the
distance between the two hyper-planes at the margin edges,
which is given by 2/||w||. This separation by hyper-plane is
demonstrated for a toy example in Figure 2.

The two classes of points are generally not easily separated
in the original parameter space of the problem. Therefore, we
map the points into a higher-dimensional space where they
may be more easily separated. To make this a computation-
ally tractable problem, we consider mappings such that the
dot product between pairs of points may be easily computed in
terms of the original variables by a kernel function, k(xi,xj).
Hyper-planes in the higher-dimensional space are defined as
surfaces on which the kernel is constant. If the kernel is de-
fined such that k(xi,xj) decreases as the points xi and xj
move away from one another, then the kernel is a measure of
closeness. Thus, the sum of many kernels like this can be used
to measure the proximity of a sample data point to data points
in the two classes; this distance can then be used to classify the

http://scikit-learn.org/stable/index.html
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Figure 2. The maximum separating hyper-plane and the margin hyper-planes
for a toy data set. The “support vectors” are the highlighted points along the
margin hyper-planes. Image courtesy of Wikimedia Commons (Commons
2008).

point into one class or the other. This mapping can result in a
very convoluted hyper-plane separating the two sets of points
– this can accurately model the true classification boundary,
but we must be careful not to overfit this to the training data.

In order to perform a non-linear separation, we employ a
Gaussian kernel function (a.k.a. radial basis function),

k(xi,xj) = exp
(
−γ‖xi − xj‖2

)
(7)

where γ is a tunable parameter reflecting the width of the
Gaussian.

A point is classified by which side of the learned hyper-
plane it falls on, as determined (in our notation) by

y(x) = sign (K(w,x)− b) , (8)

where K is the aggregate kernel function that is a linear com-
bination of the individual kernel functions (closeness to each
of the other points). Minimizing the cost given by Equa-
tion (6) under the constraint of Equation (5) can be solved
as a quadratic programming problem with the solution locally
independent of all but a few data points, the “support vectors”
of the model. These will be those samples closest to or on the
margin in both classes and a weighted sum of distances from
them will determine which class a new sample is in. Points
that are not support vectors will have small or zero weight in
the aggregate kernel function.

In this study, we use the implementation of SVMs in
scikit-learn. A radial basis function is chosen and
we perform 5-fold cross-validation to optimize the hyper-
parameters of the model, γ and C. The model is also trained
to allow for the prediction of continuous class probabilities,
ySVM ∈ [0, 1]2.

3.3. Artificial Neural Networks
Artificial neural networks are a machine learning method

that is inspired by the function of a brain. A neural network
(NN) consists of interconnected nodes, each of which pro-
cesses information that it receives and passes this product on
to other nodes via weighted connections. In a feed-forward
NN, these nodes are organized into layers that pass informa-
tion uniformly in a certain direction. The input layer passes

2 See the scikit-learn documentation for details on this procedure.

information to an output layer via zero, one, or many “hid-
den” layers in between. Each node in the network performs a
simple function, but their combined activity can model com-
plex relationships. A useful introduction to NNs as well as
their training and use can be found in MacKay (2003).

A single node takes an input vector of activations a ∈ <N
and maps it to a scalar output f(a;w, b) through

f(a;w, b) = g

(
b+

N∑
i=1

wiai

)
, (9)

where w and b are the parameters of the node, called the
“weights” and “bias”, respectively. The function, g, is the
activation function of the node; we use the sigmoid, linear,
and rectified linear activation functions in this work.

g(z) =


(1 + e−z)−1 sigmoid
z linear
max{0, z} rectified linear

(10)

The sigmoid and rectified linear activations are used for hid-
den layer nodes and the linear activation is used for the output
layer nodes to obtain values in (−∞,∞). This is then con-
verted into a probability by the softmax transform given by

yj(x;w, b)→ exp (yj(x;w, b))∑
l={0,1} exp (yl(x;w, b))

(11)

where j indexes over the output nodes. After the softmax,
all output values are in (0, 1) and sum to 1. We show here
the case where there are only two output nodes for a binary
classification problem; these values are degenerate, but the
setup of one output node per class generalizes to the multi-
class problem.

The weights and biases of all nodes in the network are the
parameters that must be optimized with respect to the training
data. The number of input nodes is the number of features
given by the data. The two output nodes are the values in
which are the probabilities that the input GRB features would
result in detection or non-detection. In this work, we will take
yNN(x) to be the continuous probability given in the output
node for the “detection” class. Thus, the output is the pre-
dicted probability that the given input GRB features corre-
spond to a detected GRB.

The optimization algorithm seeks to minimize the cross-
entropy of the predicted probabilities, given by

Cost(p) = −
∑
i

∑
k={0,1}

ti,k log yk(xi) (12)

where p is a parameter vector containing all of the weights
and biases of the nodes in the NN. The index i is over all
data samples in the training set and the index k is over the
2 output nodes corresponding to the non-detection and de-
tection classes, respectively. ti = {1, 0} for a non-detection
and ti = {0, 1} for a detection. This cost function pushes
predicted probabilities toward their correct values with large
penalties for incorrect predictions and is based in information
theory. We take the value from the output node corresponding
to the detection class as the probability that the input GRB, x,
is detected by Swift, yNN(x).

We use the SKYNET3 algorithm (Graff et al. 2014) for train-
ing of the NN and refer the reader to that paper for more in-

3 http://www.mrao.cam.ac.uk/software/skynet/
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formation on NNs, including the optimization function used,
how the optimization is performed, and additional data pro-
cessing that is performed. SKYNET provides an easy-to-use
interface for training as well as an algorithm that will effi-
ciently and consistently find the best fit NN parameters for
the training data provided.

