

Characterization of Joint Resistance and Performance Degradation of the Extravehicular Mobility Unit Spacesuit: A Pilot Study

Ryan Z. Amick, PhD Christopher R. Reid, PhD Scott A. England, MS Sudhakar L. Rajulu, PhD

Lockheed Martin Lockheed Martin (Formerly) MEI Technologies, Inc. NASA

Overview

- Background
- Project Objectives
- Methodology
- Results
- Discussion
- Future Work

Background

- Environmental
 - Microgravity
 - Radiation
 - Contamination
 - Extreme Temperatures
- Physical
 - Physically Demanding Work
 - Spacesuit

Background – Extravehicular Mobility Unit

- Extravehicular Mobility Unit (EMU)
 - Pressurized personal protective suit.
 - Protects astronauts from the harsh environment of space during Extravehicular Activities (EVA).
 - Components
 - Helmet
 - Hard Upper Torso
 - Arm Assemblies and Gloves
 - Lower Torso Assembly
 - Leg assemblies and Boots

Background – EMU Exposure

- Use of the EMU is not limited to space operations.
- Significant amount of pre-mission ground based training.
 - EVA basic skills training
 - EVA mission specific training
- Cumulative suited pre-flight training time can exceed 300 hours
- Between flights, familiarization training is regularly performed to maintain suit skills.

Background – EMU Exposure

- Observed association between EVA training time and musculoskeletal injuries.
 - Restricted ROM, suit contact, improper suit fit.
- Previous work
 - 50% reduction in isolated joint strength.
 - Significantly reduced work output.
- Recent work
 - May be instances of improved strength performance depending on movement direction.

- 1. Quantify the resistance to movement generated by the EMU upper arm assembly.
- 2. Characterize human strength performance degradations caused by the pressurized EMU.

Methods – EMU Upper Arm Assembly Resistance to Movement

- Unoccupied pressurized HUT and upper arm assembly
- Joint rotation axis aligned with dynamometer
- Shoulder Abd/Add
- Elbow Flx/Ext
- 90° arc at 60% sec.

Methods – Human in the Loop Strength Assessment

- 5 Male subjects (age 31.8 ± 7.2)
- Isokinetic arm movement
 - Shoulder Abduction-Adduction
 - Elbow Flexion-Extension
- 1 Trial of each movement
 - 4 repetitions
 - 1st was considered familiarization
- Suit Conditions
 - Unsuited (secured in chair)
 - Suited Un-Pressurized (EMU HUT without arm assemblies)
 - Suited Pressurized (Full EMU pressurized to 29.6 kPa differential)

Methods – Suit Conditions

Unsuited

Suited Un-Pressurized

Suited Pressurized

Results – Suit Joint Resistance

EMU Resistance to Movement (Nm)				
Joint Movement	Max	<u>Mean (sd)</u>		
Shoulder Abduction	23.7	11.9 (8.2)		
Shoulder Adduction	20.3	12.0 (6.8)		
Elbow Flexion	26.0	12.3 (9.2)		
Elbow Extension	24.9	10.8 (8.9)		

- Shoulder Abduction
 - Significant mean peak strength differences between suited conditions (F(2,28) = 6.9, p < 0.01)
 - Unsuited > Suited Pressurized (p = 0.01)
 - Practical Differences
 - Determined to be practically different if greater than 15% difference
 - Unsuited > Suited Un-Pressurized (18%)

- Shoulder Adduction
 - Significant mean peak strength differences between suited conditions (F(2,28) = 7.02, p < 0.01)
 - Unsuited > Suited Un-Pressurized (p = 0.03)
 - Unsuited > Suited Pressurized (p < 0.01)
 - No practical differences were noted

• Elbow Flexion

- Significant mean peak strength differences between suited conditions (F(2,28) = 35.56, p < 0.01)
 - Unsuited > Suited Pressurized (p < 0.01)
 - Suited Un-Pressurized > Suited Pressurized (p < 0.01)
- No practical differences were noted

• Elbow Extension

- Significant mean peak strength differences between suited conditions (F(2,28) = 4.23, p = 0.03)
 - Suited Un-Pressurized > Suited Pressurized (p = 0.03)
- No practical differences were noted

-	lest	Ratio	
 Unsuited 		Unsuited	
• Abd < Add	(p < 0.01)	• Abd-Add: 122:1	191
• Flx > Ext	(p < 0.01)	• Flx-Ext: 53:49	Э
Suited Un-Pres	ed Un-Pressurized • Suited Un-Pressurized		l
• Abd < Add	(p < 0.01)	• Abd-Add: 25:43	3
• Flx = Ext	(<i>p</i> = 0.55)	• Flx-Ext: 118:2	112
Suited Pressur	uited Pressurized • Suited Pressurized		
• Abd < Add	(p < 0.01)	• Abd-Add: 22:42	1
• Flx < Ext	(p < 0.01)	• Flx-Ext: 78:90)

Discussion – Joint Resistance

- Greater soft goods resistance with shoulder abduction and elbow flexion.
 - Air volume displacement
 - Folding/Compression of soft goods materials
- Lower resistance with shoulder adduction and elbow extension
 - Arm assembly returning to neutral posture
- IMPACT
 - Astronauts must exert more force to work against the pressurized EMU while executing certain arm movements

Discussion – Strength Assessment

- Shoulder Strength
 - Consistent trend of decreasing shoulder strength as subjects progressed through conditions
 - Consistent with previous findings
 - Strength is reduced with pressurized EMU
- Elbow Strength
 - Suited Pressurized strength lower than Unsuited
 - Consistent with previous findings
 - Increased flexion and extension strength from Unsuited to Suited Un-Pressurized
 - Possible that subjects are using the donning stand to brace themselves, giving mechanical advantage

Conclusion

- It is generally accepted that wearing a pressurized EMU reduces the total strength capabilities and mobility performance of the user
 - This investigation indicates that some of these deficits may be due to soft goods resistance
- Strength is augmented by the type of suit support method utilized

Limitations

- Suit Stiffness
 - Suit was unmanned, did not include helmet or lower components
 - Air volume displacement characteristics may not be representative to that of a manned suit
- Strength Assessment
 - Mixed posture
 - Seated unsuited condition, standing in donning stand for suited conditions
 - Low number of test subjects
 - EMG evidence suggests some subjects may not have exerted maximal effort on all strength trials

Future Work

- Soft Goods
 - Should future suits be designed with a different neutral posture?
 - Model the impact of different neutral postures on strength
- Strength Assessment
 - Suit support condition likely affects strength and possibly other functional measures
 - Investigate strength utilizing various available suit support methods