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Abstract

Spectroscopic ellipsometry (SE) characterization of several complex SiGe1./Si 

heterostrüctures prepared for device fabrication, including structures for 

heterojunction bipolar transistors (HBT), p-type and n-type heterostructure 

modulation doped field effect transistors, has been performed. We have shown 

that SE can simultaneously determine all active layer thicknesses, SiGe1. 

compositions, and the oxide overlayer thickness, with only a general knowledge 

of the structure topology needed apriori. The characterization of HET material 

included the SE analysis of a SiGe layer deeply buried (600 nm) under the 

silicon emitter and cap layers. In the SE analysis of n-type heterostructures, 

we examined for the first time a silicon layer under tensile strain. We found 

that an excellent fit can be obtained using optical constants of unstrained 

silicon to represent the strained silicon conduction layer. We also used SE to 

measure lateral sample homogeneity, providing quantitative identification of the 

inhomogeneous layer. Surface overlayers resulting from prior sample processing 

were also detected and measured quantitatively. These results should allow SE 

to be used extensively as a non-destructive means of characterizing SiGe1/Si 

heterostructures prior to device fabrication and testing. 	 - -



2.. Introduction 

The binary alloy SiGe 1 has been a topic of intense study for electronic 

device applications in recent years. A recent review of growth methods and 

device applications is given in reference 1. One of the most important 

achievements to date was the 75 GHz unity-current-gain cutoff frequency2 (FT) for 

a SiGe1./Si heterojunction bipolar transistor (HBT). Additionally, a variety of 

p-type3 '4 and n-type 66 heterostructures have been reported. In the HBT device, the 

usual configuration is a rather thick silicon cap and emitter layers on top,7'8 

a narrow coherently strained (below 100 nm) SiGe 1 base with x-0.8, and a silicon 

collector, all grown epitaxially on a silicon substrate. In the field effect 

quantum well heterostructure devices, there is a marked difference between the 

p-type and the n-type conduction devices. A key factor in the performance of 

these heterostructures is the lattice mismatch between silicon and SiGe1. 

compressively strained SiGe 1 layer supports quantum hole confinement, while a 

tensile strained silicon layer supports electron confinement. 9 Thus, in the p-

type devices, the structure contains a silicon top layer, a thin coherently 

strained SiGe 1.; (x0.8) undoped conduction layer, and an epitaxial silicon 

buffer. In the n-type devices, the structure contains a complex SiGe buffer, 

usually with composition grading to achieve x .'0.7, grown on a silicon substrate. 

This buffer has an unstrained SiGe1. top layer which becomes the effective 

substrate for the n-type device. The active layers, from top, are a cap anda 

donor layer both of SiGe1. (x..'0.65 to 0.80), a strained silicon undoped channel 

conduction layer, and a SiGe 1 buffer with a constant composition (x' ."0.7). In 

both the n-type and the p-type devices, the thickness of the strained conduction 

layer is kept below the critical value 1'10 so that the layers are coherently 

strained. 

In the research and development of such devices, it is frequently necessary 

to obtain estimates of the structuralquality of the initial material, i.e. 

active layers' thicknesses, SiGe 1 composition, and lateral sample homogeneity, 

prior to device fabrication. 	 These parameters must be determined non-



destructively, since device fabrication and testing will follow. Spectroscopic 

ellipsometry (SE) has been successfully used to evaluate GaAs/AlGa,As," 

GaAs /A1Ga, As / InGa,.As," and InGa,.As / In0 6 l04 s'" heteros tructure s. In these 

studies, the alloy compositions were estimated using the energy shift 

algorithm,'6 which interpolates between experimentally measured dielectric 

functions of discrete alloy compositions using the compositional shifts of three 

key spectral critical points: E 0 , E 1 , and E,. This algorithm requires two items 

of information: a database of measured dielectric functions for discrete alloy 

compositions; and the critical point locations as functions of the alloy 

composition. Because the E 0 and E, critical points are usually at the edge or 

outside the measurement range, this algorithm is most sensitive to value of the 

E, critical point. The similar application of SE, including the energy shift 

algorithm, to SiGe,./Si systems has been hindered by several difficulties. 

First, a reliable SiGe,. database was not available. 	 The only 

experimentally measured database was obtained by Huxnliek et al.'6 However, the 

sample compositions used in this database were not calibrated except by 

ellipsometry.'6 Additionally, because a rotating-analyzer ellipsometer was used 

for the measurements, the high wavelength, low absorption data is unreliable.'6"7"8 

Accurate high wavelength modeling is essential to the analysis of thick SiGe,./Si 

structures such as HBT structures, where only the high wavelengths can penetrate 

to the deep layers. A new SiGe 1 database has recently been obtained by G.E. 

