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Dynamic Analysis of Geared Rotors 
by Finite Elements 
A finite element model of a geared rotor system on flexible bearings has been 
developed. The model includes the rotary inertia of shaft elements, the axial loading on shafts, flexibility and damping of bearings, material damping of shafts and the stiffness and the damping of gear mesh. The cbupling between the torsional and transverse vibrations of gears were considered in the model. A constant mesh stiff 
ness was assumed. The analysis procedure can be usedfor forced vibration analysis of geared rotors by calculating the critical speeds and determining the response of 
any point on the shafts to mass unbalances, geometric eccentricities of gears, and 
displacement transmission error excitation at the mesh point. The dynamic mesh 
forces due to these excitations can also be calculated. The model has been applied to 
several systems for the demonstration of its accuracy and for studying the effect of bearing compliances on system dynamics. 

Introduction 

Even though there have been numerous studies on both 
rotor dynamics and gear dynamics, the studies on geared rotor 
dynamics have been rather recent. The study of the dynamic 
behavior of geared rotor systems usually requires the coupling 
between torsional and transverse vibration modes to be includ-
ed in the model, although this is not a problem for rotors 
without gears. 

Although several modeling and solution techniques such as 
lumped mass models and the use of the transfer matrix 
method have been applied to rotor dynamics problems, the 
finite element method seems to be a highly efficient way for 
modeling such systems. In one of the early examples of the 
finite element method, Nelson and McVaugh (1976) used a 
Rayleigh beam finite element including the effects of the 
translational and rotary inertias, gyroscopic moments, and the 
axial load. The work of Zorzi and Nelson (1977) was the 
generalization of the previous study (Nelson and McVaugh, 
1976) to include internal damping. Later, Nelson (1980) 
developed a Timoshenko beam by adding shear deformation 
to the Rayleigh beam theory. This model was extended by 
Ozguven and Ozkan (1983) to include effects such as 
transverse and rotary inertia, gyroscopic moments, axial load, 
internal hysteretic and viscous damping, and shear deforma-
tions in a single model. None of the models described above 
can handle geared rotor systems, although they are capable of 
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determining the dynamic behavior of rotors which consist of a 
shaft supported at several points and carrying rigid disks at 
several locations. 

Gear dynamics studies, on the other hand, have usually 
neglected the lateral vibrations of the shafts and bearings, and 
have typically represented the system with.a torsional model. 
Although neglecting lateral vibrations might be a good ap-
proximation for systems having shafts with small com-
pliances, it was observed experimentally (Mitchell and Mellen, 
1975) that the dynamic coupling between the transverse and 
torsional vibrations due to the gear mesh affects the system 
behavior considerably when the shafts have high compliances. 
This fact directed the attention of investigators to the inclu-
sion of lateral vibrations of the shafts and the bearings in 
mathematical models. Lund (1978) developed influence coeffi-
cients at each gear mesh by using the Hoizer method for tor-
sional vibrations and the Myklestad-prohl method for lateral 
vibrations. He obtained critical speeds and a forced vibration 
response by coupling the results of these two methods. Hamad 
and Seireg (1980) studied the whirling of geared rotor systems 
supported on hydrodynamic bearings. Torsional vibrations 
were not considered in this model and the driven shaft was 
assumed to be rigid. lida et al. (1980) considered the same 
problem by taking one of the shafts to be rigid and neglecting 
the compliance of the gear mesh, and obtained a three degree 
of freedom model to determine the first three vibration modes 
and the forced vibration response due to the unbalance and 
the geometric eccentricity of one of the gears. They also 
reported that their theoretical results confirmed experimental 
measurements. Later, lida et al. (1984, 1985, 1986) applied 
their model to a larger system which consists of three shafts 
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coupled by two gear meshes. Hagiwara et al. (1981) developed 
a simple model that includes the transverse flexibilities of the 
shafts by using discrete stiffness values, and studied the forced 
response of geared shafts due to unbalances and runout er-
rors. They took the damping and compliances of the journal 
bearings into account and assumed the mesh stiffness to be 
constant. 