3.4. Heuristics Used
For each model’s optimal settings, we compute the accu-

racy of predictions using a naı̈ve probability threshold of 0.5
for the output probability for the detection class; i.e. ym(x)
for the different models, m. This is later found to be close
to optimal. We also plot the receiver operating characteristic
(ROC) curves for the classifiers as seen in Figure 9 later. A
ROC curve plots the true positive rate (a.k.a. recall) against
the false positive rate. The F1-score is a useful metric for
finding the optimal probability threshold to balance type I
(false positive) and type II (false negative) errors. The F1-
score takes values in [0, 1] and is maximized at the optimal
probability threshold. These values are given by:

TP = # positives correctly labeled
TN = # of negatives correctly labeled
FP = # of negatives labeled as positive
FN = # of positives labeled as negative

TPR =
TP

TP + FN
= recall

FPR =
FP

FP + TN

precision =
TP

TP + FP

F1-score = 2
precision× recall

precision + recall

where positives are detections and negatives are non-
detections of GRBs. For a random classifier, the ROC will
be a diagonal line from (0, 0) to (1, 1). Better classifiers will
be above and to the left of this line. A common measure is
the area under the curve (AUC), which is the integrated area
under the ROC. Values closer to 1 indicate better classifiers.

In this study, we will use the ROC (with AUC) to find the
MLA that best models the Swift pipeline. We can then use the
F1-score to identify the best probability threshold for declar-
ing a detection from the predictions of the model.

3.5. Cross-Validation
To measure the performance for each type of MLA, we per-

form hyper-parameter optimization over a range of settings
for each. To properly compare these settings against each
other, we perform cross-validation. In this setup, with 5 folds,
we split the data into 5 random subsets of equal size. In train-
ing, we train 5 models for each setting, using 4 of the 5 dur-
ing fitting and then evaluating the model on the left-out set.
Thus we make predictions on the entire set but without hav-
ing trained the model on the data it was predicting (this would
lead to over-fitting).

Once the optimal model settings are found for each MLA,
the entire data set is used to re-train a model with those val-
ues. This model is then evaluated on the left-out validation
data set so as to compare it with the other MLAs. This latter
test is much more stringent, as the evaluation data is from dif-
ferent populations than what was used in training. This better

reflects how the ML model will be used in practice and is used
to pick a MLA and model fit for use in Bayesian parameter es-
timation (Section 5).

4. MACHINE LEARNING RESULTS

In this section we present the details of the MLA model fit-
ting we performed. We describe the data set used for training
and validation followed by results from hyper-parameter op-
timization searches performed for each classifier. The hyper-
parameter optimization uses only the training data and eval-
uates different settings with cross-validation as described in
Section 3.5. Once we obtain optimal settings for each MLA,
we evaluate the models on a validation data set (separate
from the training data) for final performance measurement
and comparison.

4.1. Training Data Used
The data used in this analysis was generated by simulations

of the Swift pipeline – as described in Section 2 – for different
settings of the GRB redshift and luminosity distribution func-
tions (Equations 2 and 3 in Lien et al. (2014) and reproduced
below).

RGRB(z) = n0

{
(1 + z)n1 z ≤ z1
(1 + z1)n1−n2(1 + z)n2 z > z1

(13)

φ(L) =
dN

dL
=


(
L
L?

)x
L ≤ L?(

L
L?

)y
L > L?

(14)

RGRB(z) is the comoving GRB rate, with units of
Gpc−3yr−1. In these data sets, the luminosity distribution
function was held constant with x = −0.65, y = −3.00, and
L? = 1052.05 erg/s. Additionally, the break in the redshift
distribution was also held constant at z1 = 3.60. Therefore,
we only varied values of n1 and n2 (n0 is ignored for the
purpose of generating training data as it is only a normaliza-
tion parameter). In total, 38 datasets are combined for use in
training. These datasets were originally generated for Lien
et al. (2014) and do not cover the space systematically. We
use 34 of the 38 data sets for training models, including opti-
mization of hyper-parameters; each of these contains ∼ 4000
samples. The final 4, which contain ∼ 10000 samples each,
are set aside for evaluating the final model from each MLA as
the validation data. The distribution of parameters for each of
these data sets is shown in Figure 3.

We used this data for training as it was generated around the
best-fit values from Lien et al. (2014) for the real Swift GRB
redshift measurements of Fynbo et al. (2009). In the end, our
goal is to fit the GRB rate model to these same observations.

A total of 15 parameters are taken from each simulated
GRB in order to determine whether or not the GRB was de-
tected by Swift. These are summarized in Table 1. These are
used for classification of GRBs by MLAs. The target value
is given by the trigger index, which is 0 for GRBs that are
not detected by the Swift algorithm and 1 for those that are
detected.

A pair-wise plot of a few of the most significant parameters
in determining detection is shown in Figure 4. Lighter points
are GRBs that are detected by Swift in the trigger simula-
tor (Lien et al. 2014) while darker ones are undetected GRBs.
This plot shows a random subset of 5000 points from the en-
tire training data set.
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Figure 3. Values of the parameters for the redshift distribution function for
sample GRB populations used to train ML models. Blue stars were used in
training and optimization, red circles were used for final evaluation.

Parameter Description
log10(L) luminosity of the GRB

z redshift
r distance from center of detector grid of peak
φ azimuthal angle in detector grid of peak

bin size emit source time bin size
α Band function parameter
β Band function parameter

log10(Epeak) peak of the energy spectrum of the GRB
bgd 15-25keV background count rate in 15–25keV band
bgd 15-50keV background count rate in 15–50keV band

bgd 25-100keV background count rate in 25–100keV band
bgd 50-350keV background count rate in 50–350keV band

θ incoming angle of GRB
log10(Φ) incident flux of GRB

ndet number of active detector pixels (constant)
trigger index 0 for non-detections and 1 for detections

Table 1
Parameters describing each simulated GRB. There are 15 inputs and the

output class label. See Equation 4 in Lien et al. (2014) for details of α, β,
and log(Epeak).