17	 •	 19 Jellison et al., and was successfully applied to the study of Si06Ge06/Si 

superlattices. This database was obtained from thick, relaxed SiGe,. films which 

were grown on silicon and germanium substrates. Samples compositions were 

obtained by electron microprobe and Rutherford backscattering measurements. 

Measurements were taken using a 2°-channel spectroscopic polarization modulation 

ellipsometer which accurately measures low absorption substrates. Data is 

available over a wide spectral range (240-840 rim). 

A second problem relating to SE analysis of SiGe 1 /Si heterostructures is 
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the effective modeling of compressively strained SiGe, layers and tensile 

strained silicon layers. To date, no SE work has been done on tensile strained 

silicon. Considerable work has been done on compressively strained SiGe, using 

photoreflectance 2° and SE1S.l9'2l.22. Two approaches to the study of strain effects 

on SiGe, on silicon have been followed. In the first approach, the strain 

effect on the critical points has been studied by directly measuring the 

dielectric function or its derivatives.'8'20'22 Except for one study, 22 these studies 

have found only an extremely weak strain effect on the E, critical point. This 

result is important, as the energy shift algorithm as applied to SiGe, is also 

expected to be very sensitive to changes in the E, critical point. A strong 

strain effect on the E, location would result in the energy shift algorithm 

giving incorrect x values. In the second approach, the energy shift algorithm 

has been used to test strain effects. Recent work applying the energy shift 

algorithm'8"9'2' to the SiGe,/Si systems showed that the composition of strained 

SiGe,. layers can be accurately determined using relaxed SiGe,. data. 	 n 

absolute error in the value of x of 0.02 or less was obtained for a wide range 

of cbmpositions: x-'0.9, 2' x"O.8,'8 and x0.5.'9 These developments establish the 

basis for using SE in the study of complex SiGe 1. heterostructures, including the 

accurate determination of alloy composition, providing the layers are thin enough 

to permit sufficient light penetration. 

Ellipsometry has not previously been applied to the evaluation of complex 

SiGe,./Si heterostructures of the types typically encountered in the most common 

electronic SiGe,/Si devices. The only complex SiGe,/Si heterostructure SE 

studies previously reported have been two strained-layer superlattice (SLS) 

studies l9'2 . One of these studies2' involved very high (x>0.9) Si content SiGe.1 

sublayers, while the other' 9 involved SLS samples with much lower Si content 

(x0.5)	 In both cases, the SLS period was under 40 rim. mong the issues 

not addressed in previous studies are: the ability of SE to examine thick SiNGe,. 

a/Si structures such as those often seen in HBT samples; the ability of SE to 
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determine the composition of a single buried SiGe 1 layer; simple, effective 

modeling of an air/SiGe,. layer interface for the modeling of heterostructures; 

and the effective modeling of the tensile strained silicon layer encountered in 

n-type heterostructure conduction devices. In this paper we report, for the 

first time, successful use of SE in the evaluation of several SiGe,/Si 

heterostruct.ures used in the fabrication of electronic devices, including 

heterostructures used for the fabrication of HBT, p-type and n-type quantum well 

devices. SE analysis determines the layers' thicknesses in the heterostructures 

and their compositions simultaneously and non-destructively. In modeling the n-

type conduction channel devices, we have found that the strained silicon 

conduction layer can be adequately modeled using the optical constants of relaxed 

silicon.	 Additionally, we have demonstrated the ability of SE to measure 

insulator overlayers and lateral sample homogeneity. - We have shown that SE can 

quantitatively map layers' thickness variations across the wafer, and we have 

qualitatively correlated our homogeneity results with growth conditions. 

2. Experimental 

All samples studied were grown by molecular beam epitaxy (E) on silicon 

substrates. The p-type and HBT heterostructures were grown at 550°C and 335°C 

respectively at Hughes Research Laboratories using a duel e-gun Perkin-Elmer 

(Model 430S) Si E system. The wafer holder was rotated at 15 revolutions per 

minute to promote lateral homogeneity. The ability of this Si MBE system to grow 

high quality SiGe,./Si heterostructures which are close to target structures was 

verified previously19 by growing two 15 period Si 05Ge09/Si SLS samples. These 

samples were analyzed by x-ray diffraction (XRD) and SE.' 9 The XRD spectrum for 

one SLS sample obtained for (004) reflection is shown in Fig. 1. The large 

number of superlattice satellite peaks observable in the figure and the narrow 

full width at half maximum (FWHN) of eachpeak attest to the excellent quality 

of this particular superlattice. Quantitative analysis of the XRD pattern gives 

the superlattice period and the average germanium concentration. Using these two 
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numbers together with the silicon arid germanium shutter opening times, an 

accurate absolute calibration of the silicon and germanium growth rates were 

obtained 

The n-type heterostructures were grown at two laboratories. The first 

sample was grown at University of California Los Angeles (UCLA), also in a Perkin 