Another approach in the study of gear dynamics has been to 
use transfer matrix methods. In most of these studies the mesh 
stiffness was taken to be periodic. Daws (1979) developed a 
three-dimensional model considering the mesh stiffness as a 
time varying three-dimensional stiffness tensor. He included 
the force coupling due the interaction of gear deflection and 
time varying stiffness, whereas, he neglected the dynamic 
coupling in the model. As a continuation of this study, 
Mitchell and David (1985) showed that dynamic coupling 
terms were dominant on the dynamic behavior of the system. 
Iwatsubo et al. (1984a) also used the transfer matrix method in 
their models and calculated the force response due to mass un-
balance only for a constant mesh stiffness. Later, they (1984b) 
included the effects of periodic variation of mesh stiffness and 
profile errors of both gears. 

Neriya et al. (1984) extended the model of lida et al. (1980) 
by representing a single gear by a two mass, two spring, two 
damper system which used a constant mesh stiffness. The 
shafts were assumed massless and equivalent values for the 
lateral and torsional stiffnesses of shafts were used to obtain a 
discrete model. Later Neriya et al. (1985) employed the finite 
element method in finding the dynamic behavior of geared 
rotors. They also found the forced vibration response of the 
system due to mass unbalances and runout errors of the gears 
by using modal summation. Bagci and Rajavenkateswaran 
(1987) used spatial finite line-element technique to perform 
mode shape and frequency analysis of coupled torsional, flex-
ural and longitudinal vibratory' systems with special applica-
tion to multicylinder engines. They concluded that coupled 
torsional and flexural modal analysis is the best procedure to 
find natural frequencies and corresponding mode shapes. An 
extensive survey of mathematical models used in gear 
dynamics analyses is given in a recent paper by Ozguven and 
Houser (l988a).

SIIAFFI	
PINION 
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GEAR 

Fig. 1 A typical gear.rotor system 

The objective of this study was to develop a finite element 
program for the dynamic analysis of geared rotor systems and 
to study the effect of bearing flexibility, which is usually 
neglected in simpler gear dynamics models, on the dynamics 
of the system. In the formulation of rotor elements, except for 
gears, the rotor dynamics program ROT-VIB which has been 
developed in a previous study (Ozguven and Ozkan, 1983; 
Ozkan, 1983) was used. However, due-to the coupling between 
torsional and transverse vibration modes, a torsional degree of 
freedom has been added to the formulation, and some special 
features of ROT-VIB have been omitted. 

Theory 

A typical geared rotor system is shown in Fig. 1. The system 
consists of a motor connected to one of the shafts by a cou-
pling, a load at the other end of the other shaft, and a gear 
pair which couples the shafts. Both shafts are supported at 
several locations by bearings. Hence, a geared rotor system 
consists of the following elements: 

(a) shafts, 
(b) rigid disks, 
(c) flexible bearings, 
(d) gears. 

When two shafts are not coupled, each gear can be modeled as 

Nomenclature	 - 

[C] = damping matrix of the 
system	 , km = mesh stiffness coefficient to the pressure line at the 

cm = mesh damping coefficient [Km] mesh stiffness matrix centers of the gear and 
[Cm ] = mesh damping matrix = torsional compliance of the pinion, respectively 

c = modal damping value of the flexible coupling Yg y, = coordinates in the direc-
sth mode 

= ciameters of	 and
k, k , = 

/2
bearing stiffness values tion of the pressure line 

d 1 , d2 driving L1, = lengths of driving and at the centers of the gear 
driven shafts,respectively driven shafts, respectively and the pinion, 

eg , e =	 geometric eccentricities mg, mp = masses of the gear and respectively 
of the gear and the pin- the pinion, respectively [a] = dynamic compliance 
ion, respectively M, M2 = moments due to the matrix 

e, = amplitude of the static dynamic mesh forces 02, 81 = total angular rotations of 
transmission error N = tooth number of driving the gear and the pinion, 
excitation gear respectively	 - 

F5 = average value of force q) = total response of the 0,,, 8g = fluctuating parts of 0 
transmitted (static load) system	 ' and-02, respectively 

F, J = total force vector of the rg, r = base circle radii of the w, 0 g = rotational speeds of driv-
system gear and the pinion, ing and driven shafts, 