Figure 4. Pair-wise scatterplot of a few of the most significant parameters
in determining detection. A random subset of 5000 points from the training
data set is shown. GRBs that are detected are indicated by light red points,
non-detected ones are blue.

To determine how much training data is required, we eval-
uated the learning curve for the random forest classifier. This
plots the prediction accuracies, computed using 5-fold cross-
validation, as a function of the size of the training data. The
“training data” in this case is the 4/5 of the data used for fitting
the model and the “test data” is the 1/5 left out for evaluation.
The learning curve was done after finding the optimal RF set-
tings in Section 4.2 as a check. We thus examined if use of
the entire data set benefits model fitting significantly. The data
was randomly shuffled before performing this test.

The resulting learning curve is shown in Figure 5. For small
sample sizes, there is overfitting of the training data that be-
gins to flatten out by 3×104 samples. The accuracy of the test
set continues to increase as we add more data points, mean-
ing that more data improves the generalizability of the model.
Therefore, in all subsequent training we will use the entire
data set for fitting a model; using fewer points would increase
the bias of subsequent predictions.

Figure 5. Learning curve for the random forest classifier. The training data
set accuracy is fairly constant above 3 × 104 samples but the test accuracy
continues to increase with the number of data points.

4.2. Random Forest
The random forest model was optimized for combina-

tions of the min samples split and max features parame-
ters. These govern the minimum number of samples needed
to perform a branching split and the number of features con-
sidered at each split, respectively. Choices for each are as
follows4:

min samples split ∈ {2, 4, 8, 16, 32, 64}
max features ∈ {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14}

Forests were trained with 500 trees, using the Gini impu-
rity for deciding the optimal split at each branching point
and with no limit on the number of branches before reach-
ing a leaf. The 5-fold cross-validation evaluates the test ac-
curacy for each pairwise combination of the parameters; the
set with the highest test accuracy is the optimal model. The
optimal parameters found were min samples split = 4 and

4 The values for min samples split go from the absolute minimum, 2, to
a significantly larger value where we see degraded performance by powers of
2. The choices for max features vary from a low number (minimum is 1)
to the maximum value that doesn’t consider every parameter at each split and
thus would have no randomness.
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max features = 5, however, it can be seen in Figure 6 that
there is very little variation in accuracy with regard to the
value of max features. The minimum number of samples
required to make a split is the dominant factor for improv-
ing the accuracy, where smaller values that naturally fine-tune
the model further obtain better accuracy on the test set as well.
The overall range in test set accuracy is not large and the worst
model hyper-parameters still achieve accuracy > 98%. The
preference for lower values in max features can be under-
stood as increasing variability between trees in the forest and
thus minimizing over-fitting.

Figure 6. Test set accuracy for random forest classifier hyper-parameters.
The optimal value is (4, 5). It is clear that min samples split is a much
stronger influence on over-fitting to the training data.

Using the optimal model, we perform predictions on the
validation data set. With a naı̈ve threshold of 0.5 on the out-
put probability for the detection class for declaring a GRB
detected, these predictions have an accuracy of 97.5%. This
is lower than the test accuracy obtained earlier as the test sam-
ples were from the same distribution as the training ones while
this validation data presents new distributions. The ROC for
this classifier is shown with the others in Figure 9 and has an
AUC = 0.9935. Analysis of the F1-score found no signifi-
cant difference between the optimal probability threshold and
the naı̈ve threshold of 0.5.

4.3. AdaBoost
The AdaBoost model was optimized for combinations of

the n estimators and learning rate parameters. The for-
mer describes the number of ‘weak learners’ (decision trees)
fit in each ensemble model and the latter describes the rate
for adjusting the weighting of the weak learners as each is
added to the ensemble. Settings for the individual decision
trees were chosen to match those found as optimal for the
random forest classifier, with min samples split = 4 and
max features = 5. Choices for each were as follows5

n estimators ∈ {100, 200, 300, 400, 500}
log10(learning rate) ∈ {−3,−2.5,−2,−1.5,−1,−0.5, 0}

5 The n estimators range was determined by having enough trees for
refined probability estimates while not needing more than the RF model. The
range for the learning rate parameter goes from a large value, 1, down to a
small rate; we did not test smaller values as all models achieved very similar
performance with each other and with the best RF model.

The 5-fold cross-validation found that the optimal parameters
are (100, 0.001). However, the range in test set accuracies is
extremely small, varying only between 99.01% and 99.05%.
Therefore, any of these models would be nearly equally accu-
rate.

Figure 7. Test set accuracy for AdaBoost classifier hyper-parameters. The
optimal value is (100, 0.001). All options are very close to each other, rang-
ing only from 99.01% to 99.05% in accuracy.

Using the optimal model, we perform predictions on the
validation data set. With a naı̈ve threshold of 0.5 on the out-
put probability for the detection class for declaring a GRB
detected, these predictions have an accuracy of 97.4%. The
ROC for this classifier is shown with the others in Figure 9
and has an AUC = 0.9921. Analysis of the F1-score found no
significant difference between the optimal probability thresh-
old and the naı̈ve threshold of 0.5.

4.4. Support Vector Machines
The support vector machine model was trained using a

Gaussian (radial basis function) kernel, as described in Equa-
tion (7). The input data values were all scaled to have zero
mean and unit variance, so as to prevent undue bias in the
kernel’s distance measure. As errors in the predictions are al-
lowed, there are thus two hyper-parameters to optimize, the
penalty factor for errors, C, and the tunable parameter for the
width of the Gaussian, γ. Choices examined for these were
(after first searching over a larger grid with coarser spacing):

log10(C) ∈ {1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3}
log10(γ) ∈ {−1,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 1}

5-fold cross validation found optimal parameters of (C, γ) =
(102.25, 1) with a test set accuracy of 99.0%. For smaller val-
ues of C, there is a much more limited range in γ that gives
comparable results, if at all.

