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ABSTRACT 

The properties of single crystals of cadmium sulfide as 

radiation detectors are described. It has been found possible 	 - 

to select crystals such that: 

(a) The ratio of increase of conductivity under irradiation 

to the rate of absorption of energy in the crystal is substantially 

Independent of particle energy (over the examined ranges of 500 ev 

to 80 key for electrons and 5 key to 180 key for protons) and of 

the magnitude of energy flux .(over the range from .005 to 

10. ergs/cm2 -sec); and 

(b) The above ratio is substantially the same for protons, 

electrons, alpha particles, x-rays and 7-rays. 

For a driving voltage of 100 volts, typical crystals 

yield currents of 10 ' to	 amperes for each erg/cim2 -sec of 

energy absorbed by the crystal. The threshold of such crystal 

detectors (resulting from dark currents of the order of i010 amp) 

2 
is typically 10 -3 ergs/cm - sec. For selected crystals a 

response-temperature coefficient of -0.25% per degree centigrade 

Is. found for the temperature range -50° C to '+50° C -

A description is given of a complete CdS.. total corpuscular 

energy detector for the study of geomagnetically, trapped 
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radiation by means of a satellite. The detector described has a 

dynamic range greater than 10 4 , a solid angle of 10-3 steradian, 

and a detection threshold of approximately 1 erg/cm 2-sec-sterad. 

A similar detector employing a small magnet for the selective 

exclusion of electrons is also described. 

Noteworthy practical features of these detectors for 

satellite and space probe experiments are: 

(a) Use of bare crystals, without covering foils, in order to 

detect charged particles having energies as low as hundreds of 

electron volts. 

(b) Simplicity of electronic auxiliaries. 

(c) Compactness, lightweight and nechanical ruggedness. 

(d) Low electrical power requirements. 

(e) Conversion of conduction current to the rate of a two-

state relaxation oscillator in order to facilitate telemetric 

transmission of data. 

A pair of such detectors was flown as part of the s-46 satellite 

payload on March 23, 1960, but due to vehicular failure an orbit 

was not achieved and the operation of the CdS detectors was 

observed for only, six minutes of flight. 
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I. INTRODUCTION 

One of the leading instrumental problems associated with 

the study of the geomagnetically trapped particles is the 

development of a simple detector capable of responding directly 

to the great flux of low energy electrons and protons pre-

sumably present in the outer radiation zone,1 

On the basis of preliminary teats in the summer of .1959 

Carl McIlvain proposed the investigation of photoconductive 

crystals as the basis for a new system of detectors. A crystal 

of photoconductive material such as cadmium sulfide satisfies 

the criterion of zero wall thickness and is sensitive to photons 

-	 of a few electron volts energy. The results of an energy 

sensitivity check looked promising. Hence a systematic investi-

gation Into the properties of single crystals. of CdS as particle 

* 
radiation detectors was launched. It is the purpose of this 

paper to summarize the results of this investigation. 

1. Van Allen, J. A., "The Geomagnetically-Trapped Corpuscular 
Radiation", J. Geophys. Research, 64, 1683-1689 (1959). 

* Single crystals of CdS were chosen because they showed a 
sensitivity to 7 key electrons several factors of 10 higher 
than either the sintered CdS or sintered CdSe material. 
Single crystals of CdSe were not available for examination.



At the time of Dr. Mcllwain's suggestion, plans were 

taking shape for a high apogee satellite, for the study of 

trapped radiation (payload designation 8-46) to be built by the 

State University of Iowa in cooperation with the Army Ballistic 

Missile Agency at Huntsville, Alabama (now the George C. 

Marshall Space Flight Center). It was subsequently agreed that. 

the S46 payload would include two detectors employing CdS 
* 

photoconductive crystals as total-energy charged particle 

flux meters. 

It is an additional purpose of the present paper to 

describe the design and construction of practical detectors and . 

the calibration procedures which were developed. 

2

* The photoconductive crystal chosen was the Cl-2 manufactured 
by the .Clairex Corporation of New York. All data in this 
paper were obtained from crystals of this type.



3 

II. CHARACTERISTICS OF PHOTOCONDUCTIVE 

CADMIUM SULFIDE. CRETALS 

A. Principles of Operation 

It is in general true that every insulator and semi-

conductor can. be made more conductive by the absorption of 

electron exciting radiation. 2 Certain substances such as 

CdS, PbS, CdSe, Pbe, PbSe, InSb, Si, and Ge, known as photo-

conductors, show enhancement of conductivity under irradiation 

with electromagnetic radiation in or near the visible spectrum. 

For a number of years the variety of conflicting properties of 

these semiconductors so baffled investigators that little, 

progress was made in understanding their operation. The new era 

of solid state physics that has accompanied the advent of the 

transistor has provided the grounds and language for the under-

standing of the physical principles of photoconductors. The 

following discussion is intended to give the basic theory for 

interpreting the response of photoconductors to ionizing' 

radiation. 

2. Rose, Albert, 'Performance of Photoconductors", in R..G. 
Breckenridge., B. R. Russell, R. E. Hahn (editors), "Photo-
conductivity Conference", Section IA, pp. 3 - 11.8, John 
Wiley and Sons, Inc., New York, 1956, page 3.



A portion of the energy level diagram for an electron in 

a crystal lattice such as that of cadmium sulfide is shown in 

figure 1. The effect of the regularly spaced neighboring atoms 

on the potential field experienced by an electron in a given 

atom is a splitting of the discrete levels into continuous bands. 

Therefore the band structure represented in the diagram is a 

result. of the periodic atomic potentials. The electronic 

current, j, in a band is given by the product. of the charge 

of the electron e, and the electron probability current 

density or,

2m i	
(1) 

e 

where i is the electronic wave function. As a result of the 

form of g in a periodic potential, the net electronic current 

in a band (given by the integral of (1) over the entire band) can 

be shown to vanish for a band completely filled with electrons 

and to be non-zero for a partially filled band. Therefore, only 

a partially filled band can carry current under an applied 

field. The distinction between a conducting crystal and an 

insulating crystal is now clear. An insulating crystal consists 

of a material whose outermost electron-containing band is



5 

completely filled, and a conducting crystal a material whose 

outermost electron-containing band is only partially filled.3 

An unfilled band4s referred to as a conduction band. The con-

duction band may be thought of as an energy state in which an 

electron can move freely in an applied external field. The 

transition of a photoconductor from an insulator to a con-

ductor occurs when electrons lying in the filled valence level 

(or lower levels) absorb energy from incident radiation and 

are excited into the higher energy level conduction band. In

* 
this state the electrons are said to have become free carriers. 

Electrons and holes in the conduction band, however, 

may fall into potential wells, called traps, which lie in the 

-	 forbidden zone between the valence and conduction bands. 

These traps are formed by impurity atoms or other defects of 

the crystal lattice. Electrons falling into shallow traps 

(traps close to the conduction band) may re-enter the conduction 

3. Bube, B. H., "Photoconductivity of Solids", John Wiley and 
Sons, Inc., New York, 1960, page 31. 

* When an electron is excited into the conduction band a hole 

is left behind. This hole is free to. jump from atom. to 
atom and thus an analogous description to that for electrons 
can be given for holes.



band by virtue of their thermal energy. Electrons falling into 

deeper lying traps called bound states or ground states may 

remain there until they recombine with holes and thus end their 

lives as. potential contributors to the photocurrent. 