Elmer (model 430) Si MBE system, at 550°C, with the silicon grown from an e-gun 

and the germanium from a Knudsen cell. During growth, the samples were rotated 

at a rate of up to 30 revolutions per minute. Growth rates were calibrated by 

growing either silicon or germanium alone and using a mechanical profilometer 

(Dektak) to measure the thickness on the edge of the wafer. In turn, the growth 

rates were used to calculate the thickness and composition of all layers. The 

second n-type heterostructure was treated as an unknown material, assuming growth 

conditions and structure similar to the UCLA sample. 

SE measurements were taken with a rotating-analyzer ellipsometer (RAE) 

described elsewhere.	 This instrument measures the complex reflection ratio 

p=tan(V)e where tan(P) and cos(A) are the conventional ellipsometric parameters 

used to represent the amplitude and phase of p. 100 rotations of the analyzer 

were averaged for each measurement to provide greater accuracy, and a-shutter was 

used to measure and subtract off background noise. Measurements were taken in 

5 to 10 nm wavelength increments. Multiple angles-of-incidence were used, with 

the incident angle always near the principle angle (i.e. 73°-80°) . Specific 

wavelength ranges and incident angles used for each sample measurement are given 

with the results and accompanying figures. 

To obtain layer thicknesses and compositions from the measured tan('P) and 

cos(A) data, a least squares minimization was performed in which the measured SE 

data was fitted to an appropriate model with the quantities to be determined as 

variable parameters. Fit quality was defined by the mean-square-error (MSE): 

M 

	

MSE = _ L. V 1 (tan('I'. ) -tan(T,)) 2 + ( COS ( A i , e) -cos(A ))21	
(1) i,c	 J 2M f
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where M is the number of experimental p measurements; tan( j,e) and CO5(A ie) are 

the experimental parameters; and tan () and cos ( A 1 ,) are the corresponding 

values calculated from the model. In the present work, the model was a layered 

structure atop an infinite substrate, with all layers' thicknesses and SiGe1. 

layers' composition x as variable parameters. Each layer and the substrate were 

assumed to be homogeneous with respect to thickness and optical properties; 

interfaces were assumed completely abrupt; and the substrate was assumed 

optically infinite. The model least square fits were performed using the 

25	 . Marquardt algorithm on a 16 bit personal computer. In addition to a minimum, 

28 the least squares fit provided 90% confidence limits. These estimates take 

into account the gradient of the MSE near the minimum and the absolUte value of 

the MSE, but do not take into account measurement uncertainties or model 

inadequacies.	 Thus, these estimates should only be used for comparative 

purposes, and do not represent absolute error estimates. 

In the present work, the energy shift algorithm, which is described in 

detail in ref 15, was used to model the SiGe 1. dielectric function. We used the 

SiGe1. database of ref 17 because of its wide spectral range, particularly in the 

infra-red, and because of its very reliable composition measurements. However, 

because there are systematic differences in this database between a sample grown 

on silicon and a sample of similar composition grown on germanium, we used here 

only those spectra of ref 17 obtained from films grown on silicon substrates. 

Optical constants of silicon were taken from ref 23. The SiGe1 critical point 

functions used were:19 

E0 (x) = 0.68 + 0.44x	 (2) 

E 1 (x) = 2.357 + 0.9393x	 (3) 

E2 (x) = 4.30	 (4) 

where E0 (x), E 1 (x), and E2 (x) are in eV.	 The E0 (x) function is a linear 

interpolation between the fundamental indirect bandgaps of silicon and germanium. 

The exact value of E0 (x) is not important, as it is completely outside our 

experimental energy range. The E1 (x) and E2 (x) functions were obtained by 

U
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fitting the spectra of ref 17 grown on silicon substrates to critical point 

lineshapes 27 

In this paper, we assumed that the dielectric functions of silicon and 

SiGe1. are not affected by doping. This assumption was based on a previously 

published work on doping effects on the silicon dielectric function showing two 

important points. First, the silicon dielectric function for A^400 run is not 

affected by doping up to a level of 3xl0 2° cm 3 . Second, the locations of critical 

points E 1 and E2 change by only li with doping of -3.5x10' 9 cm, which is the 

highest doping encountered in the present study. Moreover, this highly doped 

layer was present in only one device structure, with all other layers doped below 

the mid 1018 cxn range. 