Using the optimal model and a 0.5 probability threshold for
classification as a detection, the SVM has a prediction accu-
racy of 94.5%. The ROC for this classifier is shown in Fig-
ure 9 and has an AUC = 0.9348. From all of these measures
it is clear that the SVM model, in this scenario, does not gen-
eralize as well as the decision tree ensemble methods (RF and
AdaBoost).

4.5. Neural Networks
Using SKYNET, we trained several neural network archi-

tectures using either the sigmoid or rectified linear activation
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Figure 8. Test set accuracy for support vector machine classifier hyper-
parameters. The optimal value is (C, γ) = (102.25, 1).

Hidden Layers Activation Test Accuracy

25 sigmoid 97.89
rectified 97.25

50 sigmoid 98.33
rectified 97.57

100 sigmoid 98.47
rectified 98.00

1000 sigmoid 97.49
rectified 98.28

25+25 sigmoid 98.33
rectified 97.65

50+50 sigmoid 98.73
rectified 98.16

100+30 sigmoid 98.47
rectified 98.27

100+50 sigmoid 98.64
rectified 98.41

100+100 sigmoid 97.95
rectified 98.35

Table 2
Test set accuracy from 5-fold cross-validation from the training of neural

networks with SKYNET. The activation functions are given in Equation (10).

function for the hidden layer nodes. Training NNs is much
more computationally expensive than any of the other models,
despite the efficiencies in the training algorithm. Therefore,
the size of our NN models (in both number and width of hid-
den layers) as well as the time spent training them, is limited.
For each architecture6 we employed 5-fold cross validation in
order to asses its performance. We report in Table 2 the test
set accuracies for each of the networks trained. They are all
similar and are getting close to the 99% achieved by the previ-
ous MLAs. It is possible that more complex networks would
achieve this level of accuracy.

Due to the constraints on training, we consider the NN
architecture with highest average test accuracy, considering
both activation functions: the 100+50 architecture of hidden
layers. This is retrained on the entire data set with both acti-
vation functions and we find that the optimal model has hid-
den layers of 100+50 with the rectified linear unit activation
function. We use this NN to make predictions on the valida-
tion data set with a naı̈ve probability threshold of 0.5. This
yields and accuracy of 96.9%. The ROC curve for this NN is
shown in Figure 9 and has an AUC = 0.989. Analysis of the

6 The architecture is given by X or X+Y, the former indicating a single
hidden layer with X nodes and the latter indicating two hidden layers with X
and Y nodes, respectively.

Classifier Threshold Accuracy AUC F1-score
Random Forest 0.449 0.975 0.994 0.912

AdaBoost 0.362 0.975 0.992 0.910
Neural Net 0.459 0.969 0.989 0.890

SVM 0.028 0.947 0.935 0.824
Flux -7.243 0.896 0.945 0.663

Table 3
Results for measuring the performance of the classifiers trained in this study.
The accuracy on the validation data, the area under the ROC curve, and the
optimal F1-score are reported. The threshold values are probabilities for all

models except the flux cut, which uses the log10(Φ).

F1-score found no significant difference between the optimal
probability threshold and the naı̈ve threshold of 0.5.

4.6. Summary of Results
Here we summarize the results for the optimal model re-

turned by each MLA. The accuracy, AUC, and optimal F1-
score are all reported in Table 3. We also include in this com-
parison the use of a constant cut in GRB flux; GRBs with
flux greater than a threshold value will be labeled as detected
and those with lower flux are non-detections. Varying this
flux threshold produces a ROC and we find an optimal cut at
log10(Φ) = −7.243 erg/s/cm2 (based on the F1-score) for
which we measure the accuracy. It is clear that all ML classi-
fiers except SVMs significantly outperform a flux threshold;
SVMs still outperform a flux cut at optimal settings.

Figure 9. Receiver operating characteristic (ROC) curves for the classifiers.
A dot is placed at the values for the optimal probability threshold found for
each classifier. The ROC curve of a random classifier is shown in a dashed
red line. A logarithmic scale for the x-axis is used to display the differences
in the ROC curves.

From this analysis, we see that the RF and AdaBoost clas-
sifiers performed the best in classification task. NNs were
very close behind, with SVMs performing the worst among
the MLAs7.

5. USE OF ACCELERATED PIPELINE FOR BAYESIAN INFERENCE

Here we demonstrate the use of the trained ML models in
accelerating Bayesian inference, namely fitting the intrinsic
redshift distribution of GRBs. We do so with best-fit random
forest, AdaBoost, and SKYNET NN models, these being the
most accurate.

7 It should be noted that this is not a comment on the general performance
of the MLAs, merely how well they performed on this task with this data set.
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5.1. Likelihood Function
We first consider how we will evaluate the fit of a model

to a set of GRB redshift observations, a.k.a. “the data”. If
we bin the observations to obtain a redshift density, then in
each bin (with central redshift zi) there will be an observed
number of GRBs,Nobs(zi). There is also an expected number
of intrinsic GRBs occurring in Swift’s field of view during the
observation time in each redshift bin given by

Nint(zi) =
4π

6
∆tobsRGRB;dz(zi)dz, (15)

where

RGRB;dz(z) =
RGRB(z)

1 + z

dVcomov

dΩdz
. (16)

RGRB;dz(z) is the observed GRB rate that accounts for time
dilation and the comoving volume in addition to the comoving
rate, RGRB(z). The 4π/6 factor introduced here reflects that
Swift observes only a sixth of the entire sky and ∆tobs reflects
the fraction of time (per year) that Swift is observing; this is
taken as ∆tobs ≈ 0.8 as calculated from related Swift log
data. Vcomov is the cosmological co-moving volume and Ω is
the subtended sky angle.

