EMI / EMC Design for Class D Payloads (Resource Prospector / NIRVSS)

Ames Research CenterTRL 7-9: Demonstrated

NASA Ames Instrumentation Workshop

September 16, 2015

Low-noise design is not always costly...

Why would a Class D Instrument care about EMI/EMC?

- Resource Prospector = Rover = Drills, motors, high-noise environment
- Good EMI/EMC Performance ~ Measurement insensitivity to noise
- Ames Procedural Requirement (APR 8070.2), Section 4.4.2
- Fixing noise problems is more difficult \& costly late in the project cycle

What are some low-cost techniques to improve EMI/EMC Performance?

- Document grounding design, know all (or eliminate) loops
- Electrical \& mechanical co-design, focus on packaging (minimize slots \& seams)
- Shield the major noise sources
- Differential signaling, proper termination, twisted pair \& outer cable shields (minimum)
- Power filtering
- Pre-compliance testing at each stage of development

What is pre-compliance testing?

- Bench / lab level, "poor man's" EMI characterization (conducted \& radiated)
- Equipment: Spectrum analyzer, current probe ($\sim \$ 1-4 \mathrm{k})$, EMI sniffer probe set ($\sim \$ 1 \mathrm{k}$)
- Test time: <1 day

We have used these approaches successfully on the RP NIRVSS Instrument

- Characterized prototype via test, implemented design changes, repeated test
- Improved conducted emissions performance by ~59dB
- Identified minor design issues that affect emissions

Next Steps:

- Implemented revision to NIRVSS Power Board, build ETU \#2, retest!

