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Introduction
Brief Background on Out-of-Autoclave Manufacturing; Research Motivation

• Composite structures for heavy-lift launch 

vehicles projected to be largest composites 

ever built

– No autoclaves large enough to process large 

composite barrel section structures of this size

• Approach considered is to join in-autoclave (IA) 

composite sections with bonded out-of-

autoclave (OOA) doublers to achieve large full-

barrel section

• Two aspects investigated:

1. Strength reduction associated with large flaw 

between OOA and IA materials

2. Predictive capability of fracture methods to 

estimate failure load due to flaw in joint

Longitudinal joint
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Characterization of Material Systems
Composite Descriptions

• Panels fabricated with IA curable unidirectional prepreg IM7/977-3 and 

OOA woven fabric T40-800/5320-1

– Both materials produced commercially

• Mechanical tests performed to verify the T40-800/5320-1 material

– In-plane tension (panel 0-degree aligned with axial)

– Compression (panel 90-degree aligned with axial)

– In-plane shear (V-notched method)

– Flatwise tension (out-of-plane)

5-ply OOA-cured laminate

(T40-800/5320-1)

IM7/977-3

Potting compound

(0.1-inch max width)
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Characterization of Material Systems
Bond Property Characterization

• Two panels fabricated to measure Mode I interlaminar fracture 

toughness (GIC) using double cantilever beam (DCB) test

– Finite element modeling used to size the stacking sequence to ensure 

bending stiffness of each cantilever arm was nearly equal

• Six coupons tested

– 2.5-inch flaw (x3)

– 3.5-inch flaw (x3)

• GIC consistent between six

coupons

Test of DCB

GIC = 1.3 lbf/in
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Characterization of Material Systems
Finite Element Model Predictions

• Load-displacement response from finite element simulations using 

cohesive elements showed good agreement with experimental 

response

• Response was relatively insensitive to mesh density

Simulations of DCB 

Initial flaw

Flaw progression



7

Fabrication, Test Setup and Results
Panel Fabrication

• Panel segments manufactured by NASA 

Light Spacecraft Structures and Materials 

program

– Radius of curvature = 198 inches

1. Segments joined with splice adhesive

2. Teflon® inserts placed, doublers bonded to 

join panel segment

3. Individual four-point-bending (4PB) 

coupons excised from fabricated 

composite joint
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Fabrication, Test Setup and Results
4PB Configurations

• Two different 4PB configurations used

– 34-inch long (along zero degree ply; core ribbon direction)

– 38-inch long (transverse to zero degree ply; cross-ribbon direction)

• Full panels manufactured then cut into separate samples
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Fabrication, Test Setup and Results
4PB Test Results

• Six specimens of each configuration tested in 4PB

• For each configuration, only half the specimens included the 1.6-inch

diameter Teflon® debond inserts

– Defect flaw size selected based on analysis to ensure failure in jointed region

• Maximum deflections measured at centerline midspans

Overall strength reduction due to flaw inclusion was 9 to 10 percent

Load vs. Deflection (34-inch) Load vs. Deflection (38-inch)
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Fabrication, Test Setup and Results
4PB Test Results (cont.)

• Various failure modes observed in test as a result of whether flaw inserts 

were included

– Core shear failure (only observed in 38-inch unflawed samples)

– Delamination at joint (observed in all flawed samples, and all 34-inch samples)

Delamination growth at joint most likely failure mode encountered in tests
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Fabrication, Test Setup and Results
4PB Test Results (cont.)

• Surface strains measured in joint region 

using Digital Image Correlation (DIC)

• Axial strain fields captured at last frame 

before failure

• Teflon® inserts observed to increase strain 

field on joint seam

Flawed Sample Unflawed Sample

Flawed Sample
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Finite Element Model
Simulation Methodology

• Finite element models (FEMs) using Abaqus 

• 34-inch and 38-inch specimens with and without flaws

• Two-way symmetry and displacement control utilized

12”4”

BC: UY = -1.5”

BC: UY = 0
BC: UZ = 0”

Global CSYS

X

Y

BC: UX = 0”

1”

Example: 34-inch FEM
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Finite Element Model
Simulation Methodology (cont.)