Because of the possibilities of recombination by . way of 

bound states each free carrier has a certain mean lifetime, t. 

This mean lifetime refers to the time the free carrier spends 

in the conduction band and does not include the time spent in 

* 
shallow traps. 

The lifetime of the free carriers is one of the key 

factors influencing the conductivity of a semiconductor. The 

importance of the free carrier lifetime, 	 in determining 

the response of a photoconductor can be seen by examining 

the basic equations which apply to the current in a photo-

conductor. Consider the steady state situation in a given 

semiconductor. The equation for the current made possible .by 

electron excitation may be assumed to be of the form 

* The lifetime, of a free carrier is not considered to end 
when a free carrier leaves the semiconductor through an 
electrode pince it. is immediately replaced by another of 
like charge at the opposite electrode.



7 

I	 e G N 0	 (2) 

where e is the charge of the electron, N0 is the rate of 

electron excitation in the crystal, and G is a factor con-

taining all other essential parameters. 

Assuming Ohm's law, 

V VCA 
cx 

	

--- I—=	 . 

where V0 is the voltage applied to the sample ., R the 

resistance of the sample, G its conductivity, A x the cross-


	

sectional area, and	 the distance between electrodes. If 

n is the volume density of free carriers (electrons) andp 

their mobility in the conduction band, then 

	

0-1 = net.	 (li.) 

But for the steady state condition the number of free carriers 

per unit volume in the conduction band must equal no, the 

number excited per unit volume per unit time times their mean 

lifetime 

ii. . Rose, Albert, "Performance of Photoconductors", in H. G. 
Breckenridge, B. H.. Russell, E. E. Hahn (editors), "Photo-
conductivity Conference", Section IA, pp. 343, John 
Wiley and Sons, Inc., New York, 1956, page 5.



(5) n = n
0 

Combining equations (24) and (5) . with (3) we have 

V eLln 2'A 
i -
	 C	 '	 X	 6 

I 

Since the average drift velocity is given by 

V 
-	 C 

Ve_ 
,X 

we can see that the transit time for a free carrier moving from 

one electrode to the other is given by 

£2 
T_ vu .	 (7) 

C' 

Solving for V  and substituting into equation (6) we have 

I	 e N -T- .	 (8) 

Comparing equations (8) and (2) we see that 

G =T	 (9) 

The quantity G, often called the gain factor .,-..'is thus the ratio 

of carrier lifetime to the transit time of a carrier between 

electrodes. Equation (9) requires no assumptions about the 

nature of traps. Rewriting equation (2) as

roi 
LII



we 

-	
G	 eN	 (io) 

we note that the gain factor is the ratio of the number of 

carriers crossing the photoconductor per second, lie, to the 

number of excitations in the crystal per second. 

It is often convenient to think of the bound states as 

presenting a certain capture cross section to the free carriers. 

In terms of the capture cross section, s, the recombination 

lifetime may be given by, 

1 
VSN	 (u) 

where ye Is the velocity of the free carriers and N is the 

number density of capturing centers.5 

The process of sensitizing a pure crystal of photo-

conductive material consists of altering the mean lifetimes of 

the free carriers by the introduction of new bound states formed 

by the addition of Impurity atoms into the crystal lattice. 

When either copper or silver is used as an activator for CdS, 

5. Rose, Albert, "Performance of Photoconductors", in H. G. 
Breckenridge, B. H. Russell, E. E.. Hahn (editors), "Photo- 
conductivity Conference", Section IA, pp. 3 -1I 8, John 
Wiley and Sons, Inc., New York, 1956, page 9.
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new bound states which act as hole traps are introduced. 6 The 

mean lifetime of holes is thus reduced, and as a result the 

mean lifetime of electrons is increased. Thus electrons become 

the majority current carriers and the crystal becomes more 

sensitive to ionizing radiation. For example, in pure CdS 

both the electron and hole lifetimes are of the order of 

l0_6 seconds whereas in sensitized CdS the majority-carrier 

lifetime may be as long as 	 seconds and the minority-carrier 

lifetime as short as 10_ 8 seconds.7 

This strong dependence of lifetime on the quantity and 

relative energy levels of traps brings up one of the most 

serious difficulties encountered in using photoconductive 

crystals as detectors of electromagnetic or corpuscular energy 

over wide dynamic ranges, namely the strong impurity concentra-

tion sensitivity of important parameters. Individual crystals 

from any particular lot may vary greatly in their characteristics. 

Some may show a linear dependence of current on radiation 

6. Kittel, Charles, "Introduction to Solid State Physics", 
John Wiley and Sons, Inc., New York, 1956, page 526. 

7. Kittel, Charles, "Introduction to Solid State Physics"., 
John Wiley and Sons, Inc., New York, 1956, page 59.
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-	 intensity while others show a sublinear or even superlinear 

dependence. Furthermore, for a given flux the response of. some 

crystals may change very little with temperature while others 

become markedly less sensitive with increases in temperature. 

The absolute sensitivity or gain factor itself may differ from 

crystal to crystal by several factors of ten. The conclusion is 

that quantitative statements regarding such characteristics as 

linearity must be restricted to specific, individual crystals 

and it should be borne in mind that gross variations of 

characteristics occur among crystals, even though they are 

nominally similar.

B. Radiation Sensitivity 

1. Definition of Terms 

To determine the sensitivity or response of a crystal of 

CdS to a given flux of a particular type of radiation a 

completely empirical approach is taken. The crystal conduction 

current is measured directly under a standard driving voltage. 

For the purpose of crystal calibration, we adapt the following 

definition of crystal sensitivity, S. 

S	 'cD	 (12)
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where I is the crystal current under irradiation, 
'D 

the 

crystal dark current, both measured in amperes with a driving 

voltage of 100 volts, and f is the energy flux in ergs per 

square centimeter per second absorbed in. the crystal. 

2. Electron Sensitivity 

The electron accelerator apparatus used for the deter-

mination of CdS crystal sensitivity to electrons is shown 

diagrainatically in figure 2. The transformer-rectifier high 

voltagepower supply is capable of voltages from 2 to 120 kilo-

volts. The crystal to be irradiated is mounted in the center of 

a Faraday cup that is used to simultaneously monitor the beam 

current. The bottom of the Faraday cup is beveled and painted 

with aquadag to minimize secondary emission. An investigation 

with a suppressor grid indicated that the cup was satisfactorily 

designed so that secondary emission produced an error of less 

than 5 in the beam current measurement. 

Measurements with this accelerator showed that it is 

possible to select Clairex Cl-2 crystals for which the electron 

sensitivity is nearly independent of particle flux from 107 to 

10	 2 
10 electrons/cm -sec and nearly independent of particle energy
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over the range from 2 ke y to 80 key . Mr. G. Pizzella of this 

laboratory, using a different electron gun, has shown that it is 

possible to select crystals for which there is no significant 

change in electron sensitivity down to500ev. 

For convenient use with experimental data from the 

apparatus shown in figure 2, equation (12) may be rewritten as 

(I -i ) A 
c	 D	 (13) 

V 107 

where as before I and 
'D 

are the measured crystal current 

and dark current in amperes at	 100 volts, A is the area of 


the Faraday cup, 
'B 

the total measured beam current, V the 

accelerating voltage and 10 is the conversion factor from joules 

to ergs. 

