

Shock Wave Interactions A CFD Study of CUBRC LENS-II Turbulent Experiments

Dinesh K. Prabhu ERC, Inc.

June 20, 2014

AIAA Aviation and Aeronautics Forum and Exposition (AVIATION 2014)

Tech. Session FD-39. Comparison between CFD and Measurements in Hypervelocity Flows Part 2: Shockwave Turbulent Boundary Layer Interaction in High Reynolds Number Duplicating Mach 5–8 Flows

Acknowledgments

- Michael Holden and Timothy Wadhams for the kind invitation
- Michael Wright and Michael Barnhardt of NASA Ames Research Center for encouragement of the work through NASA's ESM (formerly HEDL) program
- NASA Ames Research Center for funding this work via Contract NNA10DE12C to ERC, Inc.

Objective(s)

Entry Systems and Technology Division

Primary

To predict surface distributions of <u>pressure</u> and <u>heat flux</u> using "standard" simulation model(s) for:

- (a) Sharp cone-flare (7° /40°) model
- (b) Hollow cylinder-flare (36°) model

tested at turbulent flow conditions in LENS-II at CUBRC

Secondary

To explore transition (to turbulence) aspects of flow for these configurations

Modeling & Computing Strategy

Entry Systems and Technology Division

Modeling

•v4.03.1 of *Dplr*

- Ideal gas (γ =1.4) for all cases
- Sutherland's law for viscosity of air
- Constant Prandtl number = 0.71
- Isothermal wall, $T_w = 300 \text{ K}$

Strategy

- Perform laminar computations for cone alone (no flare)
 - Extract Re_{θ} from computed flow field using *Blayer*
 - Edge detection method: 99.5% of freestream enthalpy
 - Use Re_{θ} (from laminar solution) to specify onset of transition

Perform turbulent computations for full configuration

- SST model with no compressibility correction
- Dhawan-Narasimha model for transition (intermittency)

Cone-Flare Model

Entry Systems and Technology Division

Cone-flare model has a sharp tip

Sufficient run length to ensure natural transition ahead of flare (interaction region)

7° cone is identical to that of HIFiRE-1 configuration

HIFiRE-1 had a cylindrical section before the flare and the tip was blunt (2.5 mm radius)

Learning Case – HIFiRE-1/Run 30

("Open" Validation Case in AIAA 2013-2836)

Entry Systems and Technology Division

Run #	43	30			
	Mach 7				
$ ho\!/{ m g.m^{-3}}$	38	67			
V/km.s ⁻¹	2.20	2.17			
<i>T</i> /K	250	227			
Re x m 10 ⁻⁶	3.7	9.8			
<i>L</i> /m	2.342	,			
$oldsymbol{H}_{0}$ /MJ.kg ⁻¹	2.65	2.58			
$h_{\scriptscriptstyle W}/H_0$	0.11	0.12			

Run 43 of blind study matrix is comparable to Run 30 (HIFiRE-1)

Comparison of laminar results with experimental data shows transition location at 429 mm

Extract Re_{θ} at x = 429 mm from laminar flow solution

Transition Location (Run 30)

Entry Systems and Technology Division

Re_{θ} at x = 429 mm is \approx 700 – preferred location for Baldwin-Lomax model Re_{θ} = 600 occurs at x = 310 mm – preferred location for SST model

Turbulent Flow Computations – Run 30 (HIFiRe-1)

Blind Study Test Matrix for Cone-Flare Geometry

Entry Systems and Technology Division

Run #	26	28	33	34	45	14	43	37	40	41
	Mach 5 Mach 6		Mach 7		Mach 8					
$ ho\!/$ g.m $^{-3}$	284	141.7	73.7	71.12	111.3	57.21	37.88	43.7	24.22	23.55
V /km.s ⁻	0.89	1.48	0.93	1.58	1.85	1.18	2.20	1.28	1.75	2.10
<i>T</i> /K	76	220	56	170	244	67	250	60	118	167
Re x m 10 ⁻⁶	49	14.5	18.5	9.7	13.1	15.0	5.2	14.0	5.2	4.4
<i>L</i> /m	2.408	2.407	2.395	2.422	2.809	2.440	2.342	2.393	2.404	2.403
$m{H}_{o}\!\!/\!\! ext{MJ.}$ kg ⁻¹	0.47	1.31	0.49	1.41	1.96	0.76	2.65	0.88	1.64	2.37
$h_{\scriptscriptstyle W}/H_{\scriptscriptstyle 0}$	0.64	0.23	0.62	0.21	0.15	0.40	0.11	0.34	0.18	0.13

Wall enthalpy comparable to total enthalpy => sensitivity to wall temperature Cases 45 & 43: Inferred characteristic length at variance with cone axial length of 2.353 m Real-gas effects, if any, probably limited to change in γ , i.e., no chemistry

Transition Locations for Blind Study Matrix

Sample Result: Run 37 (Mach 7)

Sample Result: Run 37 (Global View)

Entry Systems and Technology Division

Only SST computations performed for full configuration

Transition location at $Re_{\theta} = 600$

No laminar or Baldwin-Lomax turbulent solution for full configuration!!!