= unit imaginary number respectively respectively 
'g ' j = mass moment of inertias t = time = rth natural frequency 

of the gear and the pin- fig, U,, = mass unbalances of the [4'] modal matrix 
ion, respectively gear and the pinion, [$5 

I = sth normalized eigen 
d,	 m = mass moment of inertias respectively vector 

of load and motor, W1, W2 dynamic mesh forces = modal damping coeffi-
respectively Xg, x, = coordinates perpendicular cient for the sth mode 
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The other degrees of freedom defined at nodes p andg have 
not been included in the vector {q, since elements of [KmI 
and [Cm ] corresponding to these degrees of freedom are all 
zero. For the degrees of freedom expressed as 

Cmrp	 Cm	 .CmTg 

Cm T	 Cmrp	 Cmrprg 

CmTp	 Cm	 CmTg 

CmTg	 Cmrprg Cmrg	 CmT J.	
(9) 

Cm 

ECmI=
	 Cmrp 

- Cm

PINION 

_ 1p. 'p 

yp 1 (	 j.

CI

Cm 

	

Yg+rge2+Cgsin 02 	

km 

Fig. 2 Modeling of a gear mesh 

a rigid disk. However, when they are in mesh, these rigid disks 
are connected by a spring-damper element representing the 
mesh stiffness and damping. 

For the formulation of the first three types of elements 
listed above, the existing program ROT-VIB, (Ozguven and 
Ozkan, 1983) was used. ROT-VIB is a general purpose rotor 
dynamics program which can calculate whirl speeds, cor-
responding mode shapes, and the unbalance response of shaft-
rigid disk-bearing systems by including the effects of rotary 
and transverse inertia, shear deformatiozis, iñternãl hsteretjc 
and viscous damping, axial load and gyroscopjc moments. In 
ROT-VIB, the classical linearized model with eight spring and 
damping coefficients are used for modeling bearings, and 
finite elements with four degrees of freedom at each node (ex-
cluding axial motion and torsional rotation) are employed for 
the shaft elements. 

In the present analysis, the formulation used in ROT-VIB 
for these elements was employed with some modifications. 
First, in order to avoid nonsymmetric system matrices which 
result in a complex eigenvalue problem, the gyroscopic mo-
ment effect was ignored and the internal damping of the shafts 
was included only in the damping matrix. Second, the gear 
mesh causes coupling between the torsional and transverse 
vibrations of the system, which makes it necessary to include 
the torsional degree of freedom. Therefore, the mass and stiff-
ness matrices of the system which are taken from ROT-VIB 
have been expanded in the new model to include the torsional 
motion of the shafts. Hence, five degrees of freedom have 
been defined at each node with only axial motion being ex-
cluded. The axial motion, which would be important for 
helical gears, could easily be included in subsequent analyses. 

Gear Mesh Formulation. A typical gear mesh can be 
represented by a pair of rigid disks connected by a spring and a 
damper along the pressure line which is tangent to the base 
circles of the gears as shown in Fig. 2. In this model, the mesh 
stiffness and damping values are assumed to be constant. The 
tooth separation is not considered since the gears are assumed 
to be heavily loaded. By choosing the y axis on the pressure 
line and the x axis perpendicular to the pressure line, the 
transverse vibrations in the x direction are uncoupled from 
both the torsional vibrations and the transverse vibrations in 
the y direction, provided negligible mesh friction. For the 
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system of Fig. 2, the dynamic mesh forces in the y direction 
can be written as 
W, C,,,(jp+po1 

+epwpCosO1 YgrgO2egwgcosO, 
- e,Nwcos(N01)) 

+ km (y + r0, + esin01 Yg rg O2 - e8 sinO2 - e,sin(N01));

(1) 

W2=—W1. (2) 
where W1 and W2 are mesh forces in the y,, and Yg directions 
at the pinion and the gear locations respectively. Here, Cm and km are mesh damping and mesh stiffness values, e and eg are 
geometric eccentricities of the pinion and the gear, and r,, and rg are base circle radii of the pinion and the gear. The angles 0, and 02 are the total angular rotations of the pinion and the 
gear, respectively, and are equal to 

0, O+cIt; O20g+C)t	 (3,4) 
where 0, and °g are the alternating parts of rotations and 
and are the spin speeds of the driving and driven shafts, 
respectively. The displacement e which may be considered to 
be a transmission error excitation, is applied at the mesh 
point. This displacement is usually taken to be sinusoidal at 
the gear mesh frequency, but one could include higher har-
monics also. It has been shown by Ozguven and Houser 
(l988b) that it is possible to simulate the variable mesh stiff-
ness approximately, by using a constant mesh stiffness with a 
displacement excitation representing the "loaded" static 
transmission error. Thus, by choosing e, as the amplitude of 
the loaded static transmission error, the effect of the variable 
mesh stiffness can be a pproximately considered in the model. 