3. Results and Discussion 

3.1. p-type conduction heterostructure device material 

Fig 2, left side, shows the nominal structure of the Hughes p-type 

heterostructure. Nominal structure is defined as the expected structure using 

growth calibrations of the silicon and germanium sources. This structure is 

typical3 of materials used for p-type modulation doped field effect transistors, 

and is the simplest practical SiGe 1./Si device structure. Only the SiGe 1. layer 

is under strain. In addition, the thin layers which allow significant light 

penetration and the accurately calibrated E growth system make this sample an 

ideal first SiGe 1 device structure for SE analysis. The 2 run oxide is a typical 

thickness for native silicon dioxide on crystalline silicon exposed to room air. 

The sample was measured at 6 angles-of-incidence (73°-77°) over the spectral 

range 300 to 780 run. The sample was not large enough to allow for lateral 

homogeneity measurements. The model for SE analysis along with numerical results 

of the fit are given in Fig 2, right side. Additionally, the experimental 

results tan(F) and cos() are plotted along with the best fit model in Fig 3. 

This figure shows some missing data points near 540 run, due to the inability of 

RAE to accurately measure cos(A)±l.0. Because low to moderate doping does not 
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significantly affect the dielectric function of silicon, SE sees the three top 

silicon layers as a single layer with nominal thickness of 50 nm. Similarly, SE 

cannot differentiate between the silicon substrate and the epitaxial silicon 

layer above it. The result, as shown in Fig 2, right side, is a four variable 

parameters model: the top silicon layer thickness, SiGe,. layer thickness and 

composition x, and the oxide thickness are variables. The quality of the fit is 

excellent throughout the spectrum, as seen in Fig 3, and in the low value of the 

MSE given in Fig 2, right side. Numerical results for the SE fitted parameters 

given in Fig 2 are in good agreement with the nominal values. No large strain 

effects were detected on the Si 080Ge020 dielectric function. This is shown by the 

excellent fit obtained using relaxed SiGe, reference spectra,' 7 which yielded 

a SiGe,. layer composition (x=0.8].2), a value very near the nominal composition. 

This result demonstrates that SE can provide excellent results for a simple, high 

quality SiGe,/Si structure. It also confirms the result obtained by other 

researchers'8"9 '21 that strained SiGe, can be modeled well by the energy shift 

algorithm using relaxed reference spectra. 

3.2. HBT material 

Fig 4, left side, shows the nominal structure for the present HET sample. 

This structure is a little different from a SiGe,. RET structure optimized 2'8 for 

high frequency applications. A typical HBT would have thinner silicon cap and 

emitter layers (-300 to 500 nm total) and the SiGe, base would be -50 nm with 

a graded composition. Our sample has a thick emitter layer to test the ability 

of SE to provide information on a deeply buried SiGe, base. The choice of a 

constant composition base was preferred, due to the very complex nature of the 

analysis required to properly model a graded SiGe, layer. This sample was 

measured by XRD; the diffraction pattern is shown in Fig 5. In this figure, the 

Si substrate and SiGe, peaks are readily observed. Analysis of the XRD 

measurement assuming a coherently strained SiGe1 layer, yielded a composition 

x=0.830 ± 0.002. The nominal structure was also confirmed by secondary ion mass 
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spectroscopy (SIMS). A depth profile was performed. The thicknesses of the 

layers were estimated from the points where the germanium signal dropped to half 

its maximum value. The results were: silicon layer thickness, 590 ± 10 nm; and 

SiGe1 layer thickness (FWHN) 85 ± 10 rim. SE measurements were taken at 4 

angles-of-incidence (740770) over the wavelength range 300 to 780 rim. Because 

there is negligible light penetration through the silicon cap and emitter layers 

below 350 rim, only measurements above 350 rim were analyzed. The model used for 

SE along with numerical SE results for the fitted parameters are given in Fig 4, 

right side. Experimental results tan(') and cos(A) are plotted along with the 

best fit model in Fig 6. As with the p-type conduction device, the two 'topmost 

silicon layers, which differ only in doping concentration, were combined into a 

single nominally 600 nm silicon layer in the SE model. The result is a four 

parameter model identical to that used for the p-type conduction device, except 

for the nominal thicknesses. The resulting MSE given in Fig 4 is much higher 

than that obtained for the p-type heterostructure. This may be due to the 

oscillations in the measurement which were difficult to fit exactly. However, 

- all measured oscillation peak locations were matched by the model, providing good 

evidence that the silicon cap/emitter layer thickness was determined accurately. 