Typical results obtained with this apparatus are shown in 

figures 3 and 4 Figure 3 shows data for a crystal whose 

sensitivity is independent (within experimental error) of beam 

energy flux over a variation of a factor of 100, using a 

constant accelerating voltage. Figure 1 shows data for a CdS 

crystal whose electron sensitivity is substantially independent 

of particle energy over a range from 2 key to 80 key . Since 

the specific rate of energy loss of an electron in ergs loss, per
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gram per cm  of path, -(dE/d5), diminishes by a factor of about 

20 from 2 key to 80 key, 8 it appears that figure 1 demonstrates 

that S is independent of -(dE/d ). It is, therefore, reason-

able to assume that S. continues to be independent of particle 

energy for all higher energies.* The gradual increase in 

sensitivity evident in figure ii. is characteristic of most of the 

electron data. For the majority of crystals the slope is 

greater and in a fewer number of cases may even be negative. 

In early measurements major sources of error were electron 

been inhomogeneity and instability. Refinements in the electron 

gun including a grid at cathode potential placed in front of the 

filament have improved the beam. An additional source of error 

was the quenching of the crystal photocurrent due to infrared 

radiation from the hot filament. CdS shows a quenching effect 

for photons of energy less than the band gap energy due to 

freeing of trapped holes, making them available for recombination 

8. Fermi, E. (Orear, Rosenfeld, Scheuter), "Nuclear Physics"; 
University of Chicago Press. 

* A. typical crystal used in this work has a thickness equiva-
lent to the extrapolated range of a 500 ke y electron. Higher 
energy electrons therefore lose only a, portion of their 
energy in the crystal. But note that the basic definition 
of 8 is in terms of energy absorbed.
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with electrons.9 A method of coating the filament that eliminates 

the problem was found. The efficacy of this measure was demonstrated 

by comparing the response of the crystal to equivalent white light 

fluxes from a separate source with the filament on and off. 

In practice, the experimental error in the calculated 

sensitivity Is. determined by the scatter of observed points if 

this error exceeds the cumulative apparatus errors. Assuming 

the manufacturer's stated errors of + 2% in both the Keithley 

and Victoreen electrometers and ± 5% in the electrostatic volt-

meter used to calibrate the high voltage power supply, and taking 

^ 5%. as the error in the current collecting accuracy of the 

Faraday cup, the error of the measurements in figures 3 and Ii. Is 

-4- lll.%. Leakage currents were found, to be less than i% for both 

beam current and crystal current. 

3. Proton Sensitivity 

Figure 5 is a graph of Cd.8 crystal sensitivity versus 

proton energy for protons accelerated by the Iowa Cockcroft-Walton 

accelerator. The beam current was monitored by means of a 

Faraday cage mounted on a movable shaft and placed In the exact 

9. Kittel, Charles, "Introduction to Solid State Physics", 
John, Wiley and Sons, Inc., Nev York, 1956, page 529.



position of the crystal. 
*

Ecperimenta1 error is greater here due 

to inhomogeneity of the beam and difficulty in obtaining a stable 

beam at sufficiently low intensities. In spite of this the graph 

shows good grouping of points, with crystal No. 105 showing a 

sensitivity variation of less than a factor of 3 from 20 to 

180 kilovolts and crystal No. 103 showing a variation of approxi-

mately a factor of 3 from 5 to 50 kilovolts. 

On the basis of more recent data taken with a Texas 

Nuclear Corp. 150 kilovolt proton accelerator, Mr. Pizzella 

estimates that it is possible to obtain crystals whose 

sensitivity varies by less than 30% from 5 to 100 key proton 

energy.

Figure 6 shows both proton and electron data for the 

same crystal plotted on the same graph. Both sets of data 

show the same order of magnitude of sensitivity. This result 

has been confirmed for more than 10 other crystals. 

As can be seen from figure 5, proton sensitivity tends 

to decrease with increasing particle energy. This tendency 

is the opposite of that of electron sensitivity, insofar as it 

is meaningful to risk a general statement. 

* Faraday cage apparatus designed by Mr. G. Pizzella.



Ii. Alpha Particle Sensitivity 

The. sensitivity of CdS crystals to 5e3 mev alpha 

particles was measured using a Polonium 210 source. The source 

strength was calibrated by a mica window geiger tube whose 

effective counting area had been previously determined. At 

a point 0.5 cm from the source, the source provided, an alpha 

particle flux of 0.15 ergs/cm 2-see for calibrating the crystals. 

Enploying this sources Mr. William Yeh has measured the alpha 

sensitivity of sane 30 crystals. Table 1 is a partial list 

of the results comparing the alpha sensitivity with the 
LI

electron sensitivity. In nearly every Individual case the 

-	 value of the (energy) sensitivity for alpha particles falls 

within a factor of 2 of its average value for electrons. 

5. X-Ray Sensitivity 

Using accurate Victoreen ionization chambers, Louis 

Frank (Intradepartmental Report 1959) has made a series of cali-

brations of the x-ray beam from a Westinghouse Quadrocondex. 

Using identical absorbers and positions., data have been taken 

on the response of CdS crystals to the x-ray beam.

17 
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Using the relation that one roentgen equals 87 ergs/gm 

in dry air, 10 
and comparing the mass absorption coefficient of 

CdS with that of air we can arrive at an estimate of the x-ray 

energy flux absorbed in the crystal. 

To simplify estimates of the mass absorption coefficient 

and the x-ray beam energy spectrum, absorbers consisting of 0.5 

inches of yellow brass and 0.021 inches of sheet steel were used 

with high beam voltages. The x-ray gun tungsten target has the 

Ka edge at 60 kilovolts; thus with the brass and steel 
1 

absorbers and a voltage setting of 170 kilovolts and the x-ray 

spectrum lies mainly between 100 icy and 170 kv (L. Frank, 

private communication). 

Since the mass absorption coefficients for cadmium and 

sulfur are not given in tables as a continuous function of 

energy, it is necessary to pick a wavelength for which they are 

known and try to obtain a spectrum that has this wavelength as 

a good approximation. This is an acceptable procedure since the 

K edge of cadmium is 27 icy and hence the mass absorption coeffi-

cient is not a rapidly varying function of x-ray energy in the 

10. American Institute of Physics Handbook, McGraw-Hill, New 
York, 1957, pp . 8-251.
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region 100 kv to 170 kv. S. J. M. Allen gives 1.09 and 

0.166 cm2/gxn for the mass absorption coefficients of cadmium and 

sulfur respectively for x-rays of wavelength corresponding to 

127 key. 11 Ifwe let 127 key be representative of our 

100-170 kilovolt spectrum the mass absorption Coefficient of 

CdS is approximately 0.9 cm2/gin. For 100 key the mass absorp-

tion coefficient of air is 0,155.12 The x-ray energy absorbed 

by the crystal in erg/gm-sec is then given by the product of 

the beam flux in R/hr, 87/3600. and the ratio of the mass 

absorption coefficient of CdS to that of air. Values for the 

x-ray sensitivity obtained in this manner agree with values 

for the sensitivity determined by methods previously discussed. 