Not all GRBs occurring in Swift’s field of view will be de-
tected, however; this is taken into account by the extra factor,
Fdet(z). This is the fraction of GRBs at redshift z that are
detected by Swift and is further discussed in Section 5.1.1. In-
cluding this factor gives us the expected number of observed
GRBs in each bin,

Nexp(zi) =
4π

6
∆tobsRGRB;dz(zi)Fdet(zi)dz. (17)

The probability, then, of observing Nobs(zi) GRBs when
Nexp(zi) are expected is given by the Poisson distribution.
The bins can be treated as independent, so for K bins we can
multiply their probabilities.

Pr({Nobs(zi)}; {Nexp(zi)}) =

K∏
i=1

Pr(Nobs(zi);Nexp(zi))

=

K∏
i=1

Nexp(zi)
Nobs(zi)e−Nexp(zi)

Nobs(zi)!

(18)

The log-likelihood is therefore the log of this probability,

L(~n) = log (Pr(Nobs(zi);Nexp(zi)))

=

K∑
i=1

Nobs(zi) log(Nexp(zi))−Nexp(zi)− log(Nobs(zi)!)

(19)

where ~n = {n0, n1, n2, z1, x, y, L∗} is the set of model
parameters that let us obtain Nexp(zi), which is really
Nexp(zi|~n).

In the limit of a large number of bins, each bin will con-
tain either 0 or 1 detected GRBs so Nobs(zi)! = 1 ⇒
log(Nobs(zi)!) = 0. We can also split terms and rewrite

Eq (19) as

L(~n) =

K∑
i=1

[Nobs(zi) log(Nexp(zi))]−
K∑
i=1

Nexp(zi)

= −Nexp +
∑
{i}det

log(Nexp(zi)) (20)

where {i}det are those bins with a detection. We can perform
this calculation in the limit of infinite bins, essentially a con-
tinuous measurement. Nexp is the integrated expected rate of
observations given by

Nexp =

∫ 10

0

Nexp(z)dz. (21)

This likelihood is the same as the C-statistic derived
in Cash (1979) in the un-binned limit (see Equation 7 therein,
where C = −2L). This likelihood function is also equivalent
to that of Stevenson et al. (2015), which compares discrete
intrinsic population models for binary black hole mergers as
observed by advanced LIGO and Virgo using the observed
mass distribution, if the latter is taken to the same limit of in-
finite bins of infinitesimal width. This is particularly notable
as Stevenson et al. (2015) uses a Poisson probability for the
total number of detections multiplied by a multinomial dis-
tribution describing the fractional distribution of detections
among bins in mass space.

5.1.1. Detection Fraction

The detection fraction (also known as detection efficiency)
Fdet(z) is computed in advance of the analysis by utilizing the
ML models trained to reproduce the Swift detection pipeline.
106 GRBs are simulated at each of 10,001 redshift points
in [0, 10] in order to precisely measure the average detection
fraction. These points are used as the basis for a spline inter-
polation to compute Fdet(z) at any z. The detection fraction
as a function of z from each the three models used is shown
in Figure 10. It is important to note that this Fdet(z) is calcu-
lated under the assumption of the particular luminosity func-
tion used in this study; it may change significantly for other
choices of the luminosity function parameters.

We also show, for comparison, the detection fraction as
computed by the constant flux cut and from an analytic fit
used in Howell et al. (2014). This was computed using the
data from Lien et al. (2014), so we are not surprised that it
matches well in the low-redshift range where there is better
sampling. The flux cut has discrepancies across the entire
redshift range while the analytic fit is close until z = 5.96,
after which the authors used a constant value.

These can all be compared against the detection fraction
of the entire data set (training and validation) provided from
using the original Swift pipeline of Lien et al. (2014). There
is less resolution and large uncertainty on this curve as there
are much fewer samples (O(105) vs O(109)), but we can see
that RF, AB, and NN track it well.

5.2. Model, Parameters, and Prior
In our analysis, as the detection fraction is averaged over

the luminosity distribution, we hold those parameters constant
with x = −0.65, y = −3.00, and L? = 1052.05 erg/s. The
parameters describing the redshift distribution are allowed to
vary with ranges and prior distribution given in Table 4.
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Figure 10. Fdet(z) as computed by the three different MLAs used as well
as the constant flux cut and an analytic form used in Howell et al. (2014).
The detection fraction of all data provided for training and validation is also
shown. This is calculated under the assumption of the particular luminosity
function used in this study and may change significantly for other choices of
the luminosity function parameters.

Parameter Min Max Prior
n0 0.01 2.00 logarithmic
n1 0.00 4.00 flat
n2 -6.00 0.00 flat
z1 0.00 10.00 flat

Table 4
Prior ranges and distributions for the redshift distribution model parameters.

The population generation code developed in Lien et al.
(2014) was used to generate simulated data for testing pur-
poses. In addition to the above-specified parameters, we also
return the total number of GRBs, Nexp.

5.3. Parameter Estimation Tests
The BAMBI algorithm (Feroz and Hobson 2008; Feroz

et al. 2009; Graff et al. 2012) is a general-purpose imple-
mentation of the nested sampling algorithm for Bayesian in-
ference. We use it to perform Bayesian parameter estima-
tion, measuring the full posterior probability distribution of
the model parameters.

In the ideal case, any X% credible interval calculated from
the posterior distribution should contain the true parameters
∼ X% of the time. We sampled a large number of parame-
ter values from the prior and obtained a posterior distribution
from simulated data generated with each. For each param-
eter, we then computed the cumulative fraction of times the
true value was found at a credible interval of p - as integrated
up from the minimum value - as a function of p. This re-
sult was compared to a perfect one-to-one relation using the
Kolmogorov-Smirnov test. All parameters passed this test,
thus confirming the validity of returned credible intervals.