Sample Result: Run 37 (Local View)

Entry Systems and Technology Division

Only SST computations performed for full configuration

Transition location at $Re_{\theta} = 600$

No laminar or Baldwin-Lomax turbulent solution for full configuration!!!

How Good is the $Re_0 = 600$ Transition Criterion?

- Answer: Good only for one HIFiRE-1 case, but not applicable across all cases!!
- Additional cases from AIAA 2013-2836
 - Experimentally determined transition locations available for some cases
 - For Runs 1, 4, 5, 9, and 10 transition location available
 - For Run 11, flow transitioned before first sensor location (174 mm)
 - These additional cases have been computed as well
- Results from additional calculations can be used to construct a model to make predictions of onset of transition (at least for the cone-flare geometry)
 - Details will be in the written paper
 - Applicability to the cylinder-flare configuration remains to be seen

\mathbf{x}_{tr} vs \mathbf{Re}_{θ} from Additional Computations

	Run #	1	4	5	9	10	11	30
Expt.	x _{tr} /mm	174	404	253	480	454	?	429
CFD	$Re_{\scriptscriptstyle{ heta}}$	349	372	503	331	617	?	713

Transition Onset Predictions for Blind Study Cases

- Re $_{\rm e} \neq$ 600 in all cases
- In most cases, transition occurs earlier
- Cases have not been recomputed with new onset locations

Run#	26	28	33	34	45	14	43	37	40	41
	Mach 5 Mach 6			Mach 7		Mach 8				
x _{tr} /mm	61	145	215	169	353	181	796	223	631	918

Concluding Remarks

Entry Systems and Technology Division

Accomplishments

- All cases computed for both configurations
- Transition imposed at $Re_0 = 600$ for all cases
 - Unfortunately this criterion is solely for the HIFiRE-1 case
- An attempt made to predict transition onset for the 7° sharp cone
 - Cases have not been recomputed with predicted onset locations

Things still left to do

- Recompute all cases with predicted onset locations
- Reconcile differences between SST and B-L for transition onset
- Grid convergence and wall temperature sensitivity studies
- Choice of turbulence models such as Spalart-Allmaras, Lag, ...
 - Can be a collaborative effort with *Overflow* especially since flow medium is ideal gas (γ = constant)
- Real-gas effects, esp. at Mach 7 or 8
 - Most likely to be purely a variable γ effect, but ...

Open issue (in the view of the author)

3D vs Axisymmetric, but 3D is resource intensive

Entry Systems and Technology Division

Backup

Hollow Cylinder-Flare Model

Entry Systems and Technology Division

Cone-flare model has a sharp tip

7° cone is identical to that of HIFiRe-1 Configuration

HIFiRE-1 had a cylindrical section before the flare and the tip was blunt (2.5 mm radius)

Test Matrix for Cone-Flare Geometry

Case	17	16	11	13	18	21
	Mach 5		Mad	ch 6	Mach 7	Mach 8
$ ho\!/{ m g.m^{ ext{-}3}}$	109	213	52.6	158	45.9	23.1
<i>V</i> /m.s ⁻¹	1.46	1.45	1.70	1.68	2.09	2.17
<i>T</i> /K	214	212	202	193	224	184
Re x m 10 ⁻⁶	11.3	22.2	6.7	20.5	6.6	4.1
<i>L</i> /m	2.858	2.846	2.596	2.596	2.590	2.590
$oldsymbol{H}_{0}$ /MJ.kg ⁻¹	1.27	1.26	1.64	1.59	2.41	2.53
$h_{\scriptscriptstyle W}/H_0$	0.24	0.24	0.18	0.19	0.13	0.12

Transition Locations for Blind Study Matrix

Sample Result: Run 18 (Mach 7)

Entry Systems and Technology Division

LE shock and flare shock do not interact Separated flow seen at the foot of the flare

Sample Result: Run 18 (Global View)

Entry Systems and Technology Division

Only SST computations performed for full configuration

Transition location at $Re_0 = 600$

No laminar or Baldwin-Lomax turbulent solution!!!

Sample Result: Run 18 (Local View)

Entry Systems and Technology Division

Only SST computations performed for full configuration

Transition location at $Re_{\theta} = 600$

No laminar or Baldwin-Lomax turbulent solution!!!