The x-ray beam also provides a convenient source for 

checking crystal response linearity by changing the distance 

of the crystal from the x-ray target. Figure 7 shows. the 

response of a detector versus the beam intensity for a constant 

x-ray energy. 

11. Compton., A. H., and Allison, S. K., X-Rays in Theory and 

Experiment ., D. Van Nostrand Co., 1955, Appendix IX. 

12.. McGlnnies, R. T., X-Ray Attenuation Coefficients from 
10 key to 100 Mev, National Bureau of Standards Circular 
583 Supplement.
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6. Temperature Effect on Sensitivity 

The effect of temperature on the sensitivity of CdS 

crystals was measured during irradiation by beta particles and 

by light sources. Figure 8 shows the response of four crystals 

as a function of temperature to beta particles from a 1 milli-

curie T12014 source. For selected crystals a typical variation 

in sensitivity is -0.25% per degree centigrade from -50° C to 

+50° C. All such measurements were made at a pressure of 25 mmmi 

of Hg to reduce moisture condensation on the crystals. When 

the sensitivity is defined as in equation (12) the thermal 

variation of the dark current does not affect the temperature 

-	 coefficient of S.

7. Maximum Tolerable Radiation Flux 

For a particle beam flux exceeding 10 ergs/cm 2-see a 

peculiar effect is noted: viz., the response time of the Cd.S 

crystal is radically lengthened such that upon removal of the 

radiation, the photocurrent remains at the level prevailing 

during the irradiation. Days are required for the crystal to 

return to the normal dark current condition. The effect exhibits 

a gradual onset with slight increases in the response time be.-
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coming apparent at fluxes as low as approximately 5 ergs/cm2-sec. 

The effect has been observed for both electrons and protons 

but iiot for x-rays or light at comparable energy fluxes. 

To date there is no satisfactory theoretical explanation 

for the effect. Surface heating is ruled out by the fact that 

the joule heating for the induced current Is several factors of 

ten greater than the heating due to particle energy loss and 

yet the effect persists when there is no applied electric field 

during the Irradiation. Electrons of energy for which the 

effect is observed (as low as 3 key) are not individually capable 

of transferring enough energy to the crystal atoms to remove 

them from the lattice. This Is not true fpr protons, however. 

In practice the problem is evaded by the use of a 

geometric factor which limits the anticipated maxiiuum radiation 

flux to less than 10 ergs/cm 2-sec. 

8. Consistency of Observed Sensitivities and

Accepted Values for Mean Lifetime 

By the data thus far presented it has been established 

that sensitized single crystals of CdS can be selected that have 

an Intrinsic radiation sensitivity that Is nearly independent of 

particle energy and mass. This sensitivity is found to be
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typically 10 to 10_ 6	 m amp/erg/c2_sec.* Combining equation (9) 

with equation (io) we have 

V - ' C 
T - e 0 

Solving equation (12) for I and substituting in equation (iii.) 

(neglecting the usually much smaller dark current), we have, 

TS.f 
e 0 

Or by equation (7)

S.f 

V,1eN	
(16) 

The number of exited carriers introduced into the crystal con-

duction band per second may be approximated by 

f  
C 
6.2x1013 

N	 =	 E	 (17) 
B.G. 

where f is, as before, the energy flux in ergs/cm 2-sec, 

Ac is the area of the crystal, EBG is the band gap energy 

in ev and 6.2 x 1013 is the conversion factor from ergs to ev. 

Thus,

(114.) 

(15) 

* At 100 volts crystal voltage.
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2 

Ve Ac 6.2, x 10
13
	 (i8) 

We have an expression for the majority carrier lifetime in terms 

of the measured sensitivity. With the following values: 

S	 10- 	
2_ 

amp/erg/cm sec 

0,2cm 

EBG = 2.Iev 

V	 = , 100 volts 

= 200 cm2/volt-sec 13 

= 1.6 x lo	 coul	 .1 

Ac	 = 0.02 cm  

,- -3	 -3 we have t. = 10-3 	 Bube and others give 10 seconds. 

as a typical majority carrier lifetime in sensitized cdS..hl 

Hence, our values for sensitivity yield lifetimes which are in 

good agreement with those of other researchers. 

13. Bube, R. H., "Photoconductivity of Solids", John Wiley and 
Sons, Inc., New York, 1960, page 269. 

11. Bube, R. H., "Photoconductivity of Solids", John Wiley and 
Sons, Inc., New York, 1960, page 59; and 
Rose, Albert, "Performance of Photoconductors", in H. G. 
Breckenridge, Be R. Russell, E, E.. Helm (editors), "Photo-
conductivity Conference" .. Section IA, pp. 348, John 
Wiley and Sons, Inc., New York, 1956, page 11.



C. Response Time 

The following factors determine how closely the photo-

conductor signal follows time variations in the incident flux: 

(1) Initial flux value. 

(2) Final flux value. 

(3) Time rate of change of flux. 

(14) Previous irradiation history. 

(5) Temperature. 

Dealing first with item (3), let us choose the case that 

is most easy to examine experimentally and which is the most 

severe from the standpoint of the signal misrepresenting the 

actual flux; namely a step function change in incident flux. 

The response time can be defined as the time required for the 

crystal current to come within 10% of the final asymptotic 

value following a stepwise change in incident flux. 

Further, assume that the flux value previous to the 

change has remained. unchanged for a period which is long 

compared with, the response time • This requirement eliminates. 

item (14) as a significant factor. 

Regarding final flux values, two distinct physical 
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processes govern the resonse time. For high final flux values



the response time approaches the free carrier lifetime. For 

low final flux values thermally re-excited electrons from shallow 

traps lengthen the response time by several factors of ten 

(an analogous situation to after-glow in a phosphor). Different 

experimental and mathematical techniques are required to handle 

the two regions of the dynamic range in which each of these 

processes dominates. 

Consider first the high flux, fast response time region 

which begins approximately at crystal currents 100 times dark 

current. The response times are fast enough that they can be 

conveniently measured with an oscilloscope. Figure 9 is a 

schematic diagram of the circuit. Figure 10 is a series of 

photos taken of oscilloscope traces showing the rise and fall of 

the crystal current (upper beam) and the corresponding change 

in glow tube current (lower beam). It is immediately evident 

that the rise and fall response times increase with decreasing 

light levels. This is shown graphically over a wider dynamic 

range in figure 11. Figure 11 also shows the influence of 

temperature on high arid moderate current response time i.e., 

lower temperatures mean larger response times. We conclude that 

response times for which the initial or final current lies in the 

high to moderate range (approximately 10 to 10. amp) can
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readily be measured for each crystal, and in general, response 

times in this class generated by a stepwise change in radiation 

flux (in itself a worst case) are short enough to be ignored on 

a time scale of satellite events. 

For low radiation fluxes (less than approximately 100 

times dark current) the response times lengthen greatly-. 

* 
Figure 12 shows a typical crystal response as a function.of 

time following the complete removal of low level incident 

radiation at time t = 1 second. The response is described by 

log I = log C + a log t 	 (19) 

where C is a constant, t the time and a the slope of the 

curve on a log-log plot. The constant a is less than 1 in 

absolute magnitude and increases numerically with increase in 

initial current. A similar power law is exhibited for the 

current rise following a sudden radiation increase, a Is 

observed to vary by approximately 10% from 0° C to +50.0 C. 