• 4PB loading creates a mixed-mode failure; therefore, necessary to formulate 

some basis for determining appropriate values of Mode II and Mode III 

fracture energies (GIIC and GIIIC)

– Analyses run for (1) GIIC = 1*GIC, (2) GIIC = 2*GIC, (3) GIIC = 3*GIC

– GIIC ≈ GIIIC

Facesheets

Core

Doubler Plies

Adhesive Splice
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Finite Element Model
Cohesive Element Formulations – Abaqus UEL

• First cohesive layer modeling methodology simulates an irreversible 

exponential constitutive law for the interface

• Solid elements collapsed to zero thickness

• Flaw  (or “debond”) region uses UEL while bonded region uses Abaqus 

built-in solid cohesive elements

Composite Doubler

Bond Layer

Composite Facesheet

Collapse bond 

layer

Bond Doubler to Facesheet Final Configuration

Core
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Finite Element Model
Cohesive Element Formulations – Surface-based Cohesion

• Second cohesive layer modeling 

methodology utilizes surface-based 

cohesive behavior using built-in Abaqus 

contact formulation

• Flaw region utilizes frictionless tangential 

behavior coupled with hard contact normal 

behavior

• Bond region used cohesive behavior to 

transfer stresses across the interface using 

arbitrarily high stiffness

– Assumptions made on max bond strength due 

to lack of experimental data

– Delamination initiation predicted with strength-

based criterion and propagation based on 

fracture criterion (power law)

Elastic Behavior:

Damage Initiation:

BOND

DEBOND

Damage Propagation:

GIC

d

t smax



16

Finite Element Model
Failure Criteria

• One metric of modeling procedure was to identify likely failure

mode for each simulation

• Five types of potential failure criteria:

1. Doubler bond failure (debond)

Damage initiation criterion = 6,000 psi

2. Core shear failure in ribbon direction (L)

Damage initiation criterion: 155-210 psi (transverse shear strength)

3. Core shear failure transverse to ribbon direction (W)

Damage initiation criterion: 90-130 psi (transverse shear strength)

4. Facesheet ply failure

Damage initiation criterion: 9,200 me maximum strain

5. Doubler ply failure

Damage initiation criterion: 10,000 me maximum strain
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Finite Element Results
Unflawed Samples

• Analysis of 34-inch samples predicted 

joint failure at peak load of 852 lbf

– Max load seen in test = 781 lbf

– Model prediction within 10 percent

• Analysis of 38-inch samples predicted 

core shear failure at peak load of 724 lbf

– Max load seen in test = 702 lbf

– Model prediction within 3 percent

May indicate that core strength properties were lower than used in analysis

(34-inch)

(38-inch)
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Finite Element Results
Flawed Samples

• All failures for flawed specimens occurred by joint failure due to 

debonding

– No models predict ply failure in facesheet and doubler plies

– No models predict core shear failure in honeycomb core

• For 34-inch specimens, best match to tests is surface-based cohesive 

elements with GIIC = 1*GIC

– Peak load of 759 lbf within 

11 percent of average test peak load

• For 38-inch specimens, best 

match to tests is the UEL 

cohesive elements with 

GIIC = 1*GIC

– Peak load of 604 lbf within 4 percent 

of average test peak load

Peak Load vs. Max Deflection
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Finite Element Results
Bond Damage Propagation

• Analysis closest to tests: 38-inch sample with UEL bond and GIIC = 1*GIC

• Results inspected for damage propagation at joint doubler interface to panels

• Scalar stiffness degradation (SDEG) monitored through analyses

– Bond failure initiates at ~35 percent of maximum displacement applied (~308 lbf)
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Finite Element Results
Surface Strains

• 34-inch specimens show strain in circular debond region ~5-10 percent 

higher in analysis than in test

– Corresponds to the ~11 percent higher peak load predicted in analysis over test

• 38-inch specimen analysis show strain values matching very well with 

tests

– Correspond to within ~1 percent

– Influence of Teflon® inserts seen in strain field

34-inch38-inch



21

Summary

• 4PB configuration with and without flaws tested and analyzed

• Mechanical properties of joint material characterized

• Relative to unflawed samples, test and analysis demonstrated at least

a 10 percent strength reduction due to 1.6-inch flaw between IA

material (IM7/977-3) and OOA material (T40-800/5320-1)

• Analysis in reasonable agreement with test results both with and

without flaws
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Conclusions

• Investigation demonstrates OOA joint is robust to a flaw of a size that is

a significant percentage of the width of the sample

• Concerns of bonding an OOA material to an IA material is mitigated for

the geometries, materials, and load configurations considered

• OOA processing a good potential option

• Investigation demonstrated predictive capability of state-of-the-art

analytical tools available in commercial software for assessing effects

of defects at joint interface
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