The posterior distribution for a particular realization of
an observed GRB redshift distribution generated using
{n0, n1, n2, z1} = {0.42, 2.07,−0.70, 3.60} (best-fit values
from Lien et al. (2014)) is shown in Figures 11, 12, and 13 for
the random forest, AdaBoost, and SKYNET NN models, re-
spectively. While the random forest and AdaBoost posteriors
are nearly identical, the SKYNET posterior has small differ-
ences due to the difference in detection fraction. However,
these differences are not major. We can see that n2 is effec-
tively unconstrained due to the low number of observed GRBs
with redshift greater than z1. The true values are marked by

Figure 11. Posterior distribution for simulated data with {n0, n1, n2, z1} =
{0.42, 2.07,−0.70, 3.60} using the random forest classifier for data genera-
tion and detection fraction. Ntot is the total number of GRBs in the Universe
per year. Blue lines indicate true values and dot-dash red lines indicate max-
imum likelihood (i.e. best-fit) values. 2D plots show contour lines every σ
(68%, 95%, 99%). Vertical dashed lines in 1D plots show 5%, 50%, and
95% quantiles, with values given in the titles.

Figure 12. Posterior distribution for simulated data with {n0, n1, n2, z1} =
{0.42, 2.07,−0.70, 3.60} using the AdaBoost classifier for data generation
and detection fraction. Same features as Figure 11.

the blue lines.
We also plot in Figure 14 the distribution of model predic-

tions as specified by the posterior (from RF). In both panels,
we select 200 random models selected from the set of poste-
rior samples (light blue lines) as well as the maximum L(~n)
point (black line). The upper panel shows RGRB(z) (Equa-
tion (13)); the lower panel showsNexp(z)/dz (Equation (17))
and Nint(z)/dz. The lower panel also plots a histogram of
the simulated population of measured redshifts for observed
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Figure 13. Posterior distribution for simulated data with {n0, n1, n2, z1} =
{0.42, 2.07,−0.70, 3.60} using the SKYNET NN classifier for data genera-
tion and detection fraction. Same features as Figure 11.

GRBs. The upper panel clearly shows us the allowed variabil-
ity in the high redshift predictions of the model; in the lower
panel, we see that the detection fraction and other factors con-
strain this variability to consistently low predictions.

These tests show that we can trust the results of an analy-
sis – under the model assumptions, we can recover the true
parameters of a simulated GRB redshift distribution.

5.4. Analysis of Swift GRBs
In Lien et al. (2014), the authors use a sample of 66 GRBs

observed by Swift whose redshift has been measured from
afterglows only or afterglows and host galaxy observations.
These observations are taken from the larger set of Fynbo
et al. (2009) and the selection is done in order to remove bias
towards lower-redshift GRBs in the fraction with measured
redshifts (see Section 4.1 of Lien et al. (2014)). In our final
analysis, we use these 66 GRB redshift measurements as data
that we fit with the models described in this paper.

Using random forests, AdaBoost, and neural network ML
models for the detection fraction, we find posterior probability
distributions for n0, n1, n2, and z1, as seen in Figures 15, 16,
and 17, respectively. The maximum likelihood estimate and
posterior probability central 90% credible interval are given
in Table 5. We also plot in Figure 18 the distribution of model
predictions as specified by the posterior (from RF) as we did
in Figure 14 for the test population.

Parameters n0, n1, and Ntot show mostly Gaussian
marginal distributions and some correlation between n0 and
n1 – larger values of the former lead to lower values of the
latter in order to maintain a constant value for Ntot and sim-
ilar values at the peak of the observed distribution. The data
do not strongly constrain the high redshift part of the distribu-
tion, namely the n2 parameter. The upper panel of Figure 18
clearly shows us the allowed variability in the high redshift
predictions of the model; in the lower panel, we see that the
detection fraction and other factors constrain this variability
to consistently low predicted numbers of GRB observations.
We see a double-peak in z1, not the clear single peak seen in

Figure 14. The distribution of model predictions from the posterior (RF)
for a simulated population of GRBs. 200 models with parameters chosen
randomly from the posterior are shown in light blue lines in both panels. The
maximum L(~n) point is shown in black. The upper panel shows RGRB(z)
(Equation (13)) and the lower panel showsNexp(z)/dz (Equation (17)). The
lower panel also shows the simulated population of measured redshifts for
observed GRBs and Nint(z)/dz for the maximum L(~n) point in dashed
black.

Parameter Method Max Like 90% CI
RF 0.480 [0.247, 0.890]

n0 AB 0.489 [0.249, 0.902]
NN 0.416 [0.238, 0.986]
RF 1.700 [1.155, 2.261]

n1 AB 1.681 [1.146, 2.273]
NN 1.875 [1.030, 2.334]
RF -5.934 [-5.675, -0.238]

n2 AB -5.950 [-5.665, -0.230]
NN -0.483 [-5.598, -0.217]
RF 6.857 [3.682, 9.654]

z1 AB 6.682 [3.603, 9.622]
NN 3.418 [3.215, 9.385]
RF 4455 [2967, 6942]

Nexp AB 4392 [2967, 6822]
NN 3421 [2546, 5502]

Table 5
Maximum likelihood (i.e. best-fit) estimates and central 90% credible

intervals for the redshift distribution parameters as fit to the real set of 66
Swift GRBs (Fynbo et al. 2009; Lien et al. 2014) using each of the MLAs.

the simulated data. One peak occurs around z1 ≈ 3.6, the
best-fit value from Lien et al. (2014) and is more prominent
when using the NN model. This shows a sensitivity to the
detection fraction for this set of GRB observations. A hint of
this can be seen in the posterior plots of Section 5.3 – Fig-
ures 11, 12, and 13. All measured parameters are consistent
with the best-fit values found by Lien et al. (2014).