* Here, the crystal analog current has been converted linearly 
to a frequency in a manner to be described in 'section 111k 2.



D. Dark Current 

Following irradiation most of the crystal current is due 

to thermally re-excited electrons from shallow traps. Eventually 

a current value characteristic of the crystal's temperature is 

approached asymptotically. This zero-irradiation - current is 

called the dark current and varies approximately as the 

seventeenth power of the absolute temperature for a crystal 

voltage of 100 volts. For room temperature the dark current of 

-10 selected crystals lies between 10-9 and 10 	 amp. 

E. Temporal Stability 

Over a period of one month aCl-2 was irradiated con-

tinuously with a Thallium 201I beta source (approximately 

0.5 ergs,cni -see). During this period there was no change 

within the accuracy of the electrometer in the crystal 

response, the dark current or response time.

2.8
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III. DETAILS OF THE DETECTOR 

The following is a description of the two total corpuscular 

energy detectors employing CdS crystals used on the s_46 payload. 

A • The Clairex Cl-2 Crystal Mounting 

The S-46 detectors employed the Clairex Cl-2 which is a 

single crystal of CdS mounted on a ceramic disc i/li- inch in 

diameter. A cylindrical lucite encapsilant 1/2 inch long and 

1/4 inch in diameter supports the disc and the wire leads. The 

electrodes are indium and solder. The crystals are typically 

2 mm x 2 nmi and vary in thickness from 0.5 mm to 0.2 mm. 

B. Mounting Details and Characteristics 

of the Detector 

Figure 13 is a diagram showing a cross section of the 

detector. The crystal itself is mounted in an open-end lead 

casket (wall thickness = 2 gm/cm 2 ) and looks out through the 

solid angle defining aperture and a series of light baffles. 

1. Geometric-Factor 

By the definition we have adopted for sensitivity the 

effective area of the crystal itself becomes one of the
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parameters determining S and hence the usual equation for the 

effective geometric factor, G, 

G =
	

(20) 

where A. is the effective area of the detector and SI the solid 

angle, reduces to 

G =
	

(21) 

For a unidirectional energy flux, F, in ergs/cm 2_ster-sec, we 

write

IC 
F=f= C_S 

or	 F
	

IC

	 (22) 

where the approximation sign holds when the crystal current due 

to radiation is well above the dark current. Thus the uni-

directional energy flux sensed by the detector is merely the 

crystal current divided by the product of the detector solid 

angle and the crystal sensitivity. 

fl Is chosen on the basis of an estimate. of the maximum. 

anticipated energy flux, Fmax To avoid the damage effect de-

scribed In the previous section we choose P such that
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-	 f	 = 10 ergs/cm 2-sec. 
max 

On the assumption that F	 for geomagnetically trapped radia- 
max 

1.	 * 
tion is 10 ergs/cm 

2 
-ster-sec,	 becomes 10_

Q
 ' steradians. 

The solid angle is defined by an aperture 0.107 cm in diameter 

and 3 cm from the crystal, so that jj is 10 ster. 

In order to compute the opening angle corresponding to 

this solid angle it is necessary to adopt a value for the 

effective diameter of the irregular shaped crystal. A typical 

value of 0.2 cm yields a total opening angle of approximately 

6 degrees.

2. Dynamic Range 

Having chosen fl, the dynamic range of the detector is 

determined by the sensitivity, the dark current and the maximum 

* This estimate of F 
max 

is derived from a comparison of the 

particle energy density and the energy density of, the 

magnetic field E8r. 
The estimate includes an assumption of trapped electron 

velocity of 1010 cm/sec and a maximum outer zone trapping 

field strength of 0.02 gauss.
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current through equation (22). For a crystal of sensitivity 

o- ainp/erg/cm2-sec and dark current 10 	 amp, 

F	 1 erg/cm 2-ster-sec. 
'nj-n 

The maximum current is set by a 10 megobni precision resistor 

at 10 aip. Therefore, 

F	 =105erg/cm 2-ster-sec. max

3. Effectiveness of Light Baffles 

The CdS crystal being sensitive to visible and ultra-

violet light, steps must be taken to avoid stimulation of the 

detector by sunlight, moonlight and earth light when these 

light sources lie outside the opening angle of the detector. 

A series of knife-edge light baffles designed to minimize 

reflection into the crystal by multiple reflection serves 

this purpose. The edge of each baffle aperture is set 

successively farther back from the line of sight of the 

opening angle. The interior of each baffle is coated with 

Kodak black brushing lacquer. 

A 500 watt slide projector is used to simulate the sun 

to test the effectiveness of the light baffle system. Photo-



metric measurements indicate that the 500 watt projector is 

approximately 1/2 as bright as the sun when used at one foot. 

Figure 14 is a graph showing the detector response to the 

projector as a function of the angle between the axis of the 

light beam and the longitudinal axis of the detector. At an 

angle of 150 off the axis of the detector the projector produces 

a detector response of approximately 5 times the dark current. 

Recent satellite experiments designed around the CdS 

detector include an optical monitor that is identical to the 

particle detectors except for a 2 mm quartz window. 

4. The "Broom" Magnet 

The S-46 scientific payload employed two CdS. detectors. 

The first was open to particles of all energies. The second 

employed a small permanent magnet to sweep electrons of energy 

less than 500 key out of the line of sight of the detecting 

element. Figure 15 shows the position of the magnet in the 

detector assembly. The magnet used was a disc type (magnetized 

along a diameter) with a 1/4 inch hole in the center. A 

grooved aluminum insert was placed in the gap to prevent 

electrons from scattering back into the crystal.

33 



Calibration of the cutoff energy was accomplished by 

mounting a 1 milhicurie Thallium 204 beta source in front of the 

detector and replacing the CdS crystal with a mica window geiger 

tube of approximately the same effective area. The tube used, an 

Anton 223, is capable of detecting electrons of energy as low as 

30 key . Thallium 204 has a maximum energy of 760 key and an 

average energy of approximately 250 key . Counting rates with and 

without the magnet were recorded and a numerical integration 

under the theoretical spectral curve gave the cutoff energy of 

the magnet. Background runs showed that the effects of cosmic 

rays and .bremsstrahlung from the source were negligible. 

Cutoff energies of very close to 500 key were found for 

the magnets of both s-46 flight units. Based on the difference, 

in data obtained from run to run we can estimate the error in i 

this measurement to be ± 50 key . The irregular shape of the 

crystals and imperfect centering of the crystal on the ceramic 

disc are in a large measure responsible for the inaccuracy in 

the measurement. 

The magnetic field strength along the longitudinal axis 

of the detector was measured with a Hall effect magnetometer. 

Calculations of the theoretical cutoff using these measurements

34
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depends strongly on small angles which are difficult to measure 

accurately but in general agreement is within experimental and 

calculational error. 

A cutoff energy of 500 key for electrons corresponds to 

400 ev for protons. At 500 key, electrons are nearly penetrating 

the average crystal so their contribution to crystal ionization 

is decreasing. Thus one has a detector which is sensitive with 

decreasing efficiency to electrons above 500 key but which 

responds to protons above 400 ev. The average crystal thickness 

is equivalent to the range of a 10 mev proton. 

Improved magnet designs for recent detectors have yielded 

similar magnets which have cutoff energies for electrons above 

-	 600 key and yet have stray fields of less than 1 7 at 1 meter 

(1 7	 10 gauss). 