Mesh forces also cause moments about dynamic centers of 
the gears which are equal to 

M, = Wj(r +ecosO,); M2 = W2 (rg +eg coso2 )	 (5,6) 
Here, the initial angular position of geometric eccentricities 
are taken to be zero. The mesh stiffness and dimping matrices 
and the force vector of the system due to gear errors and un-
balances can be obtained by writing the force transmitted as 
the summation of the average transmitted force (static load), 
F's, and a fluctuating component, and then neglecting high 
order terms following the substitution of equations (I) and (2) 
into equations (5) and (6). Defining the degrees of freedom of 
the system at which the gear coupling effect appears, as 

ki)=[ypopygog]T	 (7) 
the additional mesh stiffness matrix which causes the coupling 
effect and corresponds to Eq 1 J can be obtained from equa-
tions (1), (2), (5), and (6) to be 

km kmrp km kmrg 

kmrp 
IKm]= km - kmrp - kmrprg

J
Similarly, the mesh damping matrix can be found to be 
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- km - kmTp km kmTg
(8) 

kmrg	 kmrprg kmrg km1 



Table 1 Parameters of tho system shown In Fig. 1

E 

C 

C 
C, 
C 

C, 

C 

C 
C 

C., 

C, 

C 

C, 

C 
C 
C-
C, 

0.459 Kg-rn2 d1 0.03 rn 

0.549 Kg-rn2 d2	 : 0.02 rn 

0.030 Kg-rn2 Cg	 : 1.2x10 5 m 

Ig 6.28x103 Kg-rn 2 Ug	 : 2.8x10 4 Kg-rn 

m	 : 16.96 Kg e	 : 0.0 

mg : 5.65 Kg U	 : o:o 

r	 : 0.1015 rn 0.0 

rg 0.0564 rn K1i 115.0 N-rn/rad 

L 1 0.78 rn km 2.0x108 N/rn 

L2:0.40rn

	

(q 2 J = [y1, x,, 0,., j' Xg O]T	 (10) 
the force vector due to the gear runouts, the static transmis-
sion error, and the gear mass unbalances U,., and U5 is given 
by

Uoisinwi +F1 

Uocoswt 

[F)= 
—F5ecoswt+rF1 

U5 W5 j flW5 t—F1 	 (11) 

U5Wcosc,5t 

F3e5 cosW5 t - r5F1 

where 

F1 = Cm ( eg wg coswg t—epwp cosc.tp t+ e,NW cos(NWt)) 

	

+km 	 (12) 
Adding the mesh stiffness matrix given by equation (8) to 

the stiffness matrix of the uncoupled rotor system yields the 
total stiffness matrix of the system. The natural frequencies Wr 
and the mode shapes Ur) of the system can be determined by 
solving the governing eigenvalue problem. In the solution, the 
Sequential Threshold Jacobi method was used. 

Forced Response. The total force vector is obtained by 
combining the force vector due to the mass unbalances of the 
shafts and the other disks and the force vector due to the mass 
unbalances of gears and gear errors as given in equation (11). 
This vector is the sum of harmonic components with three dif-
ferent frequencies w, c and (NW), and has the following 
general form 

(F,) = {F,)sinwt+ fF)coswt+ (F55 )sinc,5 t+ (Fcg)cosO.lgt 
+ (Fsm)sin(Np wp t) + {Fcm)cos(Npwpt) (13) 

The total response of the system due to this excitation can be 
written as 

(q)

-	 +Ea5]{F.,5)sinW5t+[a5](Fc9)cosw5t 

	