5.5. Computational Cost
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Figure 15. Posterior distribution for the real set of 66 Swift GRBs using the
random forest classifier for the detection fraction. Ntot is the total number
of GRBs in the Universe per year. The dot-dash red lines indicate maximum
likelihood (i.e. best-fit) values. 2D plots show contour lines every σ (68%,
95%, 99%). Vertical dashed lines in 1D plots show 5%, 50%, and 95%
quantiles, with values given in the titles.

Figure 16. Posterior distribution for the real set of 66 Swift GRBs using the
AdaBoost classifier for the detection fraction. Similar to Figure 15.

The main computational costs of this entire analysis proce-
dure were:

1. Producing the training data

2. Performing MLA model fitting and hyper-parameter
optimization

3. Using the MLA models to compute the detection frac-
tion.

These steps are in roughly decreasing order of cost, from CPU
weeks to days. However, all three are one-time initialization

Figure 17. Posterior distribution for the real set of 66 Swift GRBs using the
SKYNET NN classifier for the detection fraction. Similar to Figure 15.

Figure 18. The distribution of model predictions from the posterior (RF)
for the real set of 66 Swift GRBs (Fynbo et al. 2009). 200 models with
parameters chosen randomly from the posterior are shown in light blue lines
in both panels. The maximumL(~n) point is shown in black. The upper panel
shows RGRB(z) (Equation (13)) and the lower panel shows Nexp(z)/dz
(Equation (17)). The lower panel also shows the distribution of measured
redshifts for observed GRBs and Nint(z)/dz for the maximum L(~n) point
in dashed black.
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costs and can be run massively parallel to reduce wall-time.
After this initialization is complete, however, subsequent

analysis of real or simulated data is performed extremely
quickly. A single likelihood evaluation takes< 0.1 ms, mean-
ing that a Bayesian analysis can be computed in less than a
minute on a laptop. Providing this same kind of accurate mea-
surement of the detection fraction without the MLAs would
take orders of magnitude more time; while O(105) samples
were used for training the MLA mdoels, O(1010) evaluations
were used in measuring the detection fraction as a function of
redshift. The precision of the detection fraction would need to
be reduced significantly to make the overall cost comparable.
Furthermore, we now are equipped with accurate models of
the Swift detection algorithm.

6. COMPARISON TO PREVIOUS WORK

We have developed a machine learning algorithm (simula-
tor) for the detailed Swift BAT long GRB pipeline simulator
developed in Lien et al. (2014). These techniques allow us
to complete a thorough Bayesian analysis of the long GRB
rate redshift dependence using the Fynbo et al. (2009) data
set, improving on the more coarsely sampled study in Lien
et al. (2014). Our results are compatible with those from Lien
et al. (2014) with tight agreement for lower redshifts up to
z ∼ 4 with compatible results and relatively narrow distri-
butions for our n1 and n0 rate parameters. We find values
of n0 ∼ 0.48+0.41

−0.23 Gpc−3yr−1 and n1 ∼ 1.7+0.6
−0.5, consistent

with the best-fit values of n0 = 0.42 and n1 = 2.07 from Lien
et al. (2014). For larger redshifts the model is less constrained;
n2 spans the prior range and z1 is significantly constrained
only at the low-z end. Our general agreement with Lien et al.
(2014) supports their identification of differences between the
long GRB redshift distribution and estimates of the star for-
mation rate (Hopkins and Beacom 2006). Though our analy-
sis indicates that the Fynbo et al. (2009) data do not provide
strong constraints on the rate at high redshift the results seem
to indicate significant differences for z < 4. A follow-up
Bayesian analysis comparing with a two-break model would
allow a more direct comparison with SFR models. We can
also note how our results compare with several other studies
which use GRB observations and subsequent redshift mea-
surements in order to estimate the redshift or luminosity dis-
tribution of GRBs in the Universe.

The paper by Butler et al. (2010) used an extensive set of
GRBs both with and without redshift measurements to fit in-
trinsic distributions for GRB redshift, luminosity, peak flux,
and more. This fitting was performed using PyMC, a python
package for Markov chain Monte Carlo analyses, marginaliz-
ing over all redshifts when no measurement is available; the
log-likelihood function used is un-binned, similar to the one
used in our study. The detection fraction (a.k.a. detection effi-
ciency) used by Butler et al. (2010), however, is a probability
dependent solely on the photon count rate. Their results for
n1, n2, and z1 are consistent with 90% confidence intervals
that we measure.

Wanderman and Piran (2010) performs a careful study of
the GRB rate and luminosity distribution via a Monte-Carlo
approach. This study adopts an empirical probability func-
tion to determine whether a burst is detectable based on the
peak flux. In addition, they also introduce an empirical func-
tion to estimate the probability of obtaining a redshift mea-
surement based on the GRB peak flux. Since we adopt the
same functional form as Wanderman and Piran (2010), it
is possible to compare the values of the same parameters.

However, in this paper we quantify the parameter uncertain-
ties of the GRB rate, and assume an un-changed luminosity
function from Lien et al. (2014), which is different the one
found in Wanderman and Piran (2010). The parameters found
by Wanderman and Piran (2010) are n0 ∼ 1.25, n1 ∼ 2.07,
and n2 ∼ −1.36 (as listed in Table 2 of by Wanderman and
Piran (2010)). These values of n1 and n2 are consistent with
our findings; the value of n0 is at the upper end of our range,
but this difference is likely due to the difference in luminosity
distribution.