Of the SE numerical results, only the silicon and SiGe1 layer thicknesses agree 

well with the nominal values, and the results of the SIMS profile. The x value 

of the SiGe 1. layer is 0.032 higher than that obtained by XRD and 0.062 above the 

nominal value. Assuming the XPD result is accurate, the 0.032 ± 0.01 error in 

the SE result compared with the XRD estimate may be due to two factors: first, 

as noted earlier strain effects can produce an error of up to 0.02 in x. Second, 

the thick silicon top layers were not penetrated for light below 440 rim. 

Calculating E(x) for x=0.83, the Si 0 Ge017 E1 occurs at 395 rim. Because the 

sensitivity of the dielectric function with respect to x is greatest at photon 

energies at or above E 1 , the shielding of the SiGe 1 base by the silicon cap and 

emitter layers will greatly increase the uncertainty in x in this case. This is 

supported by the associated 90% confidenóe limit, which is 2 times larger than 

the uncertainty on x obtained for any other SiGe1 /Si heterostructure presented 
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in this study. The second parameter where SE disagrees with the nominal 

structure is the oxide thickness, determined by SE to be 4.55 nm. This would be 

extremely thick for native silicon oxide. However, it was later discovered that 

the sample had been previously used in the first step of processing, i.e. a 

150°C, 30 mm dehydration bake in air, photoresist was applied and soft baked at 

90°C for 30 mm and then removed by acetone. Oxidation and residue resulting 

from this processing were detected by SE as an increase in the apparent native 

oxide thickness. 

Because a relatively large section of the HBT structure wafer was available, 

three spots covering a lateral distance of 1.5 cm were measured at a fixed angle-

of-incidence of 77° to examine lateral sample homogeneity. The homogeneity scans 

were taken immediately after the measurement of the original spot, and movement 

of the sample was done using an adjustment on the sample holder to minimize 

errors in alignment and guarantee linear movement across the sample surface. 

These scans, shown in Fig 7, are very similar, indicating the sample is 

homogenous. This is particularly important at higher wavelengths, where the base 

is being penetrated. Base penetration is indicated by the oscillations which 

begin just below 440 nm. These scans were analyzed using the model given in Fig 

4. Results of all three homogeneity scans showed variations much less than the 

90% confidence limits for all four variable parameters. 

The experimental oscillations onset can be used to provide a decent estimate 

of the emitter thickness. The light penetration depth 6 is given by 6=?./4irk, 

where ). is the wavelength and k is the extinction coefficient. As a general 

rule, any interface which is more than 26 deep will not be detected by SE.'6 

Calculating 6 from the reference silicon data, 6=292.9 nm at ).=438 run and 

6=304.5 nm at A=440 nm. Thus, the start of oscillations just below 440 nm gives 

an emitter thickness estimate between 586 nm and 609 nm. This result is in good 

agreement with the nominal value and the SE result and, while not very precise, 

can be obtained with no numerical analysis. 

The analysis of this sample has demonstrated that SEcan be used to study 

HET samples with thick cap/emitter layers, albeit with a slight decrease in 

n
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I1

sensitivity to the SiGe 1. base composition. We have also shown that SE can 

detect very thin insulator overlayers which may inadvertently result from sample 

processing. Clearly, this latter result can be extended to measurement of 

protective insulator layers intentionally deposited on the heterostructure. 

3.3. n-type heterostructure device materials 

Fig 8, left side, shows the nominal structure for the UCLPL n-type 

heterostructure.° This structure is clearly more complicated than the p-type 

device presented previously. The 3.5 m graded buffer provides an effective 

substrate with the same lattice constant as Si 0 65Ge036 . Of the active layers, only 

the 15 nm silicon conduction channel is strained. This silicon layer is under 

tensile strain, a topic which has not previously been studied using SE. The 

sample was measured by SE at five angles-of-incidence (7608O0) over the 

wavelength range 320 to 640 run. The sample was not measured above )=64O run to 

avoid significant penetration of the graded SiGe 1. layer. 