+ [am]( Fsm) sin ( NpWp t )+[am]( Fcm)cos(Npwpt)	 (14) 
where [cs,,], [cs) and [am] are the dynamic compliance 
matrices corresponding to the excitation frequencies, , w 
and (Nw), respectively, and given by 

(4)sJ(4)s)T 

(w—c,+k,,c,)	 (15) 

[a]=	
(4)SU4)s)r 

	

:	 (w -	 + IW5C5) '
	 (16)

0.24	 lida	 I'_\ 
Present Model	

. 
0.20	 I A 

I I \ 

:':	
,//I	

\\ 

0.00
10 12 14 16	 18 20	 22 24 26	 28 30 

Rotational Speed of Shaft 2 (Hz) 

FIg. 3 Comparison of the theoretical values of the dynamic deflection 
of the driven gear in the pressure line direction with the experimental 
results given by lida et al. (1980) 

n 

[arn=Y. 
(W—MW+iNpWc,) .

	 ( 17) 

Here, (4)) represents the sth mass matrix normalized modal 
vector, n is the total number of the degrees of freedom of the 
system, i is the unit imaginary number, and C is the sth modal 
damping value given by thesth diagonal element of the 
transformed damping matrix [C] where

(18) 
and [4)] is the normalized modal matrix. In this approach it is 
assumed that the damping matrix is the proportional type, 
which is usually not correct for such systems. When the damp-
ing is not proportional, the transformed damping matrix [C] 
will not be diagonal in which case c, will still be the sth 
diagonal element and all nonzero off-diagonal elements are 
simply ignored when using the classical uncoupled mode 
superposition method. Another approach for including damp-
ing in the dynamic analysis of such systems would be assuming 
a modal damping, ,, for eachmode and then replace c in 
equations (15) to (17) by 2 5w.,. However, it is believed that us-
ing the actual values for damping, when they are known, and 
employing an approximate solution technique may result in 
more realistic predictions than assuming a modal damping 
value for each mode. 

Applications and Numerical Results 

Comparison with an Experimental Study. As the first ap-
plication, the experimental set-up of lida et al. (1980) has been 
modeled. As shown in Fig. 1, the system consists of two 
geared rotors, one is connected to a motor with a mass mo-
ment of inertia of.!,,, and the other is connected to a load with 
a mass moment of inertia of 'd Each shaft is supported by a 
pair of ball bearings. The parameters of the system are listed 
in Table I. The gears with inertias I,,, and I are both mounted 
on the middle of the shafts of lengths L 1 and L2 and diameters 
d1 and d2 , respectively. In their study, lida et al. (1980) did not 
specify the length of the second shaft, L 2 , and the properties 
of bearings and couplings. Instead they gave the total tor-
sional stiffness values for driving and driven parts of the 
system and a total transverse stiffness value for the second 
shaft. Therefore, the length of the second shaft, L,, and the 
torsional stiffness of the first coupling, have been 
estimated so that the total values given by lida et al. (1980) 
were obtained. The forced vibration response due to the 
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M

GEAR	 LOAD 

Fig. 4 The system of the second example (dimensions are in 
millimeters) 

Table 2	 Parameters of the system shown in Fig. 4 

l.15x10 2 Kg-rn2 r	 : 0.047 rn 

5.75x10 3 Kg-rn2 rg	 :	 0.047 m 

mm : 9.2 Kg rn2	 : 0.92 Kg 

rnd : 4.6 Kg rng	 :	 0.92 Kg 

1	 : l.15xI0 3 Kg-rn2 variable 

1g l.15x103 Kg-rn2 km	 2.0x108 N/rn 

F5	 : 2500 N 

Table 3	 Parameters of the system shown In Fig. 6 

l, 0.0018 Kg-rn2 rn2	 1.84 Kg 

0.0018 Kg-rn2 mg	 :	 1.84 Kg 

0.0445 m e1	 :	 9.3x10 6 rn 

rg	 : 0.0445 m km	 l.0x108 N/rn 

k, k	 variable Np	 :	 28 teeth

geometric eccentricity eg and the mass unbalance Ug (es, ep, 
and are all zero) is shown in Fig. 3, along with the ex-
perimental results of lida et al. (1980). Since no information is 
given about the damping values of the system, a modal damp-
ing of 0.02 has been used at each mode in the computations. 
As seen in Fig. 3, predictions from the analytical model show 
good correlation with the experimental results. 