5 . Detector Response to Bremsstrahlung 

Electron bombardment of the satellite shell results in 

the production of x-rays. To minimize the response to these 

x-rays the CdS crystal is mounted in a lead casket whose wall 

thickness is 2 gm/cm2 . In addition a 2 gm/cm2 lead disc is 

mounted immediately behind the solid angle defining aperture
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(see figures 13 and 15). 

The effective solid angle for the x-rays is 

steradians while that for the electrons which produce .them is 

10-3 steradians. The efficiency of conversion of electron 

energy to x-ray energy of all frequencies Is given by 

€ = a t Z.(V+16.3 z) 

where a' is 1.2 ± 0.1 x 10-9 , z is the atomic number of the 

target, and V is the electron voltage. 15
 For a simple-minded 

estimate, irradiation of the equipment by an Isotropic 100 key

'I 

electron beam Is assumed. For 100 key electrons Droducing 

bremsstrahlung on the aluminum wall of the satellite, € = 1.5 x 10. 

An effective absorption coefficient for the x-rays thus produced 

is taken to be 5 cm2/gm. The corresponding attenuation factor 

in 2 gm/cm2 of lead is 5 x 10- 5. 

Hence the ratio of the electron energy flux reaching the 

crystal through the entrance aperture to the x-ray energy flux 

reaching the crystal from Ii. i steradians is of the order of io; 

and since the electron energy is wholly absorbed whereas the 

15. "Handbook of Physics" ., E. U. Condon and H. Odishaw, 
editors: Chapter 8, X-Rays, E. U. Condon, McGraw-Hill 
Book Company, New York, 1958.
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x-ray energy is only partially absorbed by the crystal it appears 

that the detector's output will contain a negligible contribution 

from the x-ray irradiation which accompanies the electron beam. 

An experimental test of this estimate was made by first 

irradiating a bare CdS crystal with a laboratory x-ray beam 

(100 -. 200 key ), then irradiating a complete detector containing 

the same crystal with the same x-ray beam. The .observed reduction 

in, crystal response by the shielding of the detector assembly was 

by a factor of about 39 (far less than the Idealized estimate of 

2 x 10 ). The discrepancy is apparently due to multiple scatter-

ing of x-rays and secondary electrons In the imperfectly 

shielded system. Nonetheless, it appears that with the S-16 

detectors, having a solid angle of 10 3 steradiañ, the direct 

electron contribution will probably exceed the x-ray contribu-

tion by an order of magnitude for actual outer zone conditions. 

Future detectors should be critically examined for the efficacy 

of the shielding In order to Improve this ratio.
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C. Associated Electronics 

1. Conversion of Crystal Current

to Pulse Form 

The current resulting from the change in conductivity of 

the crystal is readily converted to pulse code modulation form 

for ease of data handling. The conversion is performed by a 

simple neon glow tube relaxation oscillator (after a method by 

Vernov,	
16 et al. for monitoring photomultiplier tube anode 

currents). Figure 16 is a schematic of the circuit including 

the pulse amplifier. Current through the crystal determines the 

charging rate of the capacitor and hence the firing rate of the 

neon tube. Pulses from a voltage divider in the discharge 

path are inverted and shaped by a saturating bootstrap 

amplifier used to drive a 9 stage set of binaries. 

As shown by figure 17, the frequency of the relaxation 

oscillator is proportional to the crystal current over a 

dynamic range of greater than 1011. Hence one can write 

'C = K/'
	

(23) 

16. Vernov, S. N., Special Lecture, Fifth General Assembly of 
C.S.A.G.I., Moscow, July 30-August 9, 1958.
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where is the frequency of the relaxation oscillator, or 

detector frequency, and K is the proportionality constant. 

Combining this with the defining equation for sensitivity we 

have

/f	 S 

	

KZ	 (2!) 

where f is, as before, the particle energy flux. f is found 

from the energy flux F in ergs/cm 2-ster-sec by F = f. 

Therefore we write 

F= ø(F)z/
	

(25) 

by defining

K(Ic) 
0	 ZS(I) •	 (26) 

K is typically lO ampere-seconds. For a detector with an 

average electron-proton sensitivity of lO amp/erg/cni2-sec 

and an f of lO steradians, equation (25) becomes 

F = lO 

which provides a convenient rule of thumb for approximate 

conversion from detector output frequency to total energy 

flux.



In a more realistic case, as we have already seen, S is 

not a constant but a quantity which can be tabulated as a 

function of energy flux, f (i.e. ia). (Crystals are selected 

so that S is as nearly independent of particle kinetic energy 

as possible. Any dependence which exists must be neglected since 

the particle energy spectrum is unknown.) The calibration curve 

for the current to frequency converter may not be exactly linear 

but in any event yields K (ia). Therefore from S (r) or 

equivalently S (ia) and K (IC) we can obtain 0 (f) and 

hence 0 (F). From equation (25) F vs 71 can be graphed. 

Figure 18 is such a graph for one of the S_46 flight unit 

detectors. For the case illustrated the graph of equation (25) 

is seen to take the form 

F = oV
	

(25a) 

where 0 may now be thought of as a constant whose energy 

dependence has been replaced by the power law ii P. Here 

ci is 103 and P is 0.83. The result is a detector calibration 

law which lends itself to rapid conversion from data to energy 

flux.

It was found that the dynamic range of the current to 

frequency converter was optimum when General Electric Ne 81ts



or Ne 76's were used as the neon discharge tubes and Corning 

glass capacitors were used as the charging capacitor. Carefully 

selected Ne Cl's or Ne 76's are quite temperature stable. The 

frequency produced for a given input current for selected tubes 

varies less than 0.05% per degree centigrade between + 500 C 

and 50- C. 

Proper performance of the relaxation oscillator circuit at 

low currents requires that leakage current across the capacitor 

be as low as possible. During testing, the discharge tubes 

must be isolated from light and the relative humidity must be 

kept low. During the actual construction of the circuits all 

parts must be thoroughly cleaned and there can be no epoxy 

resin or encapsilant film forming a path between the high and 

low impedance points since an insulation resistance of the 

order of 1013 ohms is required. The glass capacitor must be 

selected for low leakage current. 

The size of the capacitor determines the value of K. 

This can be chosen to fit the telemetry system parameters. In 

the case of S-46 (continuous telemetry on all channels) the 

capacitor was chosen to give a maximum frequency of 0.2 cps 

after a scaling factor of 512. Thus the saturation current of 

io amp (determined by a 10 megohm precision current limiting
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resistor in series with the crystal) produced a frequency of 

approximately 100 cps and the crystal dark current corresponded 

to a time between pulses of greater than 100 seconds. The 

capacitor chosen was approximately 4300 ,PP f d but'-depended on 

the firing voltage of the neon tube. Circuits using smaller 

capacitors have a lower "threshold-of-operation current", pre-

sumably because of the lower leakage current. 

2. Power Supply,, Pulse Shaping Amplifier,, and Scalers 

See. figures 17 and 19. 