The SE model structure and numerical results for the fitted parameters are 

given in Fig 8, right side. In this model, all SiGe 1 layers were assumed to 

have identical composition, described by a single composition parameter x. This 

assumption is reasonable, as all SiGe1 layers were grown with nominally the same 

composition, by the same E system at essentially the same time. The upper 

SiGe1 cap and spacer layers differ only in doping concentration and were 

combined into a single nominally 40 run layer in the SE model. Because 

measurements were limited to ).^640 nm, light penetration through the graded 

buffer should be minimal, and the 1 m SiGe 1. layer was taken as the effective 

substrate for SE analysis. At 640 run, the light penetration depth of Si066Ge0 

is 6=1.1 m, as derived from ref 17 data. 	 This indicates that at this

wavelength, the 1 tm Si 0 65Ge0 /graded buffer interface was penetrated, but the 

graded buffer/Si substrate interface was not. The Si 065Ge0 /graded buffer 

interface is not a physical discontinuity, however, since the material on both 

sides is Si 0 Ge0 , and so no light will reflect from it. As a result, the 15 rim 
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Si/i zm Si0 Ge0 interface is the deepest interface from which non-negligible 

light intensity will reflect, and therefore the substrate was modeled as SiGe1, 

xO.65, neglecting any contributions to the reflected light intensity from.the 

graded layer. The strainedsilicon layer was modeled using the optical constants 

of relaxed silicon.	 The oxide overlayer was modeled as silicon dioxide. 

Several researchers 1718'2° have examined the surface of SiGe 1. thick films and have 

found the surface composition and structure to be very complex. However, it is 

reasonable to assume the overlayer will be an insulator, and for a very thin 

insulator film, SE determines only the optical thickness n 0d0 , where n0 is the 

insulator refractive index and d0 is the insulator film thickness. Thus, a small 

error in n0 will simply result in a corresponding small error in d 0 . 29 The 

resulting model contains four parameters: three layer thicknesses and the SiGe1 

composition x. The model fit was not particularly good, as shown by Fig 9. The 

MSE is 2 times larger than the Hughes p-type heterostructure device measurement, 

the x value is 0.041 above nominal, and the SiGe 1. thickness is 3.5 nm above 

nominal. 

- - - -

	

	 Because a quarter wafer was available, five spots, covering a lateral

distance of 1.6 cm, were measured at a constant angle-of-incidence of 770, to 

investigate possible lateral inhomogeneity. As with the HBT sample, the 

homogeneity scans were taken immediately after the original measurements shown 

in Fig 9. Sample movement was performed using the.sample holder adjustment 

vernier, and one of the five spots was the same as the original spot (sample 

vernier 97.8) to provide a check on repeatability. The tan(Y) and cos(A) SE 

homogeneity measurement data are shown in Fig 10. Comparison of Fig 10 with Fig 

7, the Hughes HBT homogeneity scans over a similar lateral distance, shows that 

the UCLA n-type heterostructure device has much more lateral inhomogeneity. 

Lateral inhomogeneity was particularly important for our SE measurements, because 

the large experimental angles-of-incidence result in the probe beam covering a 

large surface area. Also, there was a significant difference in surface area 

probed between the 760 and 800 angle-of-incidence scans. Thus the large MSE 
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shown in Fig 8 can be traced to the inhomogeneity of this sample, together with 

the analysis including all scans in the range 76°-80°. For this reason, we re-

analyzed the original measurement (at vernier 97.8) using only the 770 scan, and 

also analyzed each of the five homogeneity scans, all using the same model given 

in Fig 8, right side. Results of these fits are shown in Table I. The fits 

obtained here were generally much better than the five angle-of-incidence fit 

given in Fig 8, except near the edge of the wafer (vernier=34.0), as shown by the 

MSE. Results of both measurements taken at vernier=97.8 (near the wafer center) 

given in Table I, and also the 5 angles-of-incidence fit shown in Fig 8 (which 

was also measured at vernier=97.8) yield very similar parameter values. Table 

I shows that, as the SE light probe beam spot moves • from the wafer center 

(vernier 97.8) to the wafer edge (vernier 34.0), the Si layer thickness remains 

constant within the experimental 90% confidence limits, while the SiGe 1. layer 

thickness decreases by 3.0 nm. The SiGe1 layer thickness is plotted as a 

function of the scan location (given by the sample vernier) in Fig 11. A nearly 

linear thickness gradient is seen. Further discussions with the grower at UCLA 

provided an explanation for these layer thickness gradients. The silicon e-gun 

source is located at an angle -10° from the sample normal, while the germanium 

Knudsen cell is -30° from the sample normal in the opposite direction and 

slightly nearer to the wafer. These location differences should result in a 

SiGe1 thickness inhomogeneity, with a thicker film at the wafer center (even 

after sample rotation), in excellent agreement with the SE measurements. Table 

I also shows that the edge scan (vernier=34.0) agrees most closely with the 

nominal profilometer values. This is because, as mentioned earlier, this MBE 

system was calibrated using profilometry measurements taken near the edge of the 

wafer, where the sample holder leaves an unexposed portion of the substrate from 

which the film thickness can be measured. The nominal values were calculated 

from this calibration, and so they were most accurate near the wafer edge, where 

the calibration was done. 