Response due to Geometric Eccentricities, Mass Un-
balances, Static Transmission Error, and Mesh Stiffness 
Variation. As a second example, the system which was used 
by Neriya et al. (1985) was studied to investigate the effects of 
geometric eccentricities and mass unbalances of the gears on 
the forced response of the system. The natural frequencies, 
mode shapes, and the responses at both gear locations due to 
geometric eccentricities and mass unbalances of gears were 
almost identical to those which were documented by Neriya et 
al. (1985). The results of this analysis have not been included 
in this study since the gear eccentricities and unbalances excite 
the system at the shaft rotational frequencies as was shown in 
the first example. The contribution of such low frequency ex-
citations on the generated gear noise is usually negligible when 
compared with those of high frequency excitations caused by 
the static transmission error and the mesh stiffness variations. 

On the other hand, the system shown in Fig. 4 has been 
modeled to obtain the dynamic mesh force due to the static 
transmission error excitation of amplitude e1 and frequency 
Nw representing the mesh stiffness variation. Dimensions of 
the rotors are shown in Fig. 4 and other system-parameters are 
listed in Table 2. Thebearings are assumed to be identical and 
geometric eccentricities and mass unbalances for gears are 
assumed to be zero, so that only excitation causing a forced 
response is the static transmission error excitation defined. 
Since the displacement input approximates the loaded static 
transmission error, the value of e, was taken as the amplitude 
of the loaded static transmission error. Figure 5 shows the 
variation of the ratio of dynamic to static mesh load with rota-
tional speed for three different bearing compliances. The first 
two small peaks of Fig. 5 correspond to torsional modes of 
shafts and the third peak corresponds to the coupled 
lateral/torsional mode governed by the gear mesh. 

As shown in Fig. 5, when the bearing stiffnesses are de-
creased, the dynamic force also decreases considerably 
because of a resulting decrease in the relative angular rotations 
of the two gears. Although the displacements in they direction 
increase slightly, they do not appreciably affect the dynamic 
force. In this example, a mesh damping corresponding to a

2.2

= 1.0E15 N/rn (almost rigid( 
= k,, = 1.OE1O N/rn 

i	 1.2 

1.0

	

3	 50	 100	 150	 200	 250	 1fl 

Rotational Speed (Hz) 

Fig. 5 VarIatIon of dynamIc to static ioad ratio with frequency for three 
different bearing compliances

GEAR	
'--

Fig. 6 The system analyzed as a third example (dimensions are in 
millimeters) 

modal damping of 0.1 in the mode of gear mesh has been 
used. This was the value employed by several investigators for 
the same problem. 

The Effect of Bearing Compliances on Gear Dynamics. A 
parametric study on the system shown in Fig. 6 was per-
formed. The effects of bearing compliances on the natural fre-
quencies and the forced response of the system to the har-
monic excitation respresenting the static transmission error 
and the mesh stiffness variation were studied. The system 
parameters are given in Table 3. The natural frequencies and 
the physical descriptions of the corresponding modes for a 
value of bearing stiffnesses k = Icr, = 1.0 x l0 N/rn are 
presented in Table 4. The forced response at the pinion loca-
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0.0025 

k/k,, - 0.t 
k/k., 0.5 

- --k/k.,- 1.0 
k../k,, = 10.0 

Natural Frequency	 Description of Corresponding 

(i-li.)	 Mode 

Table 4 First 14 natural frequencies of the system of Fig. 6 for the case 
Ofkxx/km=10

0.003 

0.0030

0 torsional rigid body 

581 transverse, torsional 

687 transverse, x dir., driving shaft 

689 transverse, y dir. 

691 transverse. x dir., driven shaft 

2524 transverse, torsional 

3387 tranSverse, y dir. 

3387 transverse, x dir., driving shaft 

3421 transverse, x dir., driven shaft 

3421 transverse, y dir. 

6447 torsional, driving shaft 

6539 torsional, driven shaft 

6831 transverse, x dir., driving shaft 

6840 transverse, y dir.