The power supply, pulse shaping amplifiers and scalars 

used with the CdS detectors on s-46 have been extensively de-

scribed by G. H. Ludwig in his doctorate dissertation.17 .. Briefly, 

the positive 6 volt pulse from the glow tube discharge drives a 

saturating bootstrap amplifier utilizing 2 silicon I'IPN (2N338) 

and 1 silicon PP (2N329A) transistors. The output of the 

amplifier isa negative pulse, Zener-diode-clipped at 3.1 

volts. The pulse duration is approximately 20,usec. The pulse 

is next fed to a series of . 9 base driven scalars engloying 

17 Ludwig, G. H., "The Development of a Corpuscular Radiation 
Ebcerimènt for an Earth Satellite", Ph.D. dissertation, 
State University of Iowa (August 1960).
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2N338 
transistors. A logic circuit which mixes the.outputs of 

the 1st, 5th and 9th scalars shifts the output base voltage by a 

different amount with changes of state at each of these three 

• scalars. Integration of the resulting waveform results in a 

• system of low information rate and wide dynamic range, allowing 

a minimum receiver bandwidth. This system was used with success 

on Pioneers III and IV. 

The 160 volt power supply (see figure 19) is a transistor 

D.C. to D.C. converter employing Zener Diode regulation. 

Table II gives the power and weight specifications of the 

2 CdS detectors used on payload S-46. 

D. Procedure and Criteria for

Selection of Components 

The following is an outline of the procedure for selection 

of coniponentsfbr the S-46 CdS detectors. 

1. CdS Crystals 

(a) Dark Current • The dark current of each crystal is 

recorded and plotted as a function of time following saturation 

with a 100 watt bulb at 1 foot. Crystals with currents less than 

10 amp after 10 mm. are considered suitable for further testing.



Table II 

S-46 CdS DETECTOR ELECTRICAL AND WEIGHT SPECIFICATIONS 

Power (mw) 

Pulse	 160 Volt.	 Stray 

	

Detector Amplifier	 Power	 Magnetic Field 

	

-- 6 volts	 Supply	 (y at 1 meter) 

A	 0.04	 2.0	 1 230	 1.5 

B	 O.o4 O.04	 2.0	 175	 1.0
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-	 This test serves as a relative response time check. 

(b) Mechanical. The epoxy and plastic encapsilation 

material are removed, exposing the bare crystal. A. visual 

inspection is performed. Any sign of crystal breakage or 

electrode imperfection is cause for rejection. 

(C) Temperature Cycle. Using a 1 mc, fl 201'. beta source 

to stimulate the crystals to approximately 100 times dark 

current, the variation of crystal response with temperature 

is recorded. A crystal whose response varies by more than a 

factor of 2 from + 75° C to - 50°C is rejected from flight 

use • The cycle during which the data are. taken is preceded by 

3 temperature cycles over the same range • This test is per-

formed in vacuo to insure against moisture condensation on 

the crystal surface. 

(d) Electron Sensitivity. As a preliminary relative 

electron sensitivity check, the crystals are placed in a jig 

that holds them a standard distance (1.5 cm) from the 

Thallium source. Crystals showing an abnormally low response 

are rejected. (This test is usually performed simultaneously 

with the temperature test.) 

Surviving crystals are then irradiated with the 


electron accelerator previously described. Crystal electron



sensitivity is graphed as a function of particle voltage and flux. 

Crystals are selected first on the basis of constant sensitivity 

vs. voltage. A ratio of Smax 
IS mm = 2 for electron energies from 

5 key to 80 key is allowed. 

The criterion of constant sensitivity with total energy 

flux depends on the number of surviving crystals and the time 

schedule for the payload in preparation. From this point cali-

brations proceed as. described in Section .11. 

The percentage of crystals found acceptable for flight 

use is approximately 10% of the crystals started through the 

testing program.  

2. Neon Discharge Tubes 

(a) Initial Leakage Test. The D.C. resistance of the 

neon discharge tubes is measured at 60 volts (12 volts below 

firing voltage) with the tubes in total darkness. Tubes with 

D.C. resistance of less than 5 x 10 
10 ohmsare rejected. 

(b) Firing Voltage Stability. The neon tubes are 

placed in a circuit identical to that in which they are to be 

used. The variation in the firing voltage is measured by the 

variation in height of the voltage pulses taken from the pulse
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forming resistors. An average variation of + 0.5 volts is 

tolerated. This variation is measured for a fixed set of 

currents covering the useful dynamic range. 

(c) Frequency - versus - Current Linearity and Low 

Current Operation. The frequency - versus - current curve is ob-

tained and tubes shoving marked deviations from linearity are 

rejected. The tubes are checked for proper pulsing with a 

charging current of 	 amps. 

(d) Matching. Following this the tubes are matched 

with the capacitors to give the desired maximum pulse rate, and 

the circuits are constructed. 

(e) Temperature Test. Current versus frequency curves 

are obtained for temperatures at 25° C intervals from + 75° C 

to - 500 C. A variation of io% in the frequency for a given 

current (the lover currents are more temperature sensitive) is 

the maximum allowed. This criterion is not difficult to meet. 

This test serves as a temperature calibration of the current 

to frequency converter. This test is performed in -v-acuo. 

(f) Low Current Threshold of Operation. After the flight 

circuits have been chosen, the current-operation threshold is 

determined by the use of high value resistors. This enables one
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to match the best circuits to the crystals with the lowest dark 

current.

3. Pulse Shaping Amplifiers 

(a) Temperature Test. After aging and testing of the 

components the bootstrap amplifiers are assembled and temperature 

cycled 5 times between - 
500 C and + 750 C. On the 6th tem-

perature cycle data are taken at 250 C intervals on the following 

items

(i) Pulse height (	 3.1 volts). 

(2) Pulse rise time ( <, 2 ,iAsec). 

(3) Pulse width at half height ( Z 15,a sec). 

These quantities must show no change and must have the values 

given.

E. Miscellaneous 

1. Optical Sensitivity of the Detectors and Response 
to Heavenly Bodies 

The optical sensitivity of the CdS crystals chosen for 

flight is obtained for the green light from phosphorous excited
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* 
by a radioactive tritium source. For simplicity in determining 

the light sensitivity we relax our requirement that the f in 

equation (12) refer to the energy absorbed by the crystal. Let 

f now be the incident light flux in ergs/cm 2_ sec.  Light 

sensitivity as so defined is found to be lower than charged 

particle sensitivity by a factor between 2 and 10. Presumably 

this is due to the partial translucence of the crystal. Light 

sensitivity is strongly spectral dependent with the response 
0 

rising sharply near the band gap energy, 5100 A. 

Moon:

According to Sears 18 
full moonlight provides a light 

flux of 0.2 lumens/m2 at the bottom of the atmosphere. This is 

approximately 0.5 ergs/cm 2-sec which lies in the upper two-

thirds of the dynamic range of the detector. This estimate is 

borne out by actual measurement. 

*	 A calibrated light source of this type was purchased from 
the U. S. Radium Corp. It has a surface luminosity of 
1000 microlaniberts. 

18. Sears and Zemansky, University Physics, Addison Wesley 
Publishing Co., 1953-
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Starlight: 

The energy flux of starlight at the earth 
19 is about 

0.003 ergs/cm 2-see. This is a factor of 103 below the energy 

detection threshold. 

Earthlight: 

Allen 
20 gives the reflectivity of the earth as 0.311. 