We have demonstrated, several items with this sample analysis. First, we 

have shown that the tensile strained silicon conduction layer can be adequately 
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modeled using unstrained silicon optical constants. This strongly indicates that 

the silicon dielectric function is not significantly affected by tensile strain, 

as was previously shown for SiGe, under compressive strain. 18"9'2' Second, we have 

shown the SE can obtain specific, quantitative information on SiGe,/Si. 

heterostructure lateral inhomogeneity. The results given here using five scans 

on a quarter wafer could easily be extended to a complete wafer mapping using 

r many scans. The result shown in Fig ii. shows the quantitative nature of the 

lateral homogeneity scans and is an extension of the lateral wafer homogeneity 

study previously performed by SE on GaAs/AlGa,As heterostructures. 3° Unlike the 

GaAs/AlGa,.,As study, in which the samples were extremely homogenous, here we 

successfully obtained quantitative results on an inhomogeneous heterostructure. 

We have also shown that a simple silicon dioxide overlayer, which adds one 

parameter to the model, satisfactorily models the exposed SiGe,. surface. In 

fact, the oxide thickness obtained, 2.5-3.0 run, is very similar to a typical 

native silicon dioxide layer on silicon. 

Because the UCLA n-type conduction device was inhomogeneous, we still wanted 

to measure a high quality, homogenous n-type heterostructure material. We also 

decided not to obtain detailed structural information about this material, so as - 

to test our SE technique. A second sample was supplied by UCLA, but was made in 

another growth chamber. The sample growth method and structure were not known, 

but were believed9 to be similar to the UCLA n-type heterostructure material 

presented previously. The SE measurements were taken at six angles-of-incidence 

(740 79o) over the wavelength range 300 to 800 run. This sample was too small to 

allow for lateral homogeneity measurements. The sample was analyzed using the 

same model used for the UCLA sample (Fig 8). The fit was reasonably good; 

however, clear systematic errors were seen at high wavelengths. For this reason, 

we re-analyzed the measurement, fitting data only in the spectral range 300 to 

600 run to avoid penetrating the graded layer/silicon substrate interface. An 

excellent fit was obtained for this restricted wavelength range. Numerical 

results of the fitted parameters are given in Table II, and the measurement and 

model .are plotted in Fig 12. All parameter values appear reasonable for an n-
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type conduction device, except the oxide. The very thick oxide obtained is 

almost certainly due to residue left over from our own previous sample 

processing, when an antimony contact layer was etched off. The MSE is the lowest 

obtained for any SiGe 1 /Si heterostructure presented in this paper. In this last 

sample analysis, we have demonstrated again the ability of SE to provide an 

excellent fit for'a high quality SiGe 1 heterostructure, this time an n-type 

conduction device with only an approximate knowledge of its nominal structure. 

Also, as with the HBT, we have shown that SE can detect and quantitatively 

measure the effects of sample processing, in this case an antimony etch. 

4. Conclusions 

In conclusion, we have successfully applied SE to the analysis of structures 

used in the most common electronic SiGe 1./Si devices. We have shown that SE can 

provide all the active layers' thicknesses, the SiGe 1. layers' compositions, and 

the insulator overlayer thickness, using simple (e.g. four parameter) models and 

a data inversion algorithm which can be executed on a 16 bit personal computer. 

We have also shown that SE can be used to study wafer homogeneity, demonstrating 

for the first time that SE can quantitatively map lateral inhomogeneity of 

specific layer thicknesses across the wafer. In analyzing the two n-type 

heterostructures, we have applied SE to tensile strained silicon for the first 

time. We found that the strained silicon layer can be represented by the optical 

constants of relaxed silicon, showing that the dielectric function of silicon is 

relatively unaffected by the tensile strain. We have also shown that the 

air/SiGe 1. layer interface can be adequately modeled by a thin 2-3 nm silicon 

dioxide overlayer. In the analysis of the HBT structure, we have shown that SE 

can be used to analyze thick (-600 nm total) silicon cap/emitter layers, albeit 

with a slight decrease in the sensitivity to the SiGe 1 base composition. We 

also observed that SE can be used to obtain a rough estimate of the net 

cap/emitter thickness without numerically inverting the SE data. These results 

should allow SE to be applied extensively as an optical non-destructive means of 

evaluating SiGe1./Si heterostructures.
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Figure CaptionB 

Fig 1. XRD measurement of a calibration SLS sample. The SLS period and average 

germanium composition are derived from these (004) reflection data. e is the 

reflection angle. 