Salvaterra et al. (2012) constructs a sub-sample of Swift
long GRBs that is complete in redshift by selecting bursts
that satisfy certain observational criteria that are optimal for
follow-up observations. In addition, these authors select only
bright bursts with 1-s peak photon fluxes greater than 2.6 pho-
tons s−1 cm−2, in order to achieve a high completeness of
90% in redshift measurements. They use this sub-sample to
estimate the luminosity function and GRB rate via maximum
likelihood estimation – using the same likelihood as our study
and marginalizing over a flat z distribution if no value was
measured for a GRB –, and found that either the rate or the lu-
minosity function is required to evolve strongly with redshift,
in order to explain the observational data. The Swift detection
efficiency is modeled as a threshold on the GRB flux. The rate
model fits of Salvaterra et al. (2012) are not directly compara-
ble to ours due to a different functional form based off of the
SFR.

The study of Howell et al. (2014) takes advantage of some
of the work done by Lien et al. (2014) in using the detec-
tion efficiency computed from simulated GRB populations.
The authors perform a time-dependent analysis that consid-
ers the rarest events – the largest redshift or the highest peak
flux – and how these values progress over observational time.
These are used to fit the intrinsic redshift and luminosity dis-
tributions of GRBs and infer 90% confidence intervals. How-
ell et al. (2014) measures a local GRB rate density consistent
with our constraints on n0. Other rate parameters were held
fixed to values obtained by Lien et al. (2014) and are thus also
consistent with our measurements.

Yu et al. (2015) and Petrosian et al. (2015) use sub-sets of
observed GRBs at different redshifts to construct a more com-
plete GRB sample and account for observational biases. This
method is called Lynden-Bells c− method. Each sub-sample
is selected based on the minimum detectable GRB luminosity
at each redshift. Both of these studies find significant lumi-
nosity evolution and a rather high GRB rate at low redshift in
comparison to the one expected from previous star-formation
rate measurements. However, as noted in Yu et al. (2015)
and Petrosian et al. (2015), several additional selection effects
can be the cause of this discrepancy, including the potential
bias toward redshift measurements of nearby GRBs and those
with bright X-ray and optical afterglows. The rate evolution
found by Yu et al. (2015) is not consistent with our results at
low redshift, but is consistent at high redshift due to the large
uncertainty in measuring n2.

Our study is able to improve upon the methodology of these
studies and may be extended to cover the same breadth of
GRB source models to be fit. These improvements are not the
same for all, but in summary involve using a fully Bayesian
model fitting procedure with a likelihood function that does
not involve any binning of observations. Furthermore, the
detection efficiency of the Swift BAT detector can be better
modeled using ML techniques that incorporate all available
information (marginalizing over parameters not under consid-
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eration) than with probabilities dependent solely on the flux or
photon counts. With both of these, not only will we be able
to extract as much information as possible out of GRB detec-
tions and follow-up observations, but such analyses will in-
cur minimal modeling bias while maintaining computational
speed.

7. SUMMARY AND CONCLUSIONS

We have built a set of models emulating the Swift BAT de-
tection algorithm for long GRBs using machine learning. Us-
ing a large set of simulated GRBs from the work of Lien et al.
(2014) as training data, we used the random forest, AdaBoost,
support vector machine, and neural network algorithms to op-
timize, fit, and validate models that simulate the Swift trigger-
ing algorithm to high accuracy. RF and AdaBoost perform
best, achieving accuracies of 97.5%; NNs and SVMs have
accuracies of 96.9% and 94.7%, respectively. These all out-
perform a threshold in GRB flux, which has an accuracy of
89.6%. The improved faithfulness to the full Swift triggering
removes potential sources of bias when performing analyses
based on the model.

Using these models, we computed the detection fraction
(efficiency) of Swift as a function of redshift for a fixed lu-
minosity distribution. Using this empirical detection fraction
and a model for the GRB rate given by Equation (13), we
fit the model parameters on both simulated redshift measure-
ments and on the redshifts reported by Fynbo et al. (2009). We
find best-fitting values and 90% credible intervals as reported
in Table 5 for each of the top three MLAs. These, expectedly,
are consistent with values found by Lien et al. (2014).

After incurring the initial costs of generating training data,
fitting the models, and computing the detection fraction, we
are able to perform Bayesian parameter estimation extremely
rapidly. This allows us to explore the full parameter space of
the model and determine not only the best-fit parameters but
also the uncertainty and degeneracies present.

8. FUTURE WORK

In performing this analysis, we identified several potential
avenues for further work to improve our model and extend
the analysis performed. Hence, we see this work as just the
first step in advancing GRB research. The easiest extension is
to analyze different samples of measured GRB redshifts that
may contain different selection biases.

To improve our ML models, we would like to continue
building on our training data set and making it more agnostic
with respect to GRB parameters. This would allow for better
modeling of the Swift detection algorithm and its dependency
on different GRB characteristics. The GRB rate model can
also be expanded to include a second break point in redshift.
This would allow for more direct comparison with most fits of
the SFR that use a double-broken power-law model. Bayesian
model selection could then be used to compare these and other
models.

The analyses can be extended to fitting the intrin-
sic luminosity distribution by including GRB luminos-
ity or flux in the detection fraction, Fdet (log10(L), z) or
Fdet (Φ (log10(L), z) , z). The likelihood function can then
jointly describe both the luminosity and redshift distributions
– including luminosity distribution evolution with redshift –
by analyzing measured GRB fluxes and redshifts; the redshift
distribution can be marginalized over if there is no measured
value for a particular GRB. The likelihood function can also
be modified to account for known selection biases, including

the probability of measuring a redshift for each GRB.
Beyond improving and extending the model used in this

paper, a similar analysis can be performed for the study of
short GRBs detected by Swift and other detectors. This work
has demonstrated the value of machine learning for GRB data
analysis and the algorithms and techniques may be extended
to other problems in GRB follow-up and analysis.
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