Also according to Allen, the total solar flux received outside 

the earth's atmosphere at the mean earth-sun distance is 

1.4 x 106 erg/cm 2-sec. The reflected portion of this 0.5 x 

106 erg/cm2-sec is more than enough to saturate the detectors. 

Moonlight Reflected from the Earth: 

If we assume the moon to be a flat disc. receiving 1.4 x 

106 erg/cni2-sec of light radiation from the sun, use 0.07 as., 

the reflectivity of the moon 
20 and take the moon to be a 

point source we find the moonlight flux above the atmosphere 

19. Orear, Jay, "Fundamental Physics", John Wiley and Sons, 
Inc., 1960, page 331. 

20. Allen, C. W., "Astrophysical Quantities", The Athlone 
Press, page 231.
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to be 0.76 ergs/cm2-set (note that since the reflectivity of the 

earth is 0.34, the transmitted light is 66% of this or 

2 0.5 ergs/cni -sec in good agreement with Sear's number). With 

each square cm of the earth reflecting 34% of 0.76 erg per 

second moonlight reflecting from the earth will be visible to 

the satellite borne detector during a full moon. 

Aurorae: 

Based on figures given by Seaton 21, the directional 

Intensity of visible light from a bright (Class iii) aurora is 

of the order of 0.1 erg/cm2 sec sterad, a value considerably 

below the threshold of the 31 1.6 detectors. Hence, it Is 

possible for the detectors to look on an aurora and "see " the 

particles but not the light. 

2. Field Calibration Sources 

Field calibrations can be made with radioactive light, 

gamma, alpha or beta sources. Such sources can be mounted on 

thin rods and Inserted through the aperture .of the detectors. 

A 0.5 me Co60 source a few centimeters from a.crystal provides a 

21. Seaton, M. J. J. Journal of Atmospheric and Terrestrial 
Physics, Vol. 4 (1954), pp. 285-294.
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detectable current at room temperature. Radioactive light 

sources are the simplest. The gaseous tritium source (employing 

a green phosphor) described in the previous section is capable 

of stimulating detector response to a factor of ten above dark 

current. Other light sources that have been used are argon 

glow lamps in conjunction with a constant current generator, 

electroluminescent panels 'with a constant voltage source, and 

tungsten filament lamps with resistance bridges to maintain a 

uniform filament temperature independent of surroundings. The 

effects of infra-red quenching should be borne ' in mind when 

using a hot filament light source as an absolute calibration 

standard.
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IV. FLIGHT DATA 

On the 23rd of March 1960, an unsuccessful attempt was 

made to place the S-46 trapped radiation study package in orbit.17 

During the 500 second lifetime of the payload following launch,0 

data received from the several tracking stations indicated the 

satisfactory operation of the two CdS detectors and in fact the 

entire scientific payload. 

The maximum altitude reached during the brief flight 

(approximately 370 kin) was not sufficient to provide particle 

excitation from the inner belt. The response of the detectors 

* 
shown in figure 20 is primarily due to optical excitation of 

the crystals by light from the sunlit earth and the lateral 

thrust rocket used to push the shroud aside after separation. 

These data proved helpful in the analysis of payload orientation 

and malfunction during injection. The detailed correlation of 

the detector response with the time sequence of injection events 

has been given by G. H. Ludwig (Ph.D. Dissertation 1960) and 

hence will be omitted here. 

There is, however, a small segment of detector response 

(1342/55 Z to 1343/09Z) just prior to second stage ignition 

-	 which cannot be accounted for by optical excitation. It has been 

* COurtesy of G. H. Ludwig.
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suggested by C. E. Mcliwain (private communication) that satellite 

linear motion coupled with the de-excitation of ionospheric oxygen 

and nitrogen ions might provide a significant energy contribution 

to the CdS. response. Ionized oxygen and nitrogen atoms and mole-

cules may bombard the crystal and in so doing de-excite with the 

emission of a photon of typically 10 ev. The photon thus emitted 

would be capable of exciting photoconductivity in the crystal. 

If one assumes an ion density at payload altitudes 22o±' 

5 x 10 ions/cm3 and a final payload velocity of 10 kilometers/sec, 

then ions can deliver energy to the CdS detectors which look in 

the direction of motion at the rate of 1 ergcm -sec at fourth 

stage burnout. At booster burnout the corresponding energy 

would give a flip rate of 0.2 cps in channel A and 0.3 cps in 

channel B. A glance at the graph shows that these are close 

to the observed rates. The fact that detector A contains the 

broom magnet may explain the lower response of this detector. 

22. Artificial Earth Satellites, L. V. Kurnosova, Editor: 
Soviet Ionospheric Studies Using Rockets and Artificial 
Earth Satellites, V. I. Krasovskii, page 4, Plenum 

Press, Inc., 1960.



V. CONCLUSION 

In View of the performance of the CdS total energy 

detector in the laboratory and the brief flight data, it is the 

opinion of the author that. on the occasion of its use, the 

detector discussed will . make a significant contribution to the 

understanding of the earth.' s corpuscular radiation environ-

ment.
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CAPTIONS FOR FIGURES. 

Fig. 1 A schematic energy level diagram for a typical photo-
conductor showing the relative positions of the 
valence and conduction bands and the shallow and deep 
traps in the forbidden zone. 

Fig. 2 The electron gun and beam monitoring setup for 
measuring the electron sensitivity of CdS crystals. 

Fig. 3 Graph showing the independence of crystal electron 

sensitivity to electron beam energy flux. 

Fig. ii. Graph showing the independence of crystal electron 
sensitivity to electron energy. 

Fig. 5 Graph showing the dependence of crystal proton 
sensitivity to proton energy. 

Fig. 6 Graph showing the similarity of crystal electron 
sensitivity to crystal proton sensitivity. 

Fig. 7 Graph showing the linearity of crystal response to 
a 230 1W X-ray beam. 

Fig. 8 Graph showing the response of CdS. crystals to a 
constant intensity beta source as a function of 
temperature. 

Fig. 9 Schematic diagram for circuits used to measure the 
response time of CdS crystals. 

Fig. 10 Oscilloscope traces of the rise and fall times of the 
photocurrent in a CdS crystal following a step func-
tion in the incident radiation. 

Fig. 11 The response time (rise) as a function of final 
photocurrent and temperature. 

Fig. 12 Detector response following the removal of low level 
incident radiation.
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CAPTIONS FOR FIGURES

(continued) 

Fig. 13 A cross sectional drawing of the complete CdS 
detector without magnet. 

Fig.	 Graph showing the response of the detector to a 
500 watt projector at various angles with the 
detector axis. 

Fig. 15 A cross sectional drawing of the complete CdS 
detector with magnet. 

Fig. 16 Schematic diagram of the crystal circuit and pulse 
forming circuit. 

Fig. 17 A typical calibration curve for the current to fre-
quency converter circuit. 

Fig. 18 A typic). calibration curve for the CdS detector 
including the current to frequency converter. 

Fig. 19 Schematic diagram showing the 160 volt power supply 
for the CdS detector. 

Fig. 20 S-46 Launch Data showing the response of the 2 CdS 
detectors to various light sources during the tilt 
program and the high speed stage ignitions. 

Fig. 21 The assembled CdS. detector. 

Fig. 22 An exploded view of the entire detector showing the 
light baffles, the magnet, the crystal and current 
to frequency converter.
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