Fig 2. Nominal structure (left) and SE model and results (right) for the p-type 

conduction heterostructure device. x is the silicon concentration in the SiGe1 

layer. 

Fig 3. SE measurement (symbols) and best fit model (lines) for (a) tan(F), and 

(b) cos(A), of the p-type heterostructure device. 

Fig 4. Nominal structure (left) and SE model and results (right) of the HET 

sample. x is the silicon concentration of the SiGe1 layer. 

Fig 5. XRD measurement of the HBT sample using the (004) reflection. e is the 

reflection angle. The left peak is due to the coherently strained SiGe1. layer, 

and the right peak is due to the silicon substrate. 

Fig 6. SE measurement and best fit model for (a) tan(), and (b) cos(A), of the 

HBT sample. Because of the large number of measurements taken to accurately 

determine the oscillations, both the measurement and the model are shown as lines 

in this figure.
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Fig 7. SE measurements of the HBT sample taken at several surface locations 

showing excellent lateral sample homogeneity:	 (a) tan(Y), and (b) cos(A). 

Legend gives sample vernier reading: 	 100 tics = 2.54 cm.	 Insert shows 

approximate measurement locations. 	 ngle of incidence: 77°. 

Fig 8. Nominal structure (left), and SE model and results (right), for the UCLA 

n-type heterostructure. The SiGe 1. composition is nominally identical for all 

layers. x is the silicon concentration in both SiGe 1 layers. 

Fig 9. SE measurements (points) versus best fit model (lines) for (a) tan(F), 

and (b) cos(A), of the UCLA n-type heterostructure device. 

Fig 10. SE measurements of the UCLA n-type heterostructure device taken at 

several locations on the wafer: (a) tan(P), (b) cos(A). Legend gives sample 

vernier reading: 100 tics = 2.54 cm. 34.0 is near the edge of the wafer; 97.8 

is near the wafer center. Insert shows approximate measurement locations. ngle 

of incidence: 77°. 

Fig 11. SiGe 1 cap thickness profile for UCLA n-type heterostructure device, 

calculated from analysis of homogeneity scans of Fig 10 and the 77° measurement 

of Fig 9. Vernier Reading: 100 tics = 2.54 cm. 30 is near the edge of the 

wafer; 100 is near the wafer center. 

Fig 12. SE measurement (symbols) and best fit model (lines) for (a) tan(F), and 

(b) cos(A), of the second n-type heterostructure device. 
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Sample Oxide SiGe1. Si SiGe1.. MSE 
Vernier (rim) (rim) (nm) x xl0 

97.8 3.00 43.2 13.7 .6810 4.46 
____________ ±.10 ±.29 ±.47 ±.0048 ____________ 

97.8 .3.02 43.2 13.6 .6809 4.74 
____________ ±.10 ±.29 ±.48 ±.0049 

79.0 2.91 42.5 13.9 .6827

____________ 

4.01 
____________ ±.09 ±.27 ±.45 ±.0045 

60.0 2.89 41.6 14.0 .6815

____________ 

4.98 
___________ ±.1O ±.31 ±.52 ±.0050 

47.0 .2.81 41.1 14.1 .6805

___________ 

7.73 
____________ ±.12 ±.40 ±.66 ±.0063 ____________ 

34.0 2.56 40.3 14.7 .6707 19.4 
____________ ±.19 ±.63 ±1.07 ±.0108

Table I. Results of SE analyses of UCLA n-type conduction device homogeneity 
scans shown in Fig 10 using SE model shown in Fig 8, right side. The topmost 
97.8 vernier scan is the 770 scan shown in Fig9. Vernier reading: 100 tics = 
2.54 cm; 34.0 is near the wafer edge; 97.8 is near the wafer center. 
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Layer/Composition [	 Parameter Value 90	 Conf. Limit 

Oxide 5.60 .046 

SiGe1 Thickness 62.0 .190 

SiThickness 16.1 .334 

Compositionx .7704 .003 

Trig MSE 3.79xlO -

Table II. Results of SE analysis of an n-type heterostructure device. The 
nominal structure of this device is unknown. )^6OO rim fitted using model of Fig 
8. Thicknesses are in rim.
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