0.00007 

0

0.00006 

0

0.00005 

0

0.00004 
0 

-	 0.00003 

0.00002 

0.00001 
0 

0 
E- 0.0000C

0	 500	 1000	 1500	 2000	 2500	 3000 

Excitation Frequency (Hz) 

Fig. 7 Forced response of the system shown in Fig. 6 to the displace. 
ment excitation at the direction of pressure line (at pinion location) for 
four different bearing comptiances

0.0020 

0.00 15 

0.0010 

0.0005 

0.000c
0	 500	 1000	 1500	 2000	 2500	 3000 

Excitation Frequency (Hz) 

Fig. 8 Forced response of system shown in Fig. 6 to the displacement 
excitation at the torsional direction (at pinion location) for four different 
bearing compliances 

2.0 

'0
	

k ,./k,,=O.1 

	

k,,Ik,,,	 0.5 

,o	 1.8
	

1.0 
0
	

k,/k,,= 10.0 

U 

C 
0', 
0 

I:: 

	

1.0 0
	 500 . 1000	 1500 - 2000	 2500	 3000

Excitation Frequency (Hz) 

Fig. 9 Dynamic to static load ratios for system shown in Fig. 6 due to 
the displacement excitation for four different bearing compliances 

k,,fk,.	 0.1 
k,,/k.,, = 0.5	 0:. 

1.0 
k.,/k.. 10.0

0 

C 

C 
C. 
U 

lip

tion in both the transverse (pressure line) and torsional direc-
tions, and dynamic mesh forces are plotted in Figs. 7, 8, and 9, 
respectively. As shown in Figs. 7 and 8,. the system has peak 
responses only at two natural frequencies within the frequency 
range considered. Mode shapes corresponding to these two 
natural frequencies are presented in Fig. 10. If the free vibra-
tion characteristics of these two modes are investigated in 
detail, it is seen that the dynamic coupling between the 
transverse and torsional vibrations at these two modes are 
dominant. It is also seen that dynamic loads are high at only 
the second one of these two modes as shown in Fig. 9. The 
reason for this is that the transverse and torsional vibrations 
for the second mode considered are in phase. This results in 
large relative deflections at the mesh point which implies that 
this mode is governed by gear mesh. It is also seen from these 
figures that lowering the values of bearing stiffnesses causes a 
decrease in both the values of the natural frequencies and the 
amplitudes of the peak responses and dynamic loads. 

Figure 11 shows the variation of these natural frequencies 
with bearing stiffnesses for three different shaft compliances: 
(a) long shafts (low stiffness) with dimensions given in Fig. 6, 
(b) moderately compliant shafts with half the length of case

a> (0 =8 

Fig. 10 Mode shapes corresponding to natural frequencies at which 
the system shown in Fig. 6 has peak responses 
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Fig. 11 Variation of the first and the second natural frequencies conS 
sidered with bearing stiffnesses for three different shaft compliances 

which represent average mesh values. Tooth separation was 
not considered. The model developed yields the natural fre-
quencies, corresponding mode shapes, and forced response of 
the system to the mass unbalances and the geometric eccen-
tricities of gears and the transmission error. 

Although a constant mesh stiffness was assumed, the self-
excitation effect of a time-varying gear mesh was included into 
the analysis by using a displacement excitation representing 
the static transmission error. It may be justified to solve time-
varying equations in simpler models with a few degrees of 
freedom. However, for large models such as the ones used in 
this study, avoiding time-varying stiffnesses and transient 
solutions saves considerable computation time. In the example 
problems only the first harmonic of the static transmission er-
ror was considered. A good correlation between the predic-
tions and previous experimental and theoretical studies has 
been found. 

Finally, it has been shown that the bearing compliances can 
greatly affect the dynamics of geared systems. Decreasing the 
stiffness values of bearings beyond a certain value lowers the 
natural frequency governed by the gear mesh considerably. 
However, in the case of compliant shafts, when the bearing 
stiffnesses are above a certain value the natural frequency cor-
responding to the gear mesh does not change considerably by 
increasing bearing stiffnesses. On the other hand, it has been 
seen that the amplitudes of dynamic to static load ratio and 
the deflections at the torsional and transverse directions are 
decreased by using bearings with higher compliances, which 
suggests that the bearing compliance may also affect the 
dynamic tooth load, depending upon the relative compliances 
of the other elements in the